Properties

Label 3380.2.a.g.1.1
Level $3380$
Weight $2$
Character 3380.1
Self dual yes
Analytic conductor $26.989$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3380.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.9894358832\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 260)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3380.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{7} -2.00000 q^{9} -3.00000 q^{11} -1.00000 q^{15} -3.00000 q^{17} +7.00000 q^{19} +1.00000 q^{21} -3.00000 q^{23} +1.00000 q^{25} -5.00000 q^{27} +3.00000 q^{29} +4.00000 q^{31} -3.00000 q^{33} -1.00000 q^{35} +7.00000 q^{37} +9.00000 q^{41} +11.0000 q^{43} +2.00000 q^{45} -6.00000 q^{49} -3.00000 q^{51} -6.00000 q^{53} +3.00000 q^{55} +7.00000 q^{57} +3.00000 q^{59} +11.0000 q^{61} -2.00000 q^{63} +7.00000 q^{67} -3.00000 q^{69} +3.00000 q^{71} -2.00000 q^{73} +1.00000 q^{75} -3.00000 q^{77} +8.00000 q^{79} +1.00000 q^{81} +12.0000 q^{83} +3.00000 q^{85} +3.00000 q^{87} -15.0000 q^{89} +4.00000 q^{93} -7.00000 q^{95} +7.00000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 7.00000 0.927173
\(58\) 0 0
\(59\) 3.00000 0.390567 0.195283 0.980747i \(-0.437437\pi\)
0.195283 + 0.980747i \(0.437437\pi\)
\(60\) 0 0
\(61\) 11.0000 1.40841 0.704203 0.709999i \(-0.251305\pi\)
0.704203 + 0.709999i \(0.251305\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −3.00000 −0.341882
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) −7.00000 −0.718185
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −1.00000 −0.0975900
\(106\) 0 0
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) 3.00000 0.279751
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.00000 −0.275010
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 9.00000 0.811503
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 7.00000 0.606977
\(134\) 0 0
\(135\) 5.00000 0.430331
\(136\) 0 0
\(137\) 15.0000 1.28154 0.640768 0.767734i \(-0.278616\pi\)
0.640768 + 0.767734i \(0.278616\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 21.0000 1.72039 0.860194 0.509968i \(-0.170343\pi\)
0.860194 + 0.509968i \(0.170343\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) 0 0
\(165\) 3.00000 0.233550
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −14.0000 −1.07061
\(172\) 0 0
\(173\) −3.00000 −0.228086 −0.114043 0.993476i \(-0.536380\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 11.0000 0.813143
\(184\) 0 0
\(185\) −7.00000 −0.514650
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.0000 −1.49619 −0.748094 0.663593i \(-0.769031\pi\)
−0.748094 + 0.663593i \(0.769031\pi\)
\(198\) 0 0
\(199\) 17.0000 1.20510 0.602549 0.798082i \(-0.294152\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 0 0
\(201\) 7.00000 0.493742
\(202\) 0 0
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) 11.0000 0.757271 0.378636 0.925546i \(-0.376393\pi\)
0.378636 + 0.925546i \(0.376393\pi\)
\(212\) 0 0
\(213\) 3.00000 0.205557
\(214\) 0 0
\(215\) −11.0000 −0.750194
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) −27.0000 −1.79205 −0.896026 0.444001i \(-0.853559\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) −3.00000 −0.197386
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 21.0000 1.32551 0.662754 0.748837i \(-0.269387\pi\)
0.662754 + 0.748837i \(0.269387\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) 9.00000 0.561405 0.280702 0.959795i \(-0.409433\pi\)
0.280702 + 0.959795i \(0.409433\pi\)
\(258\) 0 0
\(259\) 7.00000 0.434959
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −3.00000 −0.184988 −0.0924940 0.995713i \(-0.529484\pi\)
−0.0924940 + 0.995713i \(0.529484\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) −15.0000 −0.917985
\(268\) 0 0
\(269\) 27.0000 1.64622 0.823110 0.567883i \(-0.192237\pi\)
0.823110 + 0.567883i \(0.192237\pi\)
\(270\) 0 0
\(271\) −23.0000 −1.39715 −0.698575 0.715537i \(-0.746182\pi\)
−0.698575 + 0.715537i \(0.746182\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 5.00000 0.297219 0.148610 0.988896i \(-0.452520\pi\)
0.148610 + 0.988896i \(0.452520\pi\)
\(284\) 0 0
\(285\) −7.00000 −0.414644
\(286\) 0 0
\(287\) 9.00000 0.531253
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 7.00000 0.410347
\(292\) 0 0
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) −3.00000 −0.174667
\(296\) 0 0
\(297\) 15.0000 0.870388
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 11.0000 0.634029
\(302\) 0 0
\(303\) −9.00000 −0.517036
\(304\) 0 0
\(305\) −11.0000 −0.629858
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −9.00000 −0.503903
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) −21.0000 −1.16847
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.00000 −0.110600
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.0000 1.04433 0.522167 0.852843i \(-0.325124\pi\)
0.522167 + 0.852843i \(0.325124\pi\)
\(332\) 0 0
\(333\) −14.0000 −0.767195
\(334\) 0 0
\(335\) −7.00000 −0.382451
\(336\) 0 0
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 9.00000 0.488813
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 3.00000 0.161515
\(346\) 0 0
\(347\) −33.0000 −1.77153 −0.885766 0.464131i \(-0.846367\pi\)
−0.885766 + 0.464131i \(0.846367\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) −3.00000 −0.159223
\(356\) 0 0
\(357\) −3.00000 −0.158777
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 5.00000 0.260998 0.130499 0.991448i \(-0.458342\pi\)
0.130499 + 0.991448i \(0.458342\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) −31.0000 −1.60512 −0.802560 0.596572i \(-0.796529\pi\)
−0.802560 + 0.596572i \(0.796529\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) −19.0000 −0.973399
\(382\) 0 0
\(383\) 9.00000 0.459879 0.229939 0.973205i \(-0.426147\pi\)
0.229939 + 0.973205i \(0.426147\pi\)
\(384\) 0 0
\(385\) 3.00000 0.152894
\(386\) 0 0
\(387\) −22.0000 −1.11832
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −5.00000 −0.250943 −0.125471 0.992097i \(-0.540044\pi\)
−0.125471 + 0.992097i \(0.540044\pi\)
\(398\) 0 0
\(399\) 7.00000 0.350438
\(400\) 0 0
\(401\) 33.0000 1.64794 0.823971 0.566632i \(-0.191754\pi\)
0.823971 + 0.566632i \(0.191754\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −21.0000 −1.04093
\(408\) 0 0
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) 15.0000 0.739895
\(412\) 0 0
\(413\) 3.00000 0.147620
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 −0.145521
\(426\) 0 0
\(427\) 11.0000 0.532327
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.00000 0.433515 0.216757 0.976226i \(-0.430452\pi\)
0.216757 + 0.976226i \(0.430452\pi\)
\(432\) 0 0
\(433\) 29.0000 1.39365 0.696826 0.717241i \(-0.254595\pi\)
0.696826 + 0.717241i \(0.254595\pi\)
\(434\) 0 0
\(435\) −3.00000 −0.143839
\(436\) 0 0
\(437\) −21.0000 −1.00457
\(438\) 0 0
\(439\) 11.0000 0.525001 0.262501 0.964932i \(-0.415453\pi\)
0.262501 + 0.964932i \(0.415453\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) 0 0
\(447\) 21.0000 0.993266
\(448\) 0 0
\(449\) −3.00000 −0.141579 −0.0707894 0.997491i \(-0.522552\pi\)
−0.0707894 + 0.997491i \(0.522552\pi\)
\(450\) 0 0
\(451\) −27.0000 −1.27138
\(452\) 0 0
\(453\) −8.00000 −0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.00000 −0.233890 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(458\) 0 0
\(459\) 15.0000 0.700140
\(460\) 0 0
\(461\) −27.0000 −1.25752 −0.628758 0.777601i \(-0.716436\pi\)
−0.628758 + 0.777601i \(0.716436\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) −33.0000 −1.51734
\(474\) 0 0
\(475\) 7.00000 0.321182
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) −39.0000 −1.78196 −0.890978 0.454047i \(-0.849980\pi\)
−0.890978 + 0.454047i \(0.849980\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −3.00000 −0.136505
\(484\) 0 0
\(485\) −7.00000 −0.317854
\(486\) 0 0
\(487\) −11.0000 −0.498458 −0.249229 0.968445i \(-0.580177\pi\)
−0.249229 + 0.968445i \(0.580177\pi\)
\(488\) 0 0
\(489\) 1.00000 0.0452216
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 3.00000 0.134568
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 3.00000 0.134030
\(502\) 0 0
\(503\) 15.0000 0.668817 0.334408 0.942428i \(-0.391463\pi\)
0.334408 + 0.942428i \(0.391463\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 0 0
\(513\) −35.0000 −1.54529
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 29.0000 1.26808 0.634041 0.773300i \(-0.281395\pi\)
0.634041 + 0.773300i \(0.281395\pi\)
\(524\) 0 0
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −9.00000 −0.389104
\(536\) 0 0
\(537\) −21.0000 −0.906217
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) −22.0000 −0.938937
\(550\) 0 0
\(551\) 21.0000 0.894630
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) −7.00000 −0.297133
\(556\) 0 0
\(557\) 39.0000 1.65248 0.826242 0.563316i \(-0.190475\pi\)
0.826242 + 0.563316i \(0.190475\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 9.00000 0.379980
\(562\) 0 0
\(563\) 39.0000 1.64365 0.821827 0.569737i \(-0.192955\pi\)
0.821827 + 0.569737i \(0.192955\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 27.0000 1.13190 0.565949 0.824440i \(-0.308510\pi\)
0.565949 + 0.824440i \(0.308510\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) −3.00000 −0.125327
\(574\) 0 0
\(575\) −3.00000 −0.125109
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) −5.00000 −0.207793
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 18.0000 0.745484
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.0000 −1.36206 −0.681028 0.732257i \(-0.738467\pi\)
−0.681028 + 0.732257i \(0.738467\pi\)
\(588\) 0 0
\(589\) 28.0000 1.15372
\(590\) 0 0
\(591\) −21.0000 −0.863825
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) 0 0
\(597\) 17.0000 0.695764
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) −13.0000 −0.527654 −0.263827 0.964570i \(-0.584985\pi\)
−0.263827 + 0.964570i \(0.584985\pi\)
\(608\) 0 0
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 43.0000 1.73675 0.868377 0.495905i \(-0.165164\pi\)
0.868377 + 0.495905i \(0.165164\pi\)
\(614\) 0 0
\(615\) −9.00000 −0.362915
\(616\) 0 0
\(617\) −33.0000 −1.32853 −0.664265 0.747497i \(-0.731255\pi\)
−0.664265 + 0.747497i \(0.731255\pi\)
\(618\) 0 0
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) 15.0000 0.601929
\(622\) 0 0
\(623\) −15.0000 −0.600962
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −21.0000 −0.838659
\(628\) 0 0
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) −17.0000 −0.676759 −0.338380 0.941010i \(-0.609879\pi\)
−0.338380 + 0.941010i \(0.609879\pi\)
\(632\) 0 0
\(633\) 11.0000 0.437211
\(634\) 0 0
\(635\) 19.0000 0.753992
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 27.0000 1.06644 0.533218 0.845978i \(-0.320983\pi\)
0.533218 + 0.845978i \(0.320983\pi\)
\(642\) 0 0
\(643\) −11.0000 −0.433798 −0.216899 0.976194i \(-0.569594\pi\)
−0.216899 + 0.976194i \(0.569594\pi\)
\(644\) 0 0
\(645\) −11.0000 −0.433125
\(646\) 0 0
\(647\) 45.0000 1.76913 0.884566 0.466415i \(-0.154454\pi\)
0.884566 + 0.466415i \(0.154454\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) −39.0000 −1.52619 −0.763094 0.646288i \(-0.776321\pi\)
−0.763094 + 0.646288i \(0.776321\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) −39.0000 −1.51922 −0.759612 0.650376i \(-0.774611\pi\)
−0.759612 + 0.650376i \(0.774611\pi\)
\(660\) 0 0
\(661\) 1.00000 0.0388955 0.0194477 0.999811i \(-0.493809\pi\)
0.0194477 + 0.999811i \(0.493809\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.00000 −0.271448
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 0 0
\(669\) 19.0000 0.734582
\(670\) 0 0
\(671\) −33.0000 −1.27395
\(672\) 0 0
\(673\) 17.0000 0.655302 0.327651 0.944799i \(-0.393743\pi\)
0.327651 + 0.944799i \(0.393743\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) 7.00000 0.268635
\(680\) 0 0
\(681\) −27.0000 −1.03464
\(682\) 0 0
\(683\) −51.0000 −1.95146 −0.975730 0.218975i \(-0.929729\pi\)
−0.975730 + 0.218975i \(0.929729\pi\)
\(684\) 0 0
\(685\) −15.0000 −0.573121
\(686\) 0 0
\(687\) 22.0000 0.839352
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −23.0000 −0.874961 −0.437481 0.899228i \(-0.644129\pi\)
−0.437481 + 0.899228i \(0.644129\pi\)
\(692\) 0 0
\(693\) 6.00000 0.227921
\(694\) 0 0
\(695\) −5.00000 −0.189661
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) 0 0
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 49.0000 1.84807
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 37.0000 1.38956 0.694782 0.719220i \(-0.255501\pi\)
0.694782 + 0.719220i \(0.255501\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.00000 0.335643 0.167822 0.985817i \(-0.446327\pi\)
0.167822 + 0.985817i \(0.446327\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 1.00000 0.0371904
\(724\) 0 0
\(725\) 3.00000 0.111417
\(726\) 0 0
\(727\) −52.0000 −1.92857 −0.964287 0.264861i \(-0.914674\pi\)
−0.964287 + 0.264861i \(0.914674\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −33.0000 −1.22055
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 0 0
\(737\) −21.0000 −0.773545
\(738\) 0 0
\(739\) −47.0000 −1.72892 −0.864461 0.502699i \(-0.832340\pi\)
−0.864461 + 0.502699i \(0.832340\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.0000 −0.770415 −0.385208 0.922830i \(-0.625870\pi\)
−0.385208 + 0.922830i \(0.625870\pi\)
\(744\) 0 0
\(745\) −21.0000 −0.769380
\(746\) 0 0
\(747\) −24.0000 −0.878114
\(748\) 0 0
\(749\) 9.00000 0.328853
\(750\) 0 0
\(751\) −13.0000 −0.474377 −0.237188 0.971464i \(-0.576226\pi\)
−0.237188 + 0.971464i \(0.576226\pi\)
\(752\) 0 0
\(753\) 21.0000 0.765283
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) −3.00000 −0.108750 −0.0543750 0.998521i \(-0.517317\pi\)
−0.0543750 + 0.998521i \(0.517317\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) −6.00000 −0.216930
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 13.0000 0.468792 0.234396 0.972141i \(-0.424689\pi\)
0.234396 + 0.972141i \(0.424689\pi\)
\(770\) 0 0
\(771\) 9.00000 0.324127
\(772\) 0 0
\(773\) 27.0000 0.971123 0.485561 0.874203i \(-0.338615\pi\)
0.485561 + 0.874203i \(0.338615\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 7.00000 0.251124
\(778\) 0 0
\(779\) 63.0000 2.25721
\(780\) 0 0
\(781\) −9.00000 −0.322045
\(782\) 0 0
\(783\) −15.0000 −0.536056
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) 37.0000 1.31891 0.659454 0.751745i \(-0.270788\pi\)
0.659454 + 0.751745i \(0.270788\pi\)
\(788\) 0 0
\(789\) −3.00000 −0.106803
\(790\) 0 0
\(791\) 9.00000 0.320003
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 6.00000 0.212798
\(796\) 0 0
\(797\) −51.0000 −1.80651 −0.903256 0.429101i \(-0.858830\pi\)
−0.903256 + 0.429101i \(0.858830\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 30.0000 1.06000
\(802\) 0 0
\(803\) 6.00000 0.211735
\(804\) 0 0
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) 27.0000 0.950445
\(808\) 0 0
\(809\) 15.0000 0.527372 0.263686 0.964609i \(-0.415062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) 0 0
\(811\) −32.0000 −1.12367 −0.561836 0.827249i \(-0.689905\pi\)
−0.561836 + 0.827249i \(0.689905\pi\)
\(812\) 0 0
\(813\) −23.0000 −0.806645
\(814\) 0 0
\(815\) −1.00000 −0.0350285
\(816\) 0 0
\(817\) 77.0000 2.69389
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.0000 −0.523504 −0.261752 0.965135i \(-0.584300\pi\)
−0.261752 + 0.965135i \(0.584300\pi\)
\(822\) 0 0
\(823\) −13.0000 −0.453152 −0.226576 0.973994i \(-0.572753\pi\)
−0.226576 + 0.973994i \(0.572753\pi\)
\(824\) 0 0
\(825\) −3.00000 −0.104447
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) −19.0000 −0.659103
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −3.00000 −0.103819
\(836\) 0 0
\(837\) −20.0000 −0.691301
\(838\) 0 0
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) 5.00000 0.171600
\(850\) 0 0
\(851\) −21.0000 −0.719871
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) 14.0000 0.478790
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) 9.00000 0.306719
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 3.00000 0.102003
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −41.0000 −1.38447 −0.692236 0.721671i \(-0.743374\pi\)
−0.692236 + 0.721671i \(0.743374\pi\)
\(878\) 0 0
\(879\) 27.0000 0.910687
\(880\) 0 0
\(881\) 27.0000 0.909653 0.454827 0.890580i \(-0.349701\pi\)
0.454827 + 0.890580i \(0.349701\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) −3.00000 −0.100844
\(886\) 0 0
\(887\) 9.00000 0.302190 0.151095 0.988519i \(-0.451720\pi\)
0.151095 + 0.988519i \(0.451720\pi\)
\(888\) 0 0
\(889\) −19.0000 −0.637240
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 21.0000 0.701953
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 0 0
\(903\) 11.0000 0.366057
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) −19.0000 −0.630885 −0.315442 0.948945i \(-0.602153\pi\)
−0.315442 + 0.948945i \(0.602153\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 0 0
\(915\) −11.0000 −0.363649
\(916\) 0 0
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) 29.0000 0.956622 0.478311 0.878191i \(-0.341249\pi\)
0.478311 + 0.878191i \(0.341249\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 7.00000 0.230159
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) −51.0000 −1.67326 −0.836628 0.547772i \(-0.815476\pi\)
−0.836628 + 0.547772i \(0.815476\pi\)
\(930\) 0 0
\(931\) −42.0000 −1.37649
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) −9.00000 −0.294331
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −22.0000 −0.717943
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) −27.0000 −0.879241
\(944\) 0 0
\(945\) 5.00000 0.162650
\(946\) 0 0
\(947\) −21.0000 −0.682408 −0.341204 0.939989i \(-0.610835\pi\)
−0.341204 + 0.939989i \(0.610835\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) −51.0000 −1.65205 −0.826026 0.563632i \(-0.809404\pi\)
−0.826026 + 0.563632i \(0.809404\pi\)
\(954\) 0 0
\(955\) 3.00000 0.0970777
\(956\) 0 0
\(957\) −9.00000 −0.290929
\(958\) 0 0
\(959\) 15.0000 0.484375
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −18.0000 −0.580042
\(964\) 0 0
\(965\) 5.00000 0.160956
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) −21.0000 −0.674617
\(970\) 0 0
\(971\) 21.0000 0.673922 0.336961 0.941519i \(-0.390601\pi\)
0.336961 + 0.941519i \(0.390601\pi\)
\(972\) 0 0
\(973\) 5.00000 0.160293
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.00000 −0.287936 −0.143968 0.989582i \(-0.545986\pi\)
−0.143968 + 0.989582i \(0.545986\pi\)
\(978\) 0 0
\(979\) 45.0000 1.43821
\(980\) 0 0
\(981\) 4.00000 0.127710
\(982\) 0 0
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) 21.0000 0.669116
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −33.0000 −1.04934
\(990\) 0 0
\(991\) −61.0000 −1.93773 −0.968864 0.247592i \(-0.920361\pi\)
−0.968864 + 0.247592i \(0.920361\pi\)
\(992\) 0 0
\(993\) 19.0000 0.602947
\(994\) 0 0
\(995\) −17.0000 −0.538936
\(996\) 0 0
\(997\) −31.0000 −0.981780 −0.490890 0.871222i \(-0.663328\pi\)
−0.490890 + 0.871222i \(0.663328\pi\)
\(998\) 0 0
\(999\) −35.0000 −1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.2.a.g.1.1 1
13.4 even 6 260.2.i.b.81.1 yes 2
13.5 odd 4 3380.2.f.e.3041.2 2
13.8 odd 4 3380.2.f.e.3041.1 2
13.10 even 6 260.2.i.b.61.1 2
13.12 even 2 3380.2.a.h.1.1 1
39.17 odd 6 2340.2.q.b.2161.1 2
39.23 odd 6 2340.2.q.b.1621.1 2
52.23 odd 6 1040.2.q.j.321.1 2
52.43 odd 6 1040.2.q.j.81.1 2
65.4 even 6 1300.2.i.e.601.1 2
65.17 odd 12 1300.2.bb.a.549.1 4
65.23 odd 12 1300.2.bb.a.1049.1 4
65.43 odd 12 1300.2.bb.a.549.2 4
65.49 even 6 1300.2.i.e.1101.1 2
65.62 odd 12 1300.2.bb.a.1049.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.i.b.61.1 2 13.10 even 6
260.2.i.b.81.1 yes 2 13.4 even 6
1040.2.q.j.81.1 2 52.43 odd 6
1040.2.q.j.321.1 2 52.23 odd 6
1300.2.i.e.601.1 2 65.4 even 6
1300.2.i.e.1101.1 2 65.49 even 6
1300.2.bb.a.549.1 4 65.17 odd 12
1300.2.bb.a.549.2 4 65.43 odd 12
1300.2.bb.a.1049.1 4 65.23 odd 12
1300.2.bb.a.1049.2 4 65.62 odd 12
2340.2.q.b.1621.1 2 39.23 odd 6
2340.2.q.b.2161.1 2 39.17 odd 6
3380.2.a.g.1.1 1 1.1 even 1 trivial
3380.2.a.h.1.1 1 13.12 even 2
3380.2.f.e.3041.1 2 13.8 odd 4
3380.2.f.e.3041.2 2 13.5 odd 4