Properties

Label 3380.2
Level 3380
Weight 2
Dimension 178805
Nonzero newspaces 40
Sturm bound 1362816
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(1362816\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3380))\).

Total New Old
Modular forms 345264 181261 164003
Cusp forms 336145 178805 157340
Eisenstein series 9119 2456 6663

Trace form

\( 178805 q - 134 q^{2} - 2 q^{3} - 132 q^{4} - 401 q^{5} - 396 q^{6} - 6 q^{7} - 128 q^{8} - 295 q^{9} - 192 q^{10} - 24 q^{11} - 108 q^{12} - 312 q^{13} - 252 q^{14} - 22 q^{15} - 404 q^{16} - 276 q^{17}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3380))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3380.2.a \(\chi_{3380}(1, \cdot)\) 3380.2.a.a 1 1
3380.2.a.b 1
3380.2.a.c 1
3380.2.a.d 1
3380.2.a.e 1
3380.2.a.f 1
3380.2.a.g 1
3380.2.a.h 1
3380.2.a.i 1
3380.2.a.j 1
3380.2.a.k 3
3380.2.a.l 3
3380.2.a.m 3
3380.2.a.n 3
3380.2.a.o 3
3380.2.a.p 4
3380.2.a.q 4
3380.2.a.r 9
3380.2.a.s 9
3380.2.c \(\chi_{3380}(2029, \cdot)\) 3380.2.c.a 6 1
3380.2.c.b 6
3380.2.c.c 6
3380.2.c.d 8
3380.2.c.e 16
3380.2.c.f 18
3380.2.c.g 18
3380.2.d \(\chi_{3380}(1689, \cdot)\) 3380.2.d.a 6 1
3380.2.d.b 6
3380.2.d.c 12
3380.2.d.d 16
3380.2.d.e 36
3380.2.f \(\chi_{3380}(3041, \cdot)\) 3380.2.f.a 2 1
3380.2.f.b 2
3380.2.f.c 2
3380.2.f.d 2
3380.2.f.e 2
3380.2.f.f 2
3380.2.f.g 6
3380.2.f.h 6
3380.2.f.i 8
3380.2.f.j 18
3380.2.i \(\chi_{3380}(1881, \cdot)\) n/a 104 2
3380.2.j \(\chi_{3380}(1451, \cdot)\) n/a 616 2
3380.2.m \(\chi_{3380}(577, \cdot)\) n/a 154 2
3380.2.o \(\chi_{3380}(2367, \cdot)\) n/a 886 2
3380.2.p \(\chi_{3380}(2027, \cdot)\) n/a 884 2
3380.2.r \(\chi_{3380}(437, \cdot)\) n/a 154 2
3380.2.u \(\chi_{3380}(99, \cdot)\) n/a 884 2
3380.2.x \(\chi_{3380}(361, \cdot)\) n/a 104 2
3380.2.z \(\chi_{3380}(2389, \cdot)\) n/a 152 2
3380.2.ba \(\chi_{3380}(529, \cdot)\) n/a 156 2
3380.2.bc \(\chi_{3380}(19, \cdot)\) n/a 1768 4
3380.2.bf \(\chi_{3380}(657, \cdot)\) n/a 308 4
3380.2.bg \(\chi_{3380}(23, \cdot)\) n/a 1768 4
3380.2.bj \(\chi_{3380}(867, \cdot)\) n/a 1768 4
3380.2.bk \(\chi_{3380}(357, \cdot)\) n/a 308 4
3380.2.bn \(\chi_{3380}(1371, \cdot)\) n/a 1232 4
3380.2.bo \(\chi_{3380}(261, \cdot)\) n/a 744 12
3380.2.br \(\chi_{3380}(181, \cdot)\) n/a 744 12
3380.2.bt \(\chi_{3380}(129, \cdot)\) n/a 1104 12
3380.2.bu \(\chi_{3380}(209, \cdot)\) n/a 1080 12
3380.2.bw \(\chi_{3380}(61, \cdot)\) n/a 1440 24
3380.2.bx \(\chi_{3380}(359, \cdot)\) n/a 13008 24
3380.2.ca \(\chi_{3380}(177, \cdot)\) n/a 2184 24
3380.2.cc \(\chi_{3380}(103, \cdot)\) n/a 13008 24
3380.2.cd \(\chi_{3380}(27, \cdot)\) n/a 13008 24
3380.2.cf \(\chi_{3380}(57, \cdot)\) n/a 2184 24
3380.2.ci \(\chi_{3380}(31, \cdot)\) n/a 8736 24
3380.2.ck \(\chi_{3380}(9, \cdot)\) n/a 2160 24
3380.2.cl \(\chi_{3380}(49, \cdot)\) n/a 2208 24
3380.2.cn \(\chi_{3380}(101, \cdot)\) n/a 1440 24
3380.2.cq \(\chi_{3380}(11, \cdot)\) n/a 17472 48
3380.2.ct \(\chi_{3380}(33, \cdot)\) n/a 4368 48
3380.2.cu \(\chi_{3380}(3, \cdot)\) n/a 26016 48
3380.2.cx \(\chi_{3380}(43, \cdot)\) n/a 26016 48
3380.2.cy \(\chi_{3380}(37, \cdot)\) n/a 4368 48
3380.2.db \(\chi_{3380}(59, \cdot)\) n/a 26016 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3380))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3380)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(260))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(676))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(845))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1690))\)\(^{\oplus 2}\)