Properties

Label 338.8.e
Level $338$
Weight $8$
Character orbit 338.e
Rep. character $\chi_{338}(23,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $180$
Sturm bound $364$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(364\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(338, [\chi])\).

Total New Old
Modular forms 664 180 484
Cusp forms 608 180 428
Eisenstein series 56 0 56

Trace form

\( 180 q + 5760 q^{4} - 2520 q^{7} - 66758 q^{9} - 2432 q^{10} + 8496 q^{11} - 38176 q^{14} - 51648 q^{15} - 368640 q^{16} - 51854 q^{17} + 54432 q^{19} + 16128 q^{20} + 13264 q^{22} + 43988 q^{23} - 2718708 q^{25}+ \cdots - 19031040 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(338, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(338, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)