Properties

Label 338.8.b.d
Level $338$
Weight $8$
Character orbit 338.b
Analytic conductor $105.586$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta q^{2} + 12 q^{3} - 64 q^{4} - 105 \beta q^{5} - 48 \beta q^{6} - 508 \beta q^{7} + 256 \beta q^{8} - 2043 q^{9} - 1680 q^{10} - 546 \beta q^{11} - 768 q^{12} - 8128 q^{14} - 1260 \beta q^{15} + \cdots + 1115478 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{3} - 128 q^{4} - 4086 q^{9} - 3360 q^{10} - 1536 q^{12} - 16256 q^{14} + 8192 q^{16} - 29412 q^{17} - 17472 q^{22} - 137424 q^{23} + 68050 q^{25} - 101520 q^{27} - 205140 q^{29} - 40320 q^{30}+ \cdots - 16774800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
8.00000i 12.0000 −64.0000 210.000i 96.0000i 1016.00i 512.000i −2043.00 −1680.00
337.2 8.00000i 12.0000 −64.0000 210.000i 96.0000i 1016.00i 512.000i −2043.00 −1680.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.b.d 2
13.b even 2 1 inner 338.8.b.d 2
13.d odd 4 1 2.8.a.a 1
13.d odd 4 1 338.8.a.d 1
39.f even 4 1 18.8.a.b 1
52.f even 4 1 16.8.a.b 1
65.f even 4 1 50.8.b.c 2
65.g odd 4 1 50.8.a.g 1
65.k even 4 1 50.8.b.c 2
91.i even 4 1 98.8.a.a 1
91.z odd 12 2 98.8.c.d 2
91.bb even 12 2 98.8.c.e 2
104.j odd 4 1 64.8.a.c 1
104.m even 4 1 64.8.a.e 1
117.y odd 12 2 162.8.c.l 2
117.z even 12 2 162.8.c.a 2
143.g even 4 1 242.8.a.e 1
156.l odd 4 1 144.8.a.i 1
195.j odd 4 1 450.8.c.g 2
195.n even 4 1 450.8.a.c 1
195.u odd 4 1 450.8.c.g 2
208.l even 4 1 256.8.b.f 2
208.m odd 4 1 256.8.b.b 2
208.r odd 4 1 256.8.b.b 2
208.s even 4 1 256.8.b.f 2
221.g odd 4 1 578.8.a.b 1
260.l odd 4 1 400.8.c.j 2
260.s odd 4 1 400.8.c.j 2
260.u even 4 1 400.8.a.l 1
312.w odd 4 1 576.8.a.f 1
312.y even 4 1 576.8.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.8.a.a 1 13.d odd 4 1
16.8.a.b 1 52.f even 4 1
18.8.a.b 1 39.f even 4 1
50.8.a.g 1 65.g odd 4 1
50.8.b.c 2 65.f even 4 1
50.8.b.c 2 65.k even 4 1
64.8.a.c 1 104.j odd 4 1
64.8.a.e 1 104.m even 4 1
98.8.a.a 1 91.i even 4 1
98.8.c.d 2 91.z odd 12 2
98.8.c.e 2 91.bb even 12 2
144.8.a.i 1 156.l odd 4 1
162.8.c.a 2 117.z even 12 2
162.8.c.l 2 117.y odd 12 2
242.8.a.e 1 143.g even 4 1
256.8.b.b 2 208.m odd 4 1
256.8.b.b 2 208.r odd 4 1
256.8.b.f 2 208.l even 4 1
256.8.b.f 2 208.s even 4 1
338.8.a.d 1 13.d odd 4 1
338.8.b.d 2 1.a even 1 1 trivial
338.8.b.d 2 13.b even 2 1 inner
400.8.a.l 1 260.u even 4 1
400.8.c.j 2 260.l odd 4 1
400.8.c.j 2 260.s odd 4 1
450.8.a.c 1 195.n even 4 1
450.8.c.g 2 195.j odd 4 1
450.8.c.g 2 195.u odd 4 1
576.8.a.f 1 312.w odd 4 1
576.8.a.g 1 312.y even 4 1
578.8.a.b 1 221.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 12 \) acting on \(S_{8}^{\mathrm{new}}(338, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 64 \) Copy content Toggle raw display
$3$ \( (T - 12)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 44100 \) Copy content Toggle raw display
$7$ \( T^{2} + 1032256 \) Copy content Toggle raw display
$11$ \( T^{2} + 1192464 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 14706)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 1595203600 \) Copy content Toggle raw display
$23$ \( (T + 68712)^{2} \) Copy content Toggle raw display
$29$ \( (T + 102570)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 51779912704 \) Copy content Toggle raw display
$37$ \( T^{2} + 25768596676 \) Copy content Toggle raw display
$41$ \( T^{2} + 117548964 \) Copy content Toggle raw display
$43$ \( (T - 630748)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 223403694336 \) Copy content Toggle raw display
$53$ \( (T + 1494018)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 6973085235600 \) Copy content Toggle raw display
$61$ \( (T - 827702)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 15877008016 \) Copy content Toggle raw display
$71$ \( T^{2} + 2001455313984 \) Copy content Toggle raw display
$73$ \( T^{2} + 960952799524 \) Copy content Toggle raw display
$79$ \( (T + 3566800)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 32181703643664 \) Copy content Toggle raw display
$89$ \( T^{2} + 142830942416100 \) Copy content Toggle raw display
$97$ \( T^{2} + 75379659165316 \) Copy content Toggle raw display
show more
show less