Defining parameters
Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 338.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(364\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(338, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 332 | 88 | 244 |
Cusp forms | 304 | 88 | 216 |
Eisenstein series | 28 | 0 | 28 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(338, [\chi])\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(338, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)