Properties

Label 338.8.a.p
Level $338$
Weight $8$
Character orbit 338.a
Self dual yes
Analytic conductor $105.586$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,8,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,72,-69] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3 x^{8} - 8757 x^{7} + 24639 x^{6} + 24977559 x^{5} - 155625075 x^{4} - 26856295558 x^{3} + \cdots - 82422805113727 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7\cdot 13^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + (\beta_{3} + \beta_{2} - \beta_1 - 8) q^{3} + 64 q^{4} + (\beta_{6} - \beta_{4} + 3 \beta_{2} + \cdots - 37) q^{5} + (8 \beta_{3} + 8 \beta_{2} - 8 \beta_1 - 64) q^{6} + ( - \beta_{7} - 3 \beta_{6} + \cdots - 156) q^{7}+ \cdots + ( - 2203 \beta_{8} + 339 \beta_{7} + \cdots - 1165730) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 72 q^{2} - 69 q^{3} + 576 q^{4} - 318 q^{5} - 552 q^{6} - 1432 q^{7} + 4608 q^{8} + 2442 q^{9} - 2544 q^{10} - 1029 q^{11} - 4416 q^{12} - 11456 q^{14} - 13548 q^{15} + 36864 q^{16} - 34911 q^{17}+ \cdots - 10846639 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 3 x^{8} - 8757 x^{7} + 24639 x^{6} + 24977559 x^{5} - 155625075 x^{4} - 26856295558 x^{3} + \cdots - 82422805113727 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 59\!\cdots\!55 \nu^{8} + \cdots + 11\!\cdots\!99 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 10\!\cdots\!45 \nu^{8} + \cdots - 53\!\cdots\!08 ) / 48\!\cdots\!06 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 72\!\cdots\!85 \nu^{8} + \cdots - 40\!\cdots\!71 ) / 97\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 18\!\cdots\!09 \nu^{8} + \cdots + 14\!\cdots\!36 ) / 31\!\cdots\!39 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 12\!\cdots\!07 \nu^{8} + \cdots - 10\!\cdots\!11 ) / 63\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 26\!\cdots\!13 \nu^{8} + \cdots + 19\!\cdots\!39 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 21\!\cdots\!29 \nu^{8} + \cdots - 12\!\cdots\!90 ) / 63\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 10\!\cdots\!64 \nu^{8} + \cdots - 31\!\cdots\!41 ) / 31\!\cdots\!39 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} - 6\beta_{2} - 13\beta _1 + 11 ) / 13 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 48 \beta_{8} - 10 \beta_{7} + 66 \beta_{6} + 11 \beta_{5} - 11 \beta_{4} + 195 \beta_{3} - 174 \beta_{2} + \cdots + 25286 ) / 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 906 \beta_{8} - 585 \beta_{7} + 57 \beta_{6} + 303 \beta_{5} - 303 \beta_{4} + 11003 \beta_{3} + \cdots + 32853 ) / 13 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 222891 \beta_{8} - 75940 \beta_{7} + 229701 \beta_{6} + 53828 \beta_{5} + 2410 \beta_{4} + \cdots + 77345062 ) / 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 6241920 \beta_{8} - 3646918 \beta_{7} + 1375737 \beta_{6} + 2660081 \beta_{5} + 1423999 \beta_{4} + \cdots + 785612561 ) / 13 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 975800181 \beta_{8} - 403012282 \beta_{7} + 810301914 \beta_{6} + 252419507 \beta_{5} + \cdots + 280636213534 ) / 13 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 35918434245 \beta_{8} - 19769272601 \beta_{7} + 12470411925 \beta_{6} + 15787971727 \beta_{5} + \cdots + 6359170605309 ) / 13 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 4317121996116 \beta_{8} - 1959352402988 \beta_{7} + 3132462217257 \beta_{6} + 1193239338673 \beta_{5} + \cdots + 11\!\cdots\!55 ) / 13 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−53.5776
−48.9208
−19.5021
−57.3899
11.5574
43.0202
23.0015
69.4229
35.3884
8.00000 −81.5795 64.0000 84.9813 −652.636 −885.572 512.000 4468.22 679.850
1.2 8.00000 −66.3863 64.0000 55.4903 −531.091 −1457.98 512.000 2220.14 443.922
1.3 8.00000 −36.9676 64.0000 −78.2525 −295.741 1715.06 512.000 −820.399 −626.020
1.4 8.00000 −35.9225 64.0000 125.063 −287.380 522.035 512.000 −896.575 1000.51
1.5 8.00000 −16.4445 64.0000 −412.685 −131.556 1047.82 512.000 −1916.58 −3301.48
1.6 8.00000 15.0182 64.0000 212.123 120.146 −458.773 512.000 −1961.45 1696.99
1.7 8.00000 44.4689 64.0000 −407.661 355.751 −278.209 512.000 −209.520 −3261.29
1.8 8.00000 51.9574 64.0000 −198.361 415.660 −367.949 512.000 512.575 −1586.89
1.9 8.00000 56.8558 64.0000 301.302 454.847 −1268.43 512.000 1045.59 2410.41
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.8.a.p yes 9
13.b even 2 1 338.8.a.o 9
13.d odd 4 2 338.8.b.j 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.8.a.o 9 13.b even 2 1
338.8.a.p yes 9 1.a even 1 1 trivial
338.8.b.j 18 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{9} + 69 T_{3}^{8} - 8682 T_{3}^{7} - 534745 T_{3}^{6} + 25538085 T_{3}^{5} + \cdots + 233327013346323 \) Copy content Toggle raw display
\( T_{5}^{9} + 318 T_{5}^{8} - 221282 T_{5}^{7} - 45527490 T_{5}^{6} + 17743146285 T_{5}^{5} + \cdots - 98\!\cdots\!00 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{9} \) Copy content Toggle raw display
$3$ \( T^{9} + \cdots + 233327013346323 \) Copy content Toggle raw display
$5$ \( T^{9} + \cdots - 98\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{9} + \cdots - 72\!\cdots\!92 \) Copy content Toggle raw display
$11$ \( T^{9} + \cdots - 81\!\cdots\!77 \) Copy content Toggle raw display
$13$ \( T^{9} \) Copy content Toggle raw display
$17$ \( T^{9} + \cdots + 21\!\cdots\!53 \) Copy content Toggle raw display
$19$ \( T^{9} + \cdots - 56\!\cdots\!83 \) Copy content Toggle raw display
$23$ \( T^{9} + \cdots - 38\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{9} + \cdots + 52\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{9} + \cdots + 49\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{9} + \cdots - 12\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{9} + \cdots - 15\!\cdots\!17 \) Copy content Toggle raw display
$43$ \( T^{9} + \cdots - 30\!\cdots\!93 \) Copy content Toggle raw display
$47$ \( T^{9} + \cdots - 27\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{9} + \cdots + 12\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{9} + \cdots + 56\!\cdots\!13 \) Copy content Toggle raw display
$61$ \( T^{9} + \cdots - 76\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{9} + \cdots - 15\!\cdots\!83 \) Copy content Toggle raw display
$71$ \( T^{9} + \cdots + 75\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{9} + \cdots + 81\!\cdots\!49 \) Copy content Toggle raw display
$79$ \( T^{9} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{9} + \cdots + 41\!\cdots\!67 \) Copy content Toggle raw display
$89$ \( T^{9} + \cdots + 18\!\cdots\!17 \) Copy content Toggle raw display
$97$ \( T^{9} + \cdots + 70\!\cdots\!11 \) Copy content Toggle raw display
show more
show less