Properties

Label 338.8.a.i.1.3
Level $338$
Weight $8$
Character 338.1
Self dual yes
Analytic conductor $105.586$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6981x^{2} - 35424x + 7188480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(31.8716\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +31.8716 q^{3} +64.0000 q^{4} -54.4265 q^{5} -254.973 q^{6} -1112.71 q^{7} -512.000 q^{8} -1171.20 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} +31.8716 q^{3} +64.0000 q^{4} -54.4265 q^{5} -254.973 q^{6} -1112.71 q^{7} -512.000 q^{8} -1171.20 q^{9} +435.412 q^{10} +7133.68 q^{11} +2039.79 q^{12} +8901.66 q^{14} -1734.66 q^{15} +4096.00 q^{16} -20505.6 q^{17} +9369.59 q^{18} +28071.7 q^{19} -3483.30 q^{20} -35463.8 q^{21} -57069.4 q^{22} +33922.5 q^{23} -16318.3 q^{24} -75162.8 q^{25} -107031. q^{27} -71213.3 q^{28} -175470. q^{29} +13877.3 q^{30} +15690.1 q^{31} -32768.0 q^{32} +227362. q^{33} +164045. q^{34} +60560.8 q^{35} -74956.7 q^{36} +1996.96 q^{37} -224573. q^{38} +27866.4 q^{40} +223640. q^{41} +283711. q^{42} -537931. q^{43} +456555. q^{44} +63744.2 q^{45} -271380. q^{46} +542249. q^{47} +130546. q^{48} +414575. q^{49} +601302. q^{50} -653549. q^{51} +1.85685e6 q^{53} +856250. q^{54} -388261. q^{55} +569706. q^{56} +894691. q^{57} +1.40376e6 q^{58} -1.33045e6 q^{59} -111018. q^{60} +2.86662e6 q^{61} -125521. q^{62} +1.30320e6 q^{63} +262144. q^{64} -1.81890e6 q^{66} -2.83157e6 q^{67} -1.31236e6 q^{68} +1.08117e6 q^{69} -484486. q^{70} -1.60186e6 q^{71} +599654. q^{72} +1.39213e6 q^{73} -15975.6 q^{74} -2.39556e6 q^{75} +1.79659e6 q^{76} -7.93770e6 q^{77} -2.33505e6 q^{79} -222931. q^{80} -849853. q^{81} -1.78912e6 q^{82} +2.37338e6 q^{83} -2.26968e6 q^{84} +1.11605e6 q^{85} +4.30345e6 q^{86} -5.59251e6 q^{87} -3.65244e6 q^{88} +7.05151e6 q^{89} -509954. q^{90} +2.17104e6 q^{92} +500068. q^{93} -4.33799e6 q^{94} -1.52784e6 q^{95} -1.04437e6 q^{96} +8.51370e6 q^{97} -3.31660e6 q^{98} -8.35495e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} + 278 q^{5} + 548 q^{7} - 2048 q^{8} + 5214 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 32 q^{2} + 256 q^{4} + 278 q^{5} + 548 q^{7} - 2048 q^{8} + 5214 q^{9} - 2224 q^{10} + 7392 q^{11} - 4384 q^{14} - 15528 q^{15} + 16384 q^{16} - 28316 q^{17} - 41712 q^{18} + 99888 q^{19} + 17792 q^{20} + 91074 q^{21} - 59136 q^{22} + 33388 q^{23} + 86878 q^{25} + 106272 q^{27} + 35072 q^{28} - 93140 q^{29} + 124224 q^{30} + 311160 q^{31} - 131072 q^{32} - 238638 q^{33} + 226528 q^{34} - 141544 q^{35} + 333696 q^{36} + 9636 q^{37} - 799104 q^{38} - 142336 q^{40} - 82892 q^{41} - 728592 q^{42} + 569264 q^{43} + 473088 q^{44} + 2303394 q^{45} - 267104 q^{46} - 574200 q^{47} + 717798 q^{49} - 695024 q^{50} - 2729928 q^{51} + 1235350 q^{53} - 850176 q^{54} + 1092512 q^{55} - 280576 q^{56} + 3528462 q^{57} + 745120 q^{58} - 231504 q^{59} - 993792 q^{60} - 685684 q^{61} - 2489280 q^{62} + 5951712 q^{63} + 1048576 q^{64} + 1909104 q^{66} - 3271056 q^{67} - 1812224 q^{68} - 5600034 q^{69} + 1132352 q^{70} + 175012 q^{71} - 2669568 q^{72} + 7137890 q^{73} - 77088 q^{74} - 22200960 q^{75} + 6392832 q^{76} - 13915206 q^{77} - 7053952 q^{79} + 1138688 q^{80} - 3758004 q^{81} + 663136 q^{82} + 657288 q^{83} + 5828736 q^{84} - 11814998 q^{85} - 4554112 q^{86} + 7182900 q^{87} - 3784704 q^{88} + 11452234 q^{89} - 18427152 q^{90} + 2136832 q^{92} - 2984688 q^{93} + 4593600 q^{94} + 23334088 q^{95} + 428002 q^{97} - 5742384 q^{98} - 10357656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 31.8716 0.681522 0.340761 0.940150i \(-0.389315\pi\)
0.340761 + 0.940150i \(0.389315\pi\)
\(4\) 64.0000 0.500000
\(5\) −54.4265 −0.194722 −0.0973611 0.995249i \(-0.531040\pi\)
−0.0973611 + 0.995249i \(0.531040\pi\)
\(6\) −254.973 −0.481909
\(7\) −1112.71 −1.22613 −0.613067 0.790031i \(-0.710064\pi\)
−0.613067 + 0.790031i \(0.710064\pi\)
\(8\) −512.000 −0.353553
\(9\) −1171.20 −0.535527
\(10\) 435.412 0.137689
\(11\) 7133.68 1.61599 0.807996 0.589189i \(-0.200553\pi\)
0.807996 + 0.589189i \(0.200553\pi\)
\(12\) 2039.79 0.340761
\(13\) 0 0
\(14\) 8901.66 0.867008
\(15\) −1734.66 −0.132708
\(16\) 4096.00 0.250000
\(17\) −20505.6 −1.01228 −0.506142 0.862450i \(-0.668929\pi\)
−0.506142 + 0.862450i \(0.668929\pi\)
\(18\) 9369.59 0.378675
\(19\) 28071.7 0.938925 0.469462 0.882952i \(-0.344448\pi\)
0.469462 + 0.882952i \(0.344448\pi\)
\(20\) −3483.30 −0.0973611
\(21\) −35463.8 −0.835638
\(22\) −57069.4 −1.14268
\(23\) 33922.5 0.581354 0.290677 0.956821i \(-0.406120\pi\)
0.290677 + 0.956821i \(0.406120\pi\)
\(24\) −16318.3 −0.240955
\(25\) −75162.8 −0.962083
\(26\) 0 0
\(27\) −107031. −1.04650
\(28\) −71213.3 −0.613067
\(29\) −175470. −1.33601 −0.668004 0.744158i \(-0.732851\pi\)
−0.668004 + 0.744158i \(0.732851\pi\)
\(30\) 13877.3 0.0938384
\(31\) 15690.1 0.0945930 0.0472965 0.998881i \(-0.484939\pi\)
0.0472965 + 0.998881i \(0.484939\pi\)
\(32\) −32768.0 −0.176777
\(33\) 227362. 1.10133
\(34\) 164045. 0.715792
\(35\) 60560.8 0.238756
\(36\) −74956.7 −0.267764
\(37\) 1996.96 0.00648130 0.00324065 0.999995i \(-0.498968\pi\)
0.00324065 + 0.999995i \(0.498968\pi\)
\(38\) −224573. −0.663920
\(39\) 0 0
\(40\) 27866.4 0.0688447
\(41\) 223640. 0.506764 0.253382 0.967366i \(-0.418457\pi\)
0.253382 + 0.967366i \(0.418457\pi\)
\(42\) 283711. 0.590885
\(43\) −537931. −1.03178 −0.515890 0.856655i \(-0.672539\pi\)
−0.515890 + 0.856655i \(0.672539\pi\)
\(44\) 456555. 0.807996
\(45\) 63744.2 0.104279
\(46\) −271380. −0.411079
\(47\) 542249. 0.761826 0.380913 0.924611i \(-0.375610\pi\)
0.380913 + 0.924611i \(0.375610\pi\)
\(48\) 130546. 0.170381
\(49\) 414575. 0.503405
\(50\) 601302. 0.680296
\(51\) −653549. −0.689894
\(52\) 0 0
\(53\) 1.85685e6 1.71322 0.856609 0.515967i \(-0.172567\pi\)
0.856609 + 0.515967i \(0.172567\pi\)
\(54\) 856250. 0.739985
\(55\) −388261. −0.314669
\(56\) 569706. 0.433504
\(57\) 894691. 0.639898
\(58\) 1.40376e6 0.944701
\(59\) −1.33045e6 −0.843367 −0.421684 0.906743i \(-0.638561\pi\)
−0.421684 + 0.906743i \(0.638561\pi\)
\(60\) −111018. −0.0663538
\(61\) 2.86662e6 1.61702 0.808512 0.588480i \(-0.200273\pi\)
0.808512 + 0.588480i \(0.200273\pi\)
\(62\) −125521. −0.0668873
\(63\) 1.30320e6 0.656628
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) −1.81890e6 −0.778761
\(67\) −2.83157e6 −1.15018 −0.575091 0.818090i \(-0.695033\pi\)
−0.575091 + 0.818090i \(0.695033\pi\)
\(68\) −1.31236e6 −0.506142
\(69\) 1.08117e6 0.396205
\(70\) −484486. −0.168826
\(71\) −1.60186e6 −0.531153 −0.265576 0.964090i \(-0.585562\pi\)
−0.265576 + 0.964090i \(0.585562\pi\)
\(72\) 599654. 0.189337
\(73\) 1.39213e6 0.418841 0.209420 0.977826i \(-0.432842\pi\)
0.209420 + 0.977826i \(0.432842\pi\)
\(74\) −15975.6 −0.00458297
\(75\) −2.39556e6 −0.655681
\(76\) 1.79659e6 0.469462
\(77\) −7.93770e6 −1.98142
\(78\) 0 0
\(79\) −2.33505e6 −0.532847 −0.266423 0.963856i \(-0.585842\pi\)
−0.266423 + 0.963856i \(0.585842\pi\)
\(80\) −222931. −0.0486806
\(81\) −849853. −0.177683
\(82\) −1.78912e6 −0.358336
\(83\) 2.37338e6 0.455610 0.227805 0.973707i \(-0.426845\pi\)
0.227805 + 0.973707i \(0.426845\pi\)
\(84\) −2.26968e6 −0.417819
\(85\) 1.11605e6 0.197114
\(86\) 4.30345e6 0.729579
\(87\) −5.59251e6 −0.910519
\(88\) −3.65244e6 −0.571339
\(89\) 7.05151e6 1.06027 0.530135 0.847913i \(-0.322141\pi\)
0.530135 + 0.847913i \(0.322141\pi\)
\(90\) −509954. −0.0737364
\(91\) 0 0
\(92\) 2.17104e6 0.290677
\(93\) 500068. 0.0644672
\(94\) −4.33799e6 −0.538693
\(95\) −1.52784e6 −0.182830
\(96\) −1.04437e6 −0.120477
\(97\) 8.51370e6 0.947146 0.473573 0.880754i \(-0.342964\pi\)
0.473573 + 0.880754i \(0.342964\pi\)
\(98\) −3.31660e6 −0.355961
\(99\) −8.35495e6 −0.865407
\(100\) −4.81042e6 −0.481042
\(101\) −1.05742e7 −1.02123 −0.510615 0.859810i \(-0.670582\pi\)
−0.510615 + 0.859810i \(0.670582\pi\)
\(102\) 5.22839e6 0.487829
\(103\) 3.01542e6 0.271905 0.135952 0.990715i \(-0.456591\pi\)
0.135952 + 0.990715i \(0.456591\pi\)
\(104\) 0 0
\(105\) 1.93017e6 0.162717
\(106\) −1.48548e7 −1.21143
\(107\) 2.28239e7 1.80114 0.900568 0.434715i \(-0.143151\pi\)
0.900568 + 0.434715i \(0.143151\pi\)
\(108\) −6.85000e6 −0.523248
\(109\) 4.55907e6 0.337197 0.168598 0.985685i \(-0.446076\pi\)
0.168598 + 0.985685i \(0.446076\pi\)
\(110\) 3.10609e6 0.222505
\(111\) 63646.2 0.00441715
\(112\) −4.55765e6 −0.306534
\(113\) 2.07319e7 1.35165 0.675826 0.737061i \(-0.263787\pi\)
0.675826 + 0.737061i \(0.263787\pi\)
\(114\) −7.15753e6 −0.452476
\(115\) −1.84628e6 −0.113202
\(116\) −1.12301e7 −0.668004
\(117\) 0 0
\(118\) 1.06436e7 0.596351
\(119\) 2.28168e7 1.24120
\(120\) 888147. 0.0469192
\(121\) 3.14022e7 1.61143
\(122\) −2.29330e7 −1.14341
\(123\) 7.12776e6 0.345371
\(124\) 1.00416e6 0.0472965
\(125\) 8.34292e6 0.382061
\(126\) −1.04256e7 −0.464306
\(127\) −4.07871e7 −1.76689 −0.883445 0.468534i \(-0.844782\pi\)
−0.883445 + 0.468534i \(0.844782\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −1.71448e7 −0.703182
\(130\) 0 0
\(131\) 4.11026e7 1.59742 0.798711 0.601715i \(-0.205516\pi\)
0.798711 + 0.601715i \(0.205516\pi\)
\(132\) 1.45512e7 0.550667
\(133\) −3.12356e7 −1.15125
\(134\) 2.26526e7 0.813301
\(135\) 5.82534e6 0.203776
\(136\) 1.04989e7 0.357896
\(137\) 1.47207e7 0.489111 0.244555 0.969635i \(-0.421358\pi\)
0.244555 + 0.969635i \(0.421358\pi\)
\(138\) −8.64933e6 −0.280160
\(139\) −5.68489e7 −1.79544 −0.897719 0.440568i \(-0.854777\pi\)
−0.897719 + 0.440568i \(0.854777\pi\)
\(140\) 3.87589e6 0.119378
\(141\) 1.72824e7 0.519202
\(142\) 1.28149e7 0.375582
\(143\) 0 0
\(144\) −4.79723e6 −0.133882
\(145\) 9.55020e6 0.260151
\(146\) −1.11370e7 −0.296165
\(147\) 1.32132e7 0.343082
\(148\) 127805. 0.00324065
\(149\) −3.85262e7 −0.954122 −0.477061 0.878870i \(-0.658298\pi\)
−0.477061 + 0.878870i \(0.658298\pi\)
\(150\) 1.91645e7 0.463637
\(151\) 2.94587e7 0.696297 0.348148 0.937439i \(-0.386811\pi\)
0.348148 + 0.937439i \(0.386811\pi\)
\(152\) −1.43727e7 −0.331960
\(153\) 2.40162e7 0.542105
\(154\) 6.35016e7 1.40108
\(155\) −853956. −0.0184194
\(156\) 0 0
\(157\) 6.77251e7 1.39669 0.698346 0.715760i \(-0.253919\pi\)
0.698346 + 0.715760i \(0.253919\pi\)
\(158\) 1.86804e7 0.376779
\(159\) 5.91810e7 1.16760
\(160\) 1.78345e6 0.0344224
\(161\) −3.77458e7 −0.712817
\(162\) 6.79882e6 0.125641
\(163\) 9.96365e7 1.80203 0.901015 0.433788i \(-0.142823\pi\)
0.901015 + 0.433788i \(0.142823\pi\)
\(164\) 1.43129e7 0.253382
\(165\) −1.23745e7 −0.214454
\(166\) −1.89870e7 −0.322165
\(167\) 3.31622e7 0.550979 0.275490 0.961304i \(-0.411160\pi\)
0.275490 + 0.961304i \(0.411160\pi\)
\(168\) 1.81575e7 0.295443
\(169\) 0 0
\(170\) −8.92840e6 −0.139381
\(171\) −3.28775e7 −0.502820
\(172\) −3.44276e7 −0.515890
\(173\) 4.26162e7 0.625768 0.312884 0.949791i \(-0.398705\pi\)
0.312884 + 0.949791i \(0.398705\pi\)
\(174\) 4.47401e7 0.643834
\(175\) 8.36342e7 1.17964
\(176\) 2.92195e7 0.403998
\(177\) −4.24037e7 −0.574774
\(178\) −5.64120e7 −0.749725
\(179\) −2.02658e7 −0.264105 −0.132053 0.991243i \(-0.542157\pi\)
−0.132053 + 0.991243i \(0.542157\pi\)
\(180\) 4.07963e6 0.0521395
\(181\) −3.09055e7 −0.387401 −0.193700 0.981061i \(-0.562049\pi\)
−0.193700 + 0.981061i \(0.562049\pi\)
\(182\) 0 0
\(183\) 9.13640e7 1.10204
\(184\) −1.73683e7 −0.205540
\(185\) −108687. −0.00126205
\(186\) −4.00055e6 −0.0455852
\(187\) −1.46281e8 −1.63584
\(188\) 3.47039e7 0.380913
\(189\) 1.19095e8 1.28314
\(190\) 1.22228e7 0.129280
\(191\) 8.07132e7 0.838162 0.419081 0.907949i \(-0.362352\pi\)
0.419081 + 0.907949i \(0.362352\pi\)
\(192\) 8.35496e6 0.0851903
\(193\) 1.38387e8 1.38562 0.692810 0.721120i \(-0.256373\pi\)
0.692810 + 0.721120i \(0.256373\pi\)
\(194\) −6.81096e7 −0.669734
\(195\) 0 0
\(196\) 2.65328e7 0.251702
\(197\) 1.73847e8 1.62008 0.810038 0.586377i \(-0.199446\pi\)
0.810038 + 0.586377i \(0.199446\pi\)
\(198\) 6.68396e7 0.611935
\(199\) 2.39009e7 0.214995 0.107498 0.994205i \(-0.465716\pi\)
0.107498 + 0.994205i \(0.465716\pi\)
\(200\) 3.84833e7 0.340148
\(201\) −9.02470e7 −0.783874
\(202\) 8.45938e7 0.722119
\(203\) 1.95246e8 1.63813
\(204\) −4.18271e7 −0.344947
\(205\) −1.21719e7 −0.0986781
\(206\) −2.41233e7 −0.192266
\(207\) −3.97300e7 −0.311331
\(208\) 0 0
\(209\) 2.00254e8 1.51729
\(210\) −1.54414e7 −0.115058
\(211\) −5.47761e7 −0.401423 −0.200711 0.979650i \(-0.564325\pi\)
−0.200711 + 0.979650i \(0.564325\pi\)
\(212\) 1.18839e8 0.856609
\(213\) −5.10538e7 −0.361993
\(214\) −1.82591e8 −1.27360
\(215\) 2.92777e7 0.200911
\(216\) 5.48000e7 0.369992
\(217\) −1.74585e7 −0.115984
\(218\) −3.64726e7 −0.238434
\(219\) 4.43694e7 0.285449
\(220\) −2.48487e7 −0.157335
\(221\) 0 0
\(222\) −509170. −0.00312340
\(223\) 2.72218e8 1.64380 0.821901 0.569631i \(-0.192914\pi\)
0.821901 + 0.569631i \(0.192914\pi\)
\(224\) 3.64612e7 0.216752
\(225\) 8.80305e7 0.515222
\(226\) −1.65855e8 −0.955762
\(227\) −4.49554e7 −0.255089 −0.127544 0.991833i \(-0.540710\pi\)
−0.127544 + 0.991833i \(0.540710\pi\)
\(228\) 5.72602e7 0.319949
\(229\) 1.23460e8 0.679362 0.339681 0.940541i \(-0.389681\pi\)
0.339681 + 0.940541i \(0.389681\pi\)
\(230\) 1.47703e7 0.0800462
\(231\) −2.52987e8 −1.35038
\(232\) 8.98405e7 0.472350
\(233\) 1.26541e8 0.655371 0.327685 0.944787i \(-0.393731\pi\)
0.327685 + 0.944787i \(0.393731\pi\)
\(234\) 0 0
\(235\) −2.95127e7 −0.148345
\(236\) −8.51488e7 −0.421684
\(237\) −7.44220e7 −0.363147
\(238\) −1.82534e8 −0.877658
\(239\) 8.04943e6 0.0381393 0.0190696 0.999818i \(-0.493930\pi\)
0.0190696 + 0.999818i \(0.493930\pi\)
\(240\) −7.10518e6 −0.0331769
\(241\) −3.87577e8 −1.78360 −0.891801 0.452428i \(-0.850558\pi\)
−0.891801 + 0.452428i \(0.850558\pi\)
\(242\) −2.51217e8 −1.13945
\(243\) 2.06991e8 0.925401
\(244\) 1.83464e8 0.808512
\(245\) −2.25639e7 −0.0980241
\(246\) −5.70221e7 −0.244214
\(247\) 0 0
\(248\) −8.03331e6 −0.0334437
\(249\) 7.56434e7 0.310509
\(250\) −6.67433e7 −0.270158
\(251\) 7.40469e7 0.295562 0.147781 0.989020i \(-0.452787\pi\)
0.147781 + 0.989020i \(0.452787\pi\)
\(252\) 8.34049e7 0.328314
\(253\) 2.41992e8 0.939462
\(254\) 3.26297e8 1.24938
\(255\) 3.55704e7 0.134338
\(256\) 1.67772e7 0.0625000
\(257\) −1.49301e8 −0.548651 −0.274326 0.961637i \(-0.588455\pi\)
−0.274326 + 0.961637i \(0.588455\pi\)
\(258\) 1.37158e8 0.497224
\(259\) −2.22203e6 −0.00794695
\(260\) 0 0
\(261\) 2.05510e8 0.715469
\(262\) −3.28821e8 −1.12955
\(263\) 1.73457e8 0.587958 0.293979 0.955812i \(-0.405020\pi\)
0.293979 + 0.955812i \(0.405020\pi\)
\(264\) −1.16409e8 −0.389380
\(265\) −1.01062e8 −0.333601
\(266\) 2.49885e8 0.814055
\(267\) 2.24743e8 0.722598
\(268\) −1.81221e8 −0.575091
\(269\) −4.30910e8 −1.34975 −0.674875 0.737932i \(-0.735802\pi\)
−0.674875 + 0.737932i \(0.735802\pi\)
\(270\) −4.66027e7 −0.144091
\(271\) 3.10232e8 0.946878 0.473439 0.880827i \(-0.343012\pi\)
0.473439 + 0.880827i \(0.343012\pi\)
\(272\) −8.39911e7 −0.253071
\(273\) 0 0
\(274\) −1.17766e8 −0.345853
\(275\) −5.36187e8 −1.55472
\(276\) 6.91946e7 0.198103
\(277\) 3.90038e8 1.10263 0.551313 0.834299i \(-0.314127\pi\)
0.551313 + 0.834299i \(0.314127\pi\)
\(278\) 4.54792e8 1.26957
\(279\) −1.83762e7 −0.0506571
\(280\) −3.10071e7 −0.0844128
\(281\) −2.24392e8 −0.603303 −0.301652 0.953418i \(-0.597538\pi\)
−0.301652 + 0.953418i \(0.597538\pi\)
\(282\) −1.38259e8 −0.367131
\(283\) −1.25189e7 −0.0328332 −0.0164166 0.999865i \(-0.505226\pi\)
−0.0164166 + 0.999865i \(0.505226\pi\)
\(284\) −1.02519e8 −0.265576
\(285\) −4.86949e7 −0.124602
\(286\) 0 0
\(287\) −2.48846e8 −0.621360
\(288\) 3.83778e7 0.0946687
\(289\) 1.01427e7 0.0247178
\(290\) −7.64016e7 −0.183954
\(291\) 2.71346e8 0.645501
\(292\) 8.90961e7 0.209420
\(293\) −4.26673e8 −0.990966 −0.495483 0.868618i \(-0.665009\pi\)
−0.495483 + 0.868618i \(0.665009\pi\)
\(294\) −1.05706e8 −0.242595
\(295\) 7.24118e7 0.164222
\(296\) −1.02244e6 −0.00229149
\(297\) −7.63527e8 −1.69113
\(298\) 3.08209e8 0.674666
\(299\) 0 0
\(300\) −1.53316e8 −0.327841
\(301\) 5.98561e8 1.26510
\(302\) −2.35670e8 −0.492356
\(303\) −3.37018e8 −0.695991
\(304\) 1.14982e8 0.234731
\(305\) −1.56020e8 −0.314870
\(306\) −1.92129e8 −0.383326
\(307\) 2.83423e8 0.559051 0.279525 0.960138i \(-0.409823\pi\)
0.279525 + 0.960138i \(0.409823\pi\)
\(308\) −5.08013e8 −0.990711
\(309\) 9.61063e7 0.185309
\(310\) 6.83165e6 0.0130244
\(311\) −7.14238e8 −1.34642 −0.673212 0.739450i \(-0.735086\pi\)
−0.673212 + 0.739450i \(0.735086\pi\)
\(312\) 0 0
\(313\) −3.51984e8 −0.648811 −0.324406 0.945918i \(-0.605164\pi\)
−0.324406 + 0.945918i \(0.605164\pi\)
\(314\) −5.41801e8 −0.987611
\(315\) −7.09287e7 −0.127860
\(316\) −1.49443e8 −0.266423
\(317\) −4.55628e8 −0.803346 −0.401673 0.915783i \(-0.631571\pi\)
−0.401673 + 0.915783i \(0.631571\pi\)
\(318\) −4.73448e8 −0.825615
\(319\) −1.25174e9 −2.15898
\(320\) −1.42676e7 −0.0243403
\(321\) 7.27435e8 1.22751
\(322\) 3.01967e8 0.504038
\(323\) −5.75628e8 −0.950458
\(324\) −5.43906e7 −0.0888416
\(325\) 0 0
\(326\) −7.97092e8 −1.27423
\(327\) 1.45305e8 0.229807
\(328\) −1.14504e8 −0.179168
\(329\) −6.03364e8 −0.934101
\(330\) 9.89962e7 0.151642
\(331\) 6.65210e8 1.00823 0.504117 0.863636i \(-0.331818\pi\)
0.504117 + 0.863636i \(0.331818\pi\)
\(332\) 1.51896e8 0.227805
\(333\) −2.33883e6 −0.00347091
\(334\) −2.65297e8 −0.389601
\(335\) 1.54113e8 0.223966
\(336\) −1.45260e8 −0.208909
\(337\) 9.20291e8 1.30985 0.654924 0.755695i \(-0.272701\pi\)
0.654924 + 0.755695i \(0.272701\pi\)
\(338\) 0 0
\(339\) 6.60760e8 0.921181
\(340\) 7.14272e7 0.0985570
\(341\) 1.11928e8 0.152861
\(342\) 2.63020e8 0.355547
\(343\) 4.55061e8 0.608892
\(344\) 2.75421e8 0.364790
\(345\) −5.88441e7 −0.0771500
\(346\) −3.40930e8 −0.442485
\(347\) 1.36499e9 1.75378 0.876890 0.480691i \(-0.159614\pi\)
0.876890 + 0.480691i \(0.159614\pi\)
\(348\) −3.57921e8 −0.455260
\(349\) −8.97223e8 −1.12983 −0.564913 0.825151i \(-0.691090\pi\)
−0.564913 + 0.825151i \(0.691090\pi\)
\(350\) −6.69073e8 −0.834134
\(351\) 0 0
\(352\) −2.33756e8 −0.285670
\(353\) −2.69605e8 −0.326225 −0.163112 0.986608i \(-0.552153\pi\)
−0.163112 + 0.986608i \(0.552153\pi\)
\(354\) 3.39229e8 0.406426
\(355\) 8.71835e7 0.103427
\(356\) 4.51296e8 0.530135
\(357\) 7.27208e8 0.845902
\(358\) 1.62126e8 0.186751
\(359\) −2.23928e8 −0.255433 −0.127717 0.991811i \(-0.540765\pi\)
−0.127717 + 0.991811i \(0.540765\pi\)
\(360\) −3.26371e7 −0.0368682
\(361\) −1.05852e8 −0.118420
\(362\) 2.47244e8 0.273934
\(363\) 1.00084e9 1.09822
\(364\) 0 0
\(365\) −7.57686e7 −0.0815576
\(366\) −7.30912e8 −0.779258
\(367\) −2.80857e8 −0.296588 −0.148294 0.988943i \(-0.547378\pi\)
−0.148294 + 0.988943i \(0.547378\pi\)
\(368\) 1.38947e8 0.145338
\(369\) −2.61926e8 −0.271386
\(370\) 869499. 0.000892407 0
\(371\) −2.06614e9 −2.10063
\(372\) 3.20044e7 0.0322336
\(373\) 1.75524e9 1.75128 0.875642 0.482961i \(-0.160439\pi\)
0.875642 + 0.482961i \(0.160439\pi\)
\(374\) 1.17024e9 1.15671
\(375\) 2.65903e8 0.260383
\(376\) −2.77631e8 −0.269346
\(377\) 0 0
\(378\) −9.52756e8 −0.907320
\(379\) 3.59233e8 0.338953 0.169477 0.985534i \(-0.445792\pi\)
0.169477 + 0.985534i \(0.445792\pi\)
\(380\) −9.77820e7 −0.0914148
\(381\) −1.29995e9 −1.20418
\(382\) −6.45706e8 −0.592670
\(383\) −1.87869e9 −1.70868 −0.854338 0.519718i \(-0.826037\pi\)
−0.854338 + 0.519718i \(0.826037\pi\)
\(384\) −6.68397e7 −0.0602386
\(385\) 4.32021e8 0.385827
\(386\) −1.10709e9 −0.979781
\(387\) 6.30024e8 0.552547
\(388\) 5.44877e8 0.473573
\(389\) 4.34490e8 0.374245 0.187122 0.982337i \(-0.440084\pi\)
0.187122 + 0.982337i \(0.440084\pi\)
\(390\) 0 0
\(391\) −6.95603e8 −0.588495
\(392\) −2.12263e8 −0.177980
\(393\) 1.31001e9 1.08868
\(394\) −1.39078e9 −1.14557
\(395\) 1.27089e8 0.103757
\(396\) −5.34717e8 −0.432704
\(397\) 2.03158e9 1.62954 0.814772 0.579781i \(-0.196862\pi\)
0.814772 + 0.579781i \(0.196862\pi\)
\(398\) −1.91207e8 −0.152025
\(399\) −9.95529e8 −0.784601
\(400\) −3.07867e8 −0.240521
\(401\) −8.03077e8 −0.621945 −0.310973 0.950419i \(-0.600655\pi\)
−0.310973 + 0.950419i \(0.600655\pi\)
\(402\) 7.21976e8 0.554283
\(403\) 0 0
\(404\) −6.76750e8 −0.510615
\(405\) 4.62545e7 0.0345989
\(406\) −1.56197e9 −1.15833
\(407\) 1.42456e7 0.0104737
\(408\) 3.34617e8 0.243914
\(409\) −2.53740e9 −1.83382 −0.916912 0.399089i \(-0.869326\pi\)
−0.916912 + 0.399089i \(0.869326\pi\)
\(410\) 9.73754e7 0.0697760
\(411\) 4.69174e8 0.333340
\(412\) 1.92987e8 0.135952
\(413\) 1.48040e9 1.03408
\(414\) 3.17840e8 0.220144
\(415\) −1.29175e8 −0.0887174
\(416\) 0 0
\(417\) −1.81187e9 −1.22363
\(418\) −1.60203e9 −1.07289
\(419\) −1.78594e8 −0.118609 −0.0593044 0.998240i \(-0.518888\pi\)
−0.0593044 + 0.998240i \(0.518888\pi\)
\(420\) 1.23531e8 0.0813586
\(421\) 2.07782e9 1.35713 0.678563 0.734542i \(-0.262603\pi\)
0.678563 + 0.734542i \(0.262603\pi\)
\(422\) 4.38208e8 0.283849
\(423\) −6.35081e8 −0.407979
\(424\) −9.50710e8 −0.605714
\(425\) 1.54126e9 0.973901
\(426\) 4.08431e8 0.255967
\(427\) −3.18971e9 −1.98269
\(428\) 1.46073e9 0.900568
\(429\) 0 0
\(430\) −2.34222e8 −0.142065
\(431\) 1.58186e9 0.951693 0.475846 0.879528i \(-0.342142\pi\)
0.475846 + 0.879528i \(0.342142\pi\)
\(432\) −4.38400e8 −0.261624
\(433\) 1.33652e9 0.791168 0.395584 0.918430i \(-0.370542\pi\)
0.395584 + 0.918430i \(0.370542\pi\)
\(434\) 1.39668e8 0.0820128
\(435\) 3.04381e8 0.177298
\(436\) 2.91781e8 0.168598
\(437\) 9.52262e8 0.545847
\(438\) −3.54955e8 −0.201843
\(439\) 1.99532e9 1.12561 0.562805 0.826590i \(-0.309722\pi\)
0.562805 + 0.826590i \(0.309722\pi\)
\(440\) 1.98790e8 0.111252
\(441\) −4.85550e8 −0.269587
\(442\) 0 0
\(443\) 1.51862e8 0.0829921 0.0414960 0.999139i \(-0.486788\pi\)
0.0414960 + 0.999139i \(0.486788\pi\)
\(444\) 4.07336e6 0.00220858
\(445\) −3.83789e8 −0.206458
\(446\) −2.17774e9 −1.16234
\(447\) −1.22789e9 −0.650255
\(448\) −2.91690e8 −0.153267
\(449\) −1.60651e8 −0.0837571 −0.0418786 0.999123i \(-0.513334\pi\)
−0.0418786 + 0.999123i \(0.513334\pi\)
\(450\) −7.04244e8 −0.364317
\(451\) 1.59537e9 0.818925
\(452\) 1.32684e9 0.675826
\(453\) 9.38897e8 0.474542
\(454\) 3.59643e8 0.180375
\(455\) 0 0
\(456\) −4.58082e8 −0.226238
\(457\) 1.02168e9 0.500735 0.250367 0.968151i \(-0.419449\pi\)
0.250367 + 0.968151i \(0.419449\pi\)
\(458\) −9.87678e8 −0.480381
\(459\) 2.19475e9 1.05935
\(460\) −1.18162e8 −0.0566012
\(461\) 2.70289e9 1.28492 0.642458 0.766321i \(-0.277915\pi\)
0.642458 + 0.766321i \(0.277915\pi\)
\(462\) 2.02390e9 0.954865
\(463\) −2.68582e9 −1.25760 −0.628801 0.777566i \(-0.716454\pi\)
−0.628801 + 0.777566i \(0.716454\pi\)
\(464\) −7.18724e8 −0.334002
\(465\) −2.72170e7 −0.0125532
\(466\) −1.01233e9 −0.463417
\(467\) −4.54161e8 −0.206348 −0.103174 0.994663i \(-0.532900\pi\)
−0.103174 + 0.994663i \(0.532900\pi\)
\(468\) 0 0
\(469\) 3.15072e9 1.41028
\(470\) 2.36102e8 0.104895
\(471\) 2.15851e9 0.951877
\(472\) 6.81191e8 0.298175
\(473\) −3.83743e9 −1.66735
\(474\) 5.95376e8 0.256784
\(475\) −2.10995e9 −0.903324
\(476\) 1.46027e9 0.620598
\(477\) −2.17475e9 −0.917475
\(478\) −6.43954e7 −0.0269685
\(479\) −1.99643e9 −0.830003 −0.415001 0.909821i \(-0.636219\pi\)
−0.415001 + 0.909821i \(0.636219\pi\)
\(480\) 5.68414e7 0.0234596
\(481\) 0 0
\(482\) 3.10061e9 1.26120
\(483\) −1.20302e9 −0.485801
\(484\) 2.00974e9 0.805714
\(485\) −4.63371e8 −0.184430
\(486\) −1.65593e9 −0.654357
\(487\) 1.61212e9 0.632479 0.316240 0.948679i \(-0.397580\pi\)
0.316240 + 0.948679i \(0.397580\pi\)
\(488\) −1.46771e9 −0.571704
\(489\) 3.17558e9 1.22812
\(490\) 1.80511e8 0.0693135
\(491\) −5.18143e9 −1.97544 −0.987722 0.156221i \(-0.950069\pi\)
−0.987722 + 0.156221i \(0.950069\pi\)
\(492\) 4.56177e8 0.172685
\(493\) 3.59812e9 1.35242
\(494\) 0 0
\(495\) 4.54731e8 0.168514
\(496\) 6.42665e7 0.0236482
\(497\) 1.78240e9 0.651265
\(498\) −6.05148e8 −0.219563
\(499\) 2.11935e9 0.763574 0.381787 0.924250i \(-0.375309\pi\)
0.381787 + 0.924250i \(0.375309\pi\)
\(500\) 5.33947e8 0.191031
\(501\) 1.05693e9 0.375505
\(502\) −5.92376e8 −0.208994
\(503\) −1.90758e8 −0.0668336 −0.0334168 0.999442i \(-0.510639\pi\)
−0.0334168 + 0.999442i \(0.510639\pi\)
\(504\) −6.67239e8 −0.232153
\(505\) 5.75518e8 0.198856
\(506\) −1.93594e9 −0.664300
\(507\) 0 0
\(508\) −2.61037e9 −0.883445
\(509\) 5.14477e9 1.72923 0.864617 0.502431i \(-0.167561\pi\)
0.864617 + 0.502431i \(0.167561\pi\)
\(510\) −2.84563e8 −0.0949911
\(511\) −1.54903e9 −0.513555
\(512\) −1.34218e8 −0.0441942
\(513\) −3.00455e9 −0.982581
\(514\) 1.19441e9 0.387955
\(515\) −1.64119e8 −0.0529459
\(516\) −1.09726e9 −0.351591
\(517\) 3.86823e9 1.23110
\(518\) 1.77762e7 0.00561934
\(519\) 1.35825e9 0.426475
\(520\) 0 0
\(521\) 1.41370e9 0.437950 0.218975 0.975730i \(-0.429729\pi\)
0.218975 + 0.975730i \(0.429729\pi\)
\(522\) −1.64408e9 −0.505913
\(523\) −3.46950e9 −1.06050 −0.530251 0.847841i \(-0.677902\pi\)
−0.530251 + 0.847841i \(0.677902\pi\)
\(524\) 2.63057e9 0.798711
\(525\) 2.66556e9 0.803953
\(526\) −1.38766e9 −0.415749
\(527\) −3.21735e8 −0.0957549
\(528\) 9.31275e8 0.275333
\(529\) −2.25409e9 −0.662028
\(530\) 8.08497e8 0.235892
\(531\) 1.55822e9 0.451646
\(532\) −1.99908e9 −0.575624
\(533\) 0 0
\(534\) −1.79794e9 −0.510954
\(535\) −1.24223e9 −0.350721
\(536\) 1.44977e9 0.406650
\(537\) −6.45903e8 −0.179994
\(538\) 3.44728e9 0.954417
\(539\) 2.95745e9 0.813498
\(540\) 3.72822e8 0.101888
\(541\) −2.01148e9 −0.546166 −0.273083 0.961990i \(-0.588043\pi\)
−0.273083 + 0.961990i \(0.588043\pi\)
\(542\) −2.48186e9 −0.669544
\(543\) −9.85008e8 −0.264022
\(544\) 6.71929e8 0.178948
\(545\) −2.48134e8 −0.0656597
\(546\) 0 0
\(547\) −1.25989e8 −0.0329137 −0.0164569 0.999865i \(-0.505239\pi\)
−0.0164569 + 0.999865i \(0.505239\pi\)
\(548\) 9.42126e8 0.244555
\(549\) −3.35739e9 −0.865960
\(550\) 4.28949e9 1.09935
\(551\) −4.92573e9 −1.25441
\(552\) −5.53557e8 −0.140080
\(553\) 2.59823e9 0.653341
\(554\) −3.12031e9 −0.779674
\(555\) −3.46404e6 −0.000860118 0
\(556\) −3.63833e9 −0.897719
\(557\) −2.26177e7 −0.00554569 −0.00277284 0.999996i \(-0.500883\pi\)
−0.00277284 + 0.999996i \(0.500883\pi\)
\(558\) 1.47009e8 0.0358200
\(559\) 0 0
\(560\) 2.48057e8 0.0596889
\(561\) −4.66220e9 −1.11486
\(562\) 1.79514e9 0.426600
\(563\) 3.40008e9 0.802988 0.401494 0.915862i \(-0.368491\pi\)
0.401494 + 0.915862i \(0.368491\pi\)
\(564\) 1.10607e9 0.259601
\(565\) −1.12837e9 −0.263197
\(566\) 1.00151e8 0.0232166
\(567\) 9.45638e8 0.217863
\(568\) 8.20151e8 0.187791
\(569\) −8.44190e9 −1.92109 −0.960544 0.278128i \(-0.910286\pi\)
−0.960544 + 0.278128i \(0.910286\pi\)
\(570\) 3.89559e8 0.0881072
\(571\) −8.49495e9 −1.90956 −0.954782 0.297307i \(-0.903912\pi\)
−0.954782 + 0.297307i \(0.903912\pi\)
\(572\) 0 0
\(573\) 2.57246e9 0.571226
\(574\) 1.99076e9 0.439368
\(575\) −2.54971e9 −0.559311
\(576\) −3.07023e8 −0.0669409
\(577\) −3.24606e9 −0.703462 −0.351731 0.936101i \(-0.614407\pi\)
−0.351731 + 0.936101i \(0.614407\pi\)
\(578\) −8.11412e7 −0.0174781
\(579\) 4.41061e9 0.944331
\(580\) 6.11213e8 0.130075
\(581\) −2.64088e9 −0.558639
\(582\) −2.17076e9 −0.456438
\(583\) 1.32462e10 2.76854
\(584\) −7.12769e8 −0.148082
\(585\) 0 0
\(586\) 3.41338e9 0.700718
\(587\) −5.74253e9 −1.17184 −0.585922 0.810367i \(-0.699268\pi\)
−0.585922 + 0.810367i \(0.699268\pi\)
\(588\) 8.45645e8 0.171541
\(589\) 4.40447e8 0.0888157
\(590\) −5.79294e8 −0.116123
\(591\) 5.54079e9 1.10412
\(592\) 8.17953e6 0.00162033
\(593\) −5.53884e9 −1.09076 −0.545378 0.838190i \(-0.683614\pi\)
−0.545378 + 0.838190i \(0.683614\pi\)
\(594\) 6.10821e9 1.19581
\(595\) −1.24184e9 −0.241688
\(596\) −2.46567e9 −0.477061
\(597\) 7.61761e8 0.146524
\(598\) 0 0
\(599\) −5.75425e8 −0.109394 −0.0546971 0.998503i \(-0.517419\pi\)
−0.0546971 + 0.998503i \(0.517419\pi\)
\(600\) 1.22653e9 0.231818
\(601\) 3.63524e9 0.683082 0.341541 0.939867i \(-0.389051\pi\)
0.341541 + 0.939867i \(0.389051\pi\)
\(602\) −4.78848e9 −0.894562
\(603\) 3.31634e9 0.615953
\(604\) 1.88536e9 0.348148
\(605\) −1.70911e9 −0.313781
\(606\) 2.69614e9 0.492140
\(607\) 8.99932e8 0.163324 0.0816619 0.996660i \(-0.473977\pi\)
0.0816619 + 0.996660i \(0.473977\pi\)
\(608\) −9.19853e8 −0.165980
\(609\) 6.22283e9 1.11642
\(610\) 1.24816e9 0.222647
\(611\) 0 0
\(612\) 1.53703e9 0.271053
\(613\) 1.94949e9 0.341829 0.170914 0.985286i \(-0.445328\pi\)
0.170914 + 0.985286i \(0.445328\pi\)
\(614\) −2.26739e9 −0.395308
\(615\) −3.87939e8 −0.0672513
\(616\) 4.06410e9 0.700538
\(617\) −5.89463e9 −1.01032 −0.505160 0.863026i \(-0.668566\pi\)
−0.505160 + 0.863026i \(0.668566\pi\)
\(618\) −7.68851e8 −0.131033
\(619\) 5.43625e9 0.921259 0.460630 0.887592i \(-0.347624\pi\)
0.460630 + 0.887592i \(0.347624\pi\)
\(620\) −5.46532e7 −0.00920968
\(621\) −3.63077e9 −0.608384
\(622\) 5.71390e9 0.952065
\(623\) −7.84626e9 −1.30003
\(624\) 0 0
\(625\) 5.41801e9 0.887687
\(626\) 2.81588e9 0.458779
\(627\) 6.38243e9 1.03407
\(628\) 4.33441e9 0.698346
\(629\) −4.09488e7 −0.00656092
\(630\) 5.67430e8 0.0904108
\(631\) −1.16333e9 −0.184332 −0.0921660 0.995744i \(-0.529379\pi\)
−0.0921660 + 0.995744i \(0.529379\pi\)
\(632\) 1.19555e9 0.188390
\(633\) −1.74580e9 −0.273579
\(634\) 3.64502e9 0.568052
\(635\) 2.21990e9 0.344053
\(636\) 3.78759e9 0.583798
\(637\) 0 0
\(638\) 1.00140e10 1.52663
\(639\) 1.87609e9 0.284447
\(640\) 1.14141e8 0.0172112
\(641\) 2.62975e9 0.394377 0.197189 0.980366i \(-0.436819\pi\)
0.197189 + 0.980366i \(0.436819\pi\)
\(642\) −5.81948e9 −0.867984
\(643\) −2.92590e9 −0.434032 −0.217016 0.976168i \(-0.569632\pi\)
−0.217016 + 0.976168i \(0.569632\pi\)
\(644\) −2.41573e9 −0.356409
\(645\) 9.33130e8 0.136925
\(646\) 4.60502e9 0.672075
\(647\) −1.37294e9 −0.199291 −0.0996455 0.995023i \(-0.531771\pi\)
−0.0996455 + 0.995023i \(0.531771\pi\)
\(648\) 4.35125e8 0.0628205
\(649\) −9.49100e9 −1.36287
\(650\) 0 0
\(651\) −5.56430e8 −0.0790455
\(652\) 6.37674e9 0.901015
\(653\) −4.51279e9 −0.634233 −0.317116 0.948387i \(-0.602715\pi\)
−0.317116 + 0.948387i \(0.602715\pi\)
\(654\) −1.16244e9 −0.162498
\(655\) −2.23707e9 −0.311054
\(656\) 9.16028e8 0.126691
\(657\) −1.63046e9 −0.224301
\(658\) 4.82691e9 0.660509
\(659\) −5.41645e9 −0.737252 −0.368626 0.929578i \(-0.620172\pi\)
−0.368626 + 0.929578i \(0.620172\pi\)
\(660\) −7.91969e8 −0.107227
\(661\) −1.41912e9 −0.191124 −0.0955618 0.995423i \(-0.530465\pi\)
−0.0955618 + 0.995423i \(0.530465\pi\)
\(662\) −5.32168e9 −0.712929
\(663\) 0 0
\(664\) −1.21517e9 −0.161083
\(665\) 1.70004e9 0.224174
\(666\) 1.87106e7 0.00245431
\(667\) −5.95237e9 −0.776693
\(668\) 2.12238e9 0.275490
\(669\) 8.67603e9 1.12029
\(670\) −1.23290e9 −0.158368
\(671\) 2.04496e10 2.61310
\(672\) 1.16208e9 0.147721
\(673\) −5.50060e9 −0.695597 −0.347799 0.937569i \(-0.613071\pi\)
−0.347799 + 0.937569i \(0.613071\pi\)
\(674\) −7.36233e9 −0.926202
\(675\) 8.04477e9 1.00682
\(676\) 0 0
\(677\) −8.33416e9 −1.03229 −0.516145 0.856501i \(-0.672633\pi\)
−0.516145 + 0.856501i \(0.672633\pi\)
\(678\) −5.28608e9 −0.651373
\(679\) −9.47326e9 −1.16133
\(680\) −5.71418e8 −0.0696904
\(681\) −1.43280e9 −0.173849
\(682\) −8.95423e8 −0.108089
\(683\) 1.49205e10 1.79189 0.895943 0.444169i \(-0.146501\pi\)
0.895943 + 0.444169i \(0.146501\pi\)
\(684\) −2.10416e9 −0.251410
\(685\) −8.01198e8 −0.0952407
\(686\) −3.64049e9 −0.430552
\(687\) 3.93486e9 0.463000
\(688\) −2.20337e9 −0.257945
\(689\) 0 0
\(690\) 4.70753e8 0.0545533
\(691\) 4.89733e9 0.564659 0.282329 0.959318i \(-0.408893\pi\)
0.282329 + 0.959318i \(0.408893\pi\)
\(692\) 2.72744e9 0.312884
\(693\) 9.29662e9 1.06111
\(694\) −1.09199e10 −1.24011
\(695\) 3.09409e9 0.349612
\(696\) 2.86336e9 0.321917
\(697\) −4.58588e9 −0.512988
\(698\) 7.17779e9 0.798908
\(699\) 4.03308e9 0.446650
\(700\) 5.35259e9 0.589822
\(701\) −2.20310e9 −0.241558 −0.120779 0.992679i \(-0.538539\pi\)
−0.120779 + 0.992679i \(0.538539\pi\)
\(702\) 0 0
\(703\) 5.60579e7 0.00608546
\(704\) 1.87005e9 0.201999
\(705\) −9.40619e8 −0.101100
\(706\) 2.15684e9 0.230676
\(707\) 1.17660e10 1.25216
\(708\) −2.71383e9 −0.287387
\(709\) 8.69875e9 0.916632 0.458316 0.888789i \(-0.348453\pi\)
0.458316 + 0.888789i \(0.348453\pi\)
\(710\) −6.97468e8 −0.0731341
\(711\) 2.73481e9 0.285354
\(712\) −3.61037e9 −0.374862
\(713\) 5.32246e8 0.0549920
\(714\) −5.81767e9 −0.598143
\(715\) 0 0
\(716\) −1.29701e9 −0.132053
\(717\) 2.56548e8 0.0259928
\(718\) 1.79142e9 0.180619
\(719\) −1.09362e9 −0.109728 −0.0548640 0.998494i \(-0.517473\pi\)
−0.0548640 + 0.998494i \(0.517473\pi\)
\(720\) 2.61096e8 0.0260698
\(721\) −3.35528e9 −0.333392
\(722\) 8.46819e8 0.0837356
\(723\) −1.23527e10 −1.21556
\(724\) −1.97795e9 −0.193700
\(725\) 1.31888e10 1.28535
\(726\) −8.00671e9 −0.776561
\(727\) 9.47790e9 0.914832 0.457416 0.889253i \(-0.348775\pi\)
0.457416 + 0.889253i \(0.348775\pi\)
\(728\) 0 0
\(729\) 8.45578e9 0.808365
\(730\) 6.06149e8 0.0576699
\(731\) 1.10306e10 1.04445
\(732\) 5.84730e9 0.551019
\(733\) 5.75895e9 0.540107 0.270053 0.962845i \(-0.412959\pi\)
0.270053 + 0.962845i \(0.412959\pi\)
\(734\) 2.24686e9 0.209720
\(735\) −7.19148e8 −0.0668056
\(736\) −1.11157e9 −0.102770
\(737\) −2.01995e10 −1.85868
\(738\) 2.09541e9 0.191899
\(739\) 7.10506e9 0.647608 0.323804 0.946124i \(-0.395038\pi\)
0.323804 + 0.946124i \(0.395038\pi\)
\(740\) −6.95599e6 −0.000631027 0
\(741\) 0 0
\(742\) 1.65291e10 1.48537
\(743\) −9.84108e9 −0.880202 −0.440101 0.897948i \(-0.645057\pi\)
−0.440101 + 0.897948i \(0.645057\pi\)
\(744\) −2.56035e8 −0.0227926
\(745\) 2.09684e9 0.185789
\(746\) −1.40420e10 −1.23834
\(747\) −2.77970e9 −0.243992
\(748\) −9.36196e9 −0.817921
\(749\) −2.53963e10 −2.20843
\(750\) −2.12722e9 −0.184119
\(751\) 1.29230e10 1.11333 0.556663 0.830738i \(-0.312081\pi\)
0.556663 + 0.830738i \(0.312081\pi\)
\(752\) 2.22105e9 0.190457
\(753\) 2.36000e9 0.201432
\(754\) 0 0
\(755\) −1.60333e9 −0.135584
\(756\) 7.62205e9 0.641572
\(757\) −1.51951e10 −1.27311 −0.636556 0.771230i \(-0.719642\pi\)
−0.636556 + 0.771230i \(0.719642\pi\)
\(758\) −2.87387e9 −0.239676
\(759\) 7.71269e9 0.640265
\(760\) 7.82256e8 0.0646400
\(761\) 8.68678e9 0.714517 0.357259 0.934006i \(-0.383711\pi\)
0.357259 + 0.934006i \(0.383711\pi\)
\(762\) 1.03996e10 0.851481
\(763\) −5.07291e9 −0.413449
\(764\) 5.16565e9 0.419081
\(765\) −1.30712e9 −0.105560
\(766\) 1.50295e10 1.20822
\(767\) 0 0
\(768\) 5.34717e8 0.0425951
\(769\) −2.15004e10 −1.70492 −0.852461 0.522792i \(-0.824891\pi\)
−0.852461 + 0.522792i \(0.824891\pi\)
\(770\) −3.45617e9 −0.272821
\(771\) −4.75846e9 −0.373918
\(772\) 8.85675e9 0.692810
\(773\) 5.01385e9 0.390430 0.195215 0.980760i \(-0.437460\pi\)
0.195215 + 0.980760i \(0.437460\pi\)
\(774\) −5.04020e9 −0.390710
\(775\) −1.17931e9 −0.0910063
\(776\) −4.35901e9 −0.334867
\(777\) −7.08197e7 −0.00541602
\(778\) −3.47592e9 −0.264631
\(779\) 6.27794e9 0.475813
\(780\) 0 0
\(781\) −1.14271e10 −0.858338
\(782\) 5.56482e9 0.416129
\(783\) 1.87808e10 1.39813
\(784\) 1.69810e9 0.125851
\(785\) −3.68604e9 −0.271967
\(786\) −1.04801e10 −0.769812
\(787\) −9.99315e9 −0.730787 −0.365393 0.930853i \(-0.619066\pi\)
−0.365393 + 0.930853i \(0.619066\pi\)
\(788\) 1.11262e10 0.810038
\(789\) 5.52836e9 0.400707
\(790\) −1.01671e9 −0.0733673
\(791\) −2.30686e10 −1.65731
\(792\) 4.27773e9 0.305968
\(793\) 0 0
\(794\) −1.62526e10 −1.15226
\(795\) −3.22102e9 −0.227357
\(796\) 1.52966e9 0.107498
\(797\) −2.78073e10 −1.94561 −0.972803 0.231634i \(-0.925593\pi\)
−0.972803 + 0.231634i \(0.925593\pi\)
\(798\) 7.96423e9 0.554797
\(799\) −1.11192e10 −0.771184
\(800\) 2.46293e9 0.170074
\(801\) −8.25871e9 −0.567804
\(802\) 6.42462e9 0.439782
\(803\) 9.93098e9 0.676843
\(804\) −5.77580e9 −0.391937
\(805\) 2.05437e9 0.138801
\(806\) 0 0
\(807\) −1.37338e10 −0.919884
\(808\) 5.41400e9 0.361059
\(809\) 2.83343e9 0.188145 0.0940724 0.995565i \(-0.470011\pi\)
0.0940724 + 0.995565i \(0.470011\pi\)
\(810\) −3.70036e8 −0.0244651
\(811\) −2.48489e10 −1.63581 −0.817906 0.575352i \(-0.804865\pi\)
−0.817906 + 0.575352i \(0.804865\pi\)
\(812\) 1.24958e10 0.819063
\(813\) 9.88761e9 0.645319
\(814\) −1.13965e8 −0.00740604
\(815\) −5.42287e9 −0.350895
\(816\) −2.67693e9 −0.172473
\(817\) −1.51006e10 −0.968765
\(818\) 2.02992e10 1.29671
\(819\) 0 0
\(820\) −7.79003e8 −0.0493391
\(821\) 2.96860e10 1.87219 0.936096 0.351745i \(-0.114412\pi\)
0.936096 + 0.351745i \(0.114412\pi\)
\(822\) −3.75339e9 −0.235707
\(823\) 2.35999e10 1.47575 0.737873 0.674940i \(-0.235830\pi\)
0.737873 + 0.674940i \(0.235830\pi\)
\(824\) −1.54389e9 −0.0961329
\(825\) −1.70892e10 −1.05957
\(826\) −1.18432e10 −0.731206
\(827\) −1.10498e10 −0.679335 −0.339668 0.940546i \(-0.610315\pi\)
−0.339668 + 0.940546i \(0.610315\pi\)
\(828\) −2.54272e9 −0.155665
\(829\) −1.36783e10 −0.833858 −0.416929 0.908939i \(-0.636894\pi\)
−0.416929 + 0.908939i \(0.636894\pi\)
\(830\) 1.03340e9 0.0627327
\(831\) 1.24312e10 0.751464
\(832\) 0 0
\(833\) −8.50113e9 −0.509588
\(834\) 1.44950e10 0.865238
\(835\) −1.80490e9 −0.107288
\(836\) 1.28163e10 0.758647
\(837\) −1.67933e9 −0.0989912
\(838\) 1.42875e9 0.0838690
\(839\) −2.90433e9 −0.169777 −0.0848886 0.996390i \(-0.527053\pi\)
−0.0848886 + 0.996390i \(0.527053\pi\)
\(840\) −9.88248e8 −0.0575292
\(841\) 1.35397e10 0.784918
\(842\) −1.66226e10 −0.959634
\(843\) −7.15175e9 −0.411165
\(844\) −3.50567e9 −0.200711
\(845\) 0 0
\(846\) 5.08065e9 0.288485
\(847\) −3.49414e10 −1.97583
\(848\) 7.60568e9 0.428304
\(849\) −3.98997e8 −0.0223765
\(850\) −1.23301e10 −0.688652
\(851\) 6.77417e7 0.00376793
\(852\) −3.26744e9 −0.180996
\(853\) 2.26605e10 1.25011 0.625054 0.780581i \(-0.285077\pi\)
0.625054 + 0.780581i \(0.285077\pi\)
\(854\) 2.55177e10 1.40197
\(855\) 1.78941e9 0.0979102
\(856\) −1.16858e10 −0.636798
\(857\) −2.06344e10 −1.11985 −0.559925 0.828544i \(-0.689170\pi\)
−0.559925 + 0.828544i \(0.689170\pi\)
\(858\) 0 0
\(859\) −1.43580e10 −0.772891 −0.386445 0.922312i \(-0.626297\pi\)
−0.386445 + 0.922312i \(0.626297\pi\)
\(860\) 1.87378e9 0.100455
\(861\) −7.93112e9 −0.423471
\(862\) −1.26549e10 −0.672948
\(863\) −5.30271e9 −0.280841 −0.140420 0.990092i \(-0.544845\pi\)
−0.140420 + 0.990092i \(0.544845\pi\)
\(864\) 3.50720e9 0.184996
\(865\) −2.31945e9 −0.121851
\(866\) −1.06922e10 −0.559440
\(867\) 3.23263e8 0.0168457
\(868\) −1.11734e9 −0.0579918
\(869\) −1.66575e10 −0.861075
\(870\) −2.43505e9 −0.125369
\(871\) 0 0
\(872\) −2.33424e9 −0.119217
\(873\) −9.97123e9 −0.507223
\(874\) −7.61809e9 −0.385972
\(875\) −9.28323e9 −0.468458
\(876\) 2.83964e9 0.142725
\(877\) −1.04975e10 −0.525519 −0.262759 0.964861i \(-0.584633\pi\)
−0.262759 + 0.964861i \(0.584633\pi\)
\(878\) −1.59626e10 −0.795926
\(879\) −1.35988e10 −0.675365
\(880\) −1.59032e9 −0.0786673
\(881\) 2.56783e10 1.26517 0.632587 0.774490i \(-0.281993\pi\)
0.632587 + 0.774490i \(0.281993\pi\)
\(882\) 3.88440e9 0.190627
\(883\) 1.36057e10 0.665058 0.332529 0.943093i \(-0.392098\pi\)
0.332529 + 0.943093i \(0.392098\pi\)
\(884\) 0 0
\(885\) 2.30788e9 0.111921
\(886\) −1.21490e9 −0.0586843
\(887\) −5.79488e9 −0.278812 −0.139406 0.990235i \(-0.544519\pi\)
−0.139406 + 0.990235i \(0.544519\pi\)
\(888\) −3.25869e7 −0.00156170
\(889\) 4.53841e10 2.16645
\(890\) 3.07031e9 0.145988
\(891\) −6.06258e9 −0.287134
\(892\) 1.74219e10 0.821901
\(893\) 1.52218e10 0.715298
\(894\) 9.82314e9 0.459800
\(895\) 1.10299e9 0.0514272
\(896\) 2.33352e9 0.108376
\(897\) 0 0
\(898\) 1.28521e9 0.0592252
\(899\) −2.75313e9 −0.126377
\(900\) 5.63395e9 0.257611
\(901\) −3.80760e10 −1.73426
\(902\) −1.27630e10 −0.579068
\(903\) 1.90771e10 0.862195
\(904\) −1.06147e10 −0.477881
\(905\) 1.68208e9 0.0754355
\(906\) −7.51118e9 −0.335552
\(907\) 3.99131e10 1.77619 0.888096 0.459659i \(-0.152028\pi\)
0.888096 + 0.459659i \(0.152028\pi\)
\(908\) −2.87715e9 −0.127544
\(909\) 1.23845e10 0.546896
\(910\) 0 0
\(911\) −3.59021e9 −0.157328 −0.0786639 0.996901i \(-0.525065\pi\)
−0.0786639 + 0.996901i \(0.525065\pi\)
\(912\) 3.66465e9 0.159975
\(913\) 1.69309e10 0.736262
\(914\) −8.17343e9 −0.354073
\(915\) −4.97263e9 −0.214591
\(916\) 7.90142e9 0.339681
\(917\) −4.57352e10 −1.95865
\(918\) −1.75580e10 −0.749074
\(919\) −6.24523e9 −0.265427 −0.132713 0.991154i \(-0.542369\pi\)
−0.132713 + 0.991154i \(0.542369\pi\)
\(920\) 9.45297e8 0.0400231
\(921\) 9.03316e9 0.381005
\(922\) −2.16231e10 −0.908573
\(923\) 0 0
\(924\) −1.61912e10 −0.675192
\(925\) −1.50097e8 −0.00623555
\(926\) 2.14866e10 0.889260
\(927\) −3.53165e9 −0.145613
\(928\) 5.74979e9 0.236175
\(929\) 3.69092e9 0.151036 0.0755179 0.997144i \(-0.475939\pi\)
0.0755179 + 0.997144i \(0.475939\pi\)
\(930\) 2.17736e8 0.00887645
\(931\) 1.16378e10 0.472659
\(932\) 8.09865e9 0.327685
\(933\) −2.27639e10 −0.917618
\(934\) 3.63329e9 0.145910
\(935\) 7.96154e9 0.318535
\(936\) 0 0
\(937\) −3.30027e10 −1.31057 −0.655286 0.755381i \(-0.727452\pi\)
−0.655286 + 0.755381i \(0.727452\pi\)
\(938\) −2.52057e10 −0.997216
\(939\) −1.12183e10 −0.442179
\(940\) −1.88881e9 −0.0741723
\(941\) 2.73399e10 1.06963 0.534814 0.844970i \(-0.320382\pi\)
0.534814 + 0.844970i \(0.320382\pi\)
\(942\) −1.72681e10 −0.673079
\(943\) 7.58642e9 0.294609
\(944\) −5.44953e9 −0.210842
\(945\) −6.48190e9 −0.249857
\(946\) 3.06994e10 1.17899
\(947\) −2.86589e10 −1.09657 −0.548283 0.836293i \(-0.684718\pi\)
−0.548283 + 0.836293i \(0.684718\pi\)
\(948\) −4.76301e9 −0.181573
\(949\) 0 0
\(950\) 1.68796e10 0.638746
\(951\) −1.45216e10 −0.547498
\(952\) −1.16822e10 −0.438829
\(953\) −3.66898e10 −1.37316 −0.686578 0.727056i \(-0.740888\pi\)
−0.686578 + 0.727056i \(0.740888\pi\)
\(954\) 1.73980e10 0.648753
\(955\) −4.39294e9 −0.163209
\(956\) 5.15163e8 0.0190696
\(957\) −3.98951e10 −1.47139
\(958\) 1.59714e10 0.586900
\(959\) −1.63799e10 −0.599715
\(960\) −4.54731e8 −0.0165884
\(961\) −2.72664e10 −0.991052
\(962\) 0 0
\(963\) −2.67313e10 −0.964558
\(964\) −2.48049e10 −0.891801
\(965\) −7.53191e9 −0.269811
\(966\) 9.62417e9 0.343513
\(967\) 2.06429e10 0.734139 0.367069 0.930194i \(-0.380361\pi\)
0.367069 + 0.930194i \(0.380361\pi\)
\(968\) −1.60779e10 −0.569726
\(969\) −1.83462e10 −0.647758
\(970\) 3.70697e9 0.130412
\(971\) −1.62503e9 −0.0569631 −0.0284815 0.999594i \(-0.509067\pi\)
−0.0284815 + 0.999594i \(0.509067\pi\)
\(972\) 1.32474e10 0.462701
\(973\) 6.32563e10 2.20145
\(974\) −1.28970e10 −0.447230
\(975\) 0 0
\(976\) 1.17417e10 0.404256
\(977\) −9.36392e9 −0.321238 −0.160619 0.987016i \(-0.551349\pi\)
−0.160619 + 0.987016i \(0.551349\pi\)
\(978\) −2.54046e10 −0.868414
\(979\) 5.03031e10 1.71339
\(980\) −1.44409e9 −0.0490120
\(981\) −5.33958e9 −0.180578
\(982\) 4.14515e10 1.39685
\(983\) 3.28194e10 1.10203 0.551016 0.834495i \(-0.314240\pi\)
0.551016 + 0.834495i \(0.314240\pi\)
\(984\) −3.64942e9 −0.122107
\(985\) −9.46189e9 −0.315465
\(986\) −2.87850e10 −0.956305
\(987\) −1.92302e10 −0.636611
\(988\) 0 0
\(989\) −1.82480e10 −0.599829
\(990\) −3.63785e9 −0.119157
\(991\) −3.66148e10 −1.19508 −0.597542 0.801838i \(-0.703856\pi\)
−0.597542 + 0.801838i \(0.703856\pi\)
\(992\) −5.14132e8 −0.0167218
\(993\) 2.12013e10 0.687134
\(994\) −1.42592e10 −0.460514
\(995\) −1.30084e9 −0.0418643
\(996\) 4.84118e9 0.155254
\(997\) 4.33458e10 1.38520 0.692602 0.721320i \(-0.256464\pi\)
0.692602 + 0.721320i \(0.256464\pi\)
\(998\) −1.69548e10 −0.539928
\(999\) −2.13737e8 −0.00678266
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.a.i.1.3 4
13.3 even 3 26.8.c.b.9.2 yes 8
13.5 odd 4 338.8.b.h.337.7 8
13.8 odd 4 338.8.b.h.337.3 8
13.9 even 3 26.8.c.b.3.2 8
13.12 even 2 338.8.a.j.1.3 4
39.29 odd 6 234.8.h.b.217.3 8
39.35 odd 6 234.8.h.b.55.3 8
52.3 odd 6 208.8.i.b.113.3 8
52.35 odd 6 208.8.i.b.81.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.c.b.3.2 8 13.9 even 3
26.8.c.b.9.2 yes 8 13.3 even 3
208.8.i.b.81.3 8 52.35 odd 6
208.8.i.b.113.3 8 52.3 odd 6
234.8.h.b.55.3 8 39.35 odd 6
234.8.h.b.217.3 8 39.29 odd 6
338.8.a.i.1.3 4 1.1 even 1 trivial
338.8.a.j.1.3 4 13.12 even 2
338.8.b.h.337.3 8 13.8 odd 4
338.8.b.h.337.7 8 13.5 odd 4