Properties

Label 338.8.a.i.1.2
Level $338$
Weight $8$
Character 338.1
Self dual yes
Analytic conductor $105.586$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6981x^{2} - 35424x + 7188480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-39.9844\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -39.9844 q^{3} +64.0000 q^{4} -323.700 q^{5} +319.875 q^{6} +568.591 q^{7} -512.000 q^{8} -588.246 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} -39.9844 q^{3} +64.0000 q^{4} -323.700 q^{5} +319.875 q^{6} +568.591 q^{7} -512.000 q^{8} -588.246 q^{9} +2589.60 q^{10} -238.225 q^{11} -2559.00 q^{12} -4548.73 q^{14} +12943.0 q^{15} +4096.00 q^{16} +20466.6 q^{17} +4705.97 q^{18} -9642.32 q^{19} -20716.8 q^{20} -22734.8 q^{21} +1905.80 q^{22} -78264.6 q^{23} +20472.0 q^{24} +26657.0 q^{25} +110967. q^{27} +36389.8 q^{28} -138865. q^{29} -103544. q^{30} +160571. q^{31} -32768.0 q^{32} +9525.29 q^{33} -163733. q^{34} -184053. q^{35} -37647.7 q^{36} -152955. q^{37} +77138.6 q^{38} +165735. q^{40} +185436. q^{41} +181878. q^{42} +85009.0 q^{43} -15246.4 q^{44} +190415. q^{45} +626117. q^{46} -1.20335e6 q^{47} -163776. q^{48} -500247. q^{49} -213256. q^{50} -818346. q^{51} -665967. q^{53} -887733. q^{54} +77113.6 q^{55} -291119. q^{56} +385543. q^{57} +1.11092e6 q^{58} -2.48619e6 q^{59} +828351. q^{60} -3.04600e6 q^{61} -1.28456e6 q^{62} -334471. q^{63} +262144. q^{64} -76202.4 q^{66} -387876. q^{67} +1.30986e6 q^{68} +3.12937e6 q^{69} +1.47243e6 q^{70} +3.68031e6 q^{71} +301182. q^{72} +1.57546e6 q^{73} +1.22364e6 q^{74} -1.06586e6 q^{75} -617108. q^{76} -135453. q^{77} +2.29576e6 q^{79} -1.32588e6 q^{80} -3.15044e6 q^{81} -1.48349e6 q^{82} -7.93544e6 q^{83} -1.45503e6 q^{84} -6.62505e6 q^{85} -680072. q^{86} +5.55242e6 q^{87} +121971. q^{88} +8.15082e6 q^{89} -1.52332e6 q^{90} -5.00893e6 q^{92} -6.42032e6 q^{93} +9.62678e6 q^{94} +3.12122e6 q^{95} +1.31021e6 q^{96} -1.33959e6 q^{97} +4.00198e6 q^{98} +140135. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} + 278 q^{5} + 548 q^{7} - 2048 q^{8} + 5214 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 32 q^{2} + 256 q^{4} + 278 q^{5} + 548 q^{7} - 2048 q^{8} + 5214 q^{9} - 2224 q^{10} + 7392 q^{11} - 4384 q^{14} - 15528 q^{15} + 16384 q^{16} - 28316 q^{17} - 41712 q^{18} + 99888 q^{19} + 17792 q^{20} + 91074 q^{21} - 59136 q^{22} + 33388 q^{23} + 86878 q^{25} + 106272 q^{27} + 35072 q^{28} - 93140 q^{29} + 124224 q^{30} + 311160 q^{31} - 131072 q^{32} - 238638 q^{33} + 226528 q^{34} - 141544 q^{35} + 333696 q^{36} + 9636 q^{37} - 799104 q^{38} - 142336 q^{40} - 82892 q^{41} - 728592 q^{42} + 569264 q^{43} + 473088 q^{44} + 2303394 q^{45} - 267104 q^{46} - 574200 q^{47} + 717798 q^{49} - 695024 q^{50} - 2729928 q^{51} + 1235350 q^{53} - 850176 q^{54} + 1092512 q^{55} - 280576 q^{56} + 3528462 q^{57} + 745120 q^{58} - 231504 q^{59} - 993792 q^{60} - 685684 q^{61} - 2489280 q^{62} + 5951712 q^{63} + 1048576 q^{64} + 1909104 q^{66} - 3271056 q^{67} - 1812224 q^{68} - 5600034 q^{69} + 1132352 q^{70} + 175012 q^{71} - 2669568 q^{72} + 7137890 q^{73} - 77088 q^{74} - 22200960 q^{75} + 6392832 q^{76} - 13915206 q^{77} - 7053952 q^{79} + 1138688 q^{80} - 3758004 q^{81} + 663136 q^{82} + 657288 q^{83} + 5828736 q^{84} - 11814998 q^{85} - 4554112 q^{86} + 7182900 q^{87} - 3784704 q^{88} + 11452234 q^{89} - 18427152 q^{90} + 2136832 q^{92} - 2984688 q^{93} + 4593600 q^{94} + 23334088 q^{95} + 428002 q^{97} - 5742384 q^{98} - 10357656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −39.9844 −0.855001 −0.427500 0.904015i \(-0.640606\pi\)
−0.427500 + 0.904015i \(0.640606\pi\)
\(4\) 64.0000 0.500000
\(5\) −323.700 −1.15811 −0.579053 0.815290i \(-0.696578\pi\)
−0.579053 + 0.815290i \(0.696578\pi\)
\(6\) 319.875 0.604577
\(7\) 568.591 0.626552 0.313276 0.949662i \(-0.398574\pi\)
0.313276 + 0.949662i \(0.398574\pi\)
\(8\) −512.000 −0.353553
\(9\) −588.246 −0.268974
\(10\) 2589.60 0.818905
\(11\) −238.225 −0.0539651 −0.0269826 0.999636i \(-0.508590\pi\)
−0.0269826 + 0.999636i \(0.508590\pi\)
\(12\) −2559.00 −0.427500
\(13\) 0 0
\(14\) −4548.73 −0.443039
\(15\) 12943.0 0.990181
\(16\) 4096.00 0.250000
\(17\) 20466.6 1.01036 0.505178 0.863015i \(-0.331427\pi\)
0.505178 + 0.863015i \(0.331427\pi\)
\(18\) 4705.97 0.190193
\(19\) −9642.32 −0.322511 −0.161255 0.986913i \(-0.551554\pi\)
−0.161255 + 0.986913i \(0.551554\pi\)
\(20\) −20716.8 −0.579053
\(21\) −22734.8 −0.535702
\(22\) 1905.80 0.0381591
\(23\) −78264.6 −1.34128 −0.670638 0.741785i \(-0.733979\pi\)
−0.670638 + 0.741785i \(0.733979\pi\)
\(24\) 20472.0 0.302288
\(25\) 26657.0 0.341210
\(26\) 0 0
\(27\) 110967. 1.08497
\(28\) 36389.8 0.313276
\(29\) −138865. −1.05730 −0.528650 0.848840i \(-0.677302\pi\)
−0.528650 + 0.848840i \(0.677302\pi\)
\(30\) −103544. −0.700164
\(31\) 160571. 0.968055 0.484027 0.875053i \(-0.339174\pi\)
0.484027 + 0.875053i \(0.339174\pi\)
\(32\) −32768.0 −0.176777
\(33\) 9525.29 0.0461402
\(34\) −163733. −0.714430
\(35\) −184053. −0.725614
\(36\) −37647.7 −0.134487
\(37\) −152955. −0.496430 −0.248215 0.968705i \(-0.579844\pi\)
−0.248215 + 0.968705i \(0.579844\pi\)
\(38\) 77138.6 0.228049
\(39\) 0 0
\(40\) 165735. 0.409452
\(41\) 185436. 0.420195 0.210097 0.977680i \(-0.432622\pi\)
0.210097 + 0.977680i \(0.432622\pi\)
\(42\) 181878. 0.378799
\(43\) 85009.0 0.163052 0.0815259 0.996671i \(-0.474021\pi\)
0.0815259 + 0.996671i \(0.474021\pi\)
\(44\) −15246.4 −0.0269826
\(45\) 190415. 0.311500
\(46\) 626117. 0.948425
\(47\) −1.20335e6 −1.69063 −0.845315 0.534268i \(-0.820587\pi\)
−0.845315 + 0.534268i \(0.820587\pi\)
\(48\) −163776. −0.213750
\(49\) −500247. −0.607433
\(50\) −213256. −0.241272
\(51\) −818346. −0.863856
\(52\) 0 0
\(53\) −665967. −0.614451 −0.307225 0.951637i \(-0.599401\pi\)
−0.307225 + 0.951637i \(0.599401\pi\)
\(54\) −887733. −0.767192
\(55\) 77113.6 0.0624973
\(56\) −291119. −0.221520
\(57\) 385543. 0.275747
\(58\) 1.11092e6 0.747624
\(59\) −2.48619e6 −1.57598 −0.787992 0.615686i \(-0.788879\pi\)
−0.787992 + 0.615686i \(0.788879\pi\)
\(60\) 828351. 0.495091
\(61\) −3.04600e6 −1.71821 −0.859104 0.511801i \(-0.828978\pi\)
−0.859104 + 0.511801i \(0.828978\pi\)
\(62\) −1.28456e6 −0.684518
\(63\) −334471. −0.168526
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) −76202.4 −0.0326261
\(67\) −387876. −0.157554 −0.0787772 0.996892i \(-0.525102\pi\)
−0.0787772 + 0.996892i \(0.525102\pi\)
\(68\) 1.30986e6 0.505178
\(69\) 3.12937e6 1.14679
\(70\) 1.47243e6 0.513086
\(71\) 3.68031e6 1.22034 0.610170 0.792271i \(-0.291101\pi\)
0.610170 + 0.792271i \(0.291101\pi\)
\(72\) 301182. 0.0950966
\(73\) 1.57546e6 0.473998 0.236999 0.971510i \(-0.423836\pi\)
0.236999 + 0.971510i \(0.423836\pi\)
\(74\) 1.22364e6 0.351029
\(75\) −1.06586e6 −0.291734
\(76\) −617108. −0.161255
\(77\) −135453. −0.0338120
\(78\) 0 0
\(79\) 2.29576e6 0.523880 0.261940 0.965084i \(-0.415638\pi\)
0.261940 + 0.965084i \(0.415638\pi\)
\(80\) −1.32588e6 −0.289527
\(81\) −3.15044e6 −0.658679
\(82\) −1.48349e6 −0.297122
\(83\) −7.93544e6 −1.52334 −0.761672 0.647963i \(-0.775621\pi\)
−0.761672 + 0.647963i \(0.775621\pi\)
\(84\) −1.45503e6 −0.267851
\(85\) −6.62505e6 −1.17010
\(86\) −680072. −0.115295
\(87\) 5.55242e6 0.903993
\(88\) 121971. 0.0190796
\(89\) 8.15082e6 1.22556 0.612782 0.790252i \(-0.290050\pi\)
0.612782 + 0.790252i \(0.290050\pi\)
\(90\) −1.52332e6 −0.220264
\(91\) 0 0
\(92\) −5.00893e6 −0.670638
\(93\) −6.42032e6 −0.827687
\(94\) 9.62678e6 1.19546
\(95\) 3.12122e6 0.373501
\(96\) 1.31021e6 0.151144
\(97\) −1.33959e6 −0.149029 −0.0745145 0.997220i \(-0.523741\pi\)
−0.0745145 + 0.997220i \(0.523741\pi\)
\(98\) 4.00198e6 0.429520
\(99\) 140135. 0.0145152
\(100\) 1.70605e6 0.170605
\(101\) −1.92768e7 −1.86170 −0.930852 0.365396i \(-0.880934\pi\)
−0.930852 + 0.365396i \(0.880934\pi\)
\(102\) 6.54677e6 0.610838
\(103\) −1.54295e7 −1.39130 −0.695652 0.718379i \(-0.744884\pi\)
−0.695652 + 0.718379i \(0.744884\pi\)
\(104\) 0 0
\(105\) 7.35926e6 0.620400
\(106\) 5.32773e6 0.434482
\(107\) −1.04249e7 −0.822673 −0.411337 0.911483i \(-0.634938\pi\)
−0.411337 + 0.911483i \(0.634938\pi\)
\(108\) 7.10186e6 0.542487
\(109\) 1.55544e7 1.15043 0.575216 0.818001i \(-0.304918\pi\)
0.575216 + 0.818001i \(0.304918\pi\)
\(110\) −616909. −0.0441923
\(111\) 6.11583e6 0.424448
\(112\) 2.32895e6 0.156638
\(113\) −936077. −0.0610291 −0.0305145 0.999534i \(-0.509715\pi\)
−0.0305145 + 0.999534i \(0.509715\pi\)
\(114\) −3.08434e6 −0.194982
\(115\) 2.53343e7 1.55334
\(116\) −8.88733e6 −0.528650
\(117\) 0 0
\(118\) 1.98895e7 1.11439
\(119\) 1.16371e7 0.633041
\(120\) −6.62680e6 −0.350082
\(121\) −1.94304e7 −0.997088
\(122\) 2.43680e7 1.21496
\(123\) −7.41455e6 −0.359267
\(124\) 1.02765e7 0.484027
\(125\) 1.66602e7 0.762949
\(126\) 2.67577e6 0.119166
\(127\) −8.47172e6 −0.366994 −0.183497 0.983020i \(-0.558742\pi\)
−0.183497 + 0.983020i \(0.558742\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −3.39904e6 −0.139409
\(130\) 0 0
\(131\) 1.17131e7 0.455219 0.227610 0.973752i \(-0.426909\pi\)
0.227610 + 0.973752i \(0.426909\pi\)
\(132\) 609619. 0.0230701
\(133\) −5.48254e6 −0.202070
\(134\) 3.10301e6 0.111408
\(135\) −3.59199e7 −1.25651
\(136\) −1.04789e7 −0.357215
\(137\) 3.74992e7 1.24595 0.622975 0.782242i \(-0.285924\pi\)
0.622975 + 0.782242i \(0.285924\pi\)
\(138\) −2.50349e7 −0.810904
\(139\) −2.81058e7 −0.887656 −0.443828 0.896112i \(-0.646380\pi\)
−0.443828 + 0.896112i \(0.646380\pi\)
\(140\) −1.17794e7 −0.362807
\(141\) 4.81152e7 1.44549
\(142\) −2.94425e7 −0.862910
\(143\) 0 0
\(144\) −2.40945e6 −0.0672435
\(145\) 4.49505e7 1.22447
\(146\) −1.26036e7 −0.335167
\(147\) 2.00021e7 0.519355
\(148\) −9.78913e6 −0.248215
\(149\) 4.59009e7 1.13676 0.568381 0.822766i \(-0.307570\pi\)
0.568381 + 0.822766i \(0.307570\pi\)
\(150\) 8.52692e6 0.206287
\(151\) 4.77305e7 1.12818 0.564088 0.825714i \(-0.309228\pi\)
0.564088 + 0.825714i \(0.309228\pi\)
\(152\) 4.93687e6 0.114025
\(153\) −1.20394e7 −0.271759
\(154\) 1.08362e6 0.0239087
\(155\) −5.19768e7 −1.12111
\(156\) 0 0
\(157\) 7.12033e7 1.46842 0.734212 0.678921i \(-0.237552\pi\)
0.734212 + 0.678921i \(0.237552\pi\)
\(158\) −1.83661e7 −0.370439
\(159\) 2.66283e7 0.525356
\(160\) 1.06070e7 0.204726
\(161\) −4.45006e7 −0.840379
\(162\) 2.52035e7 0.465757
\(163\) 6.22061e7 1.12506 0.562531 0.826776i \(-0.309828\pi\)
0.562531 + 0.826776i \(0.309828\pi\)
\(164\) 1.18679e7 0.210097
\(165\) −3.08334e6 −0.0534353
\(166\) 6.34835e7 1.07717
\(167\) 2.24576e7 0.373127 0.186563 0.982443i \(-0.440265\pi\)
0.186563 + 0.982443i \(0.440265\pi\)
\(168\) 1.16402e7 0.189399
\(169\) 0 0
\(170\) 5.30004e7 0.827386
\(171\) 5.67205e6 0.0867469
\(172\) 5.44058e6 0.0815259
\(173\) 8.61689e7 1.26529 0.632643 0.774443i \(-0.281970\pi\)
0.632643 + 0.774443i \(0.281970\pi\)
\(174\) −4.44194e7 −0.639219
\(175\) 1.51569e7 0.213785
\(176\) −975770. −0.0134913
\(177\) 9.94087e7 1.34747
\(178\) −6.52066e7 −0.866605
\(179\) −7.11140e7 −0.926764 −0.463382 0.886159i \(-0.653364\pi\)
−0.463382 + 0.886159i \(0.653364\pi\)
\(180\) 1.21866e7 0.155750
\(181\) 1.39420e8 1.74763 0.873817 0.486254i \(-0.161637\pi\)
0.873817 + 0.486254i \(0.161637\pi\)
\(182\) 0 0
\(183\) 1.21793e8 1.46907
\(184\) 4.00715e7 0.474212
\(185\) 4.95117e7 0.574919
\(186\) 5.13626e7 0.585263
\(187\) −4.87566e6 −0.0545240
\(188\) −7.70143e7 −0.845315
\(189\) 6.30946e7 0.679792
\(190\) −2.49698e7 −0.264105
\(191\) −8.58028e7 −0.891015 −0.445507 0.895278i \(-0.646977\pi\)
−0.445507 + 0.895278i \(0.646977\pi\)
\(192\) −1.04817e7 −0.106875
\(193\) 2.35447e7 0.235745 0.117872 0.993029i \(-0.462393\pi\)
0.117872 + 0.993029i \(0.462393\pi\)
\(194\) 1.07167e7 0.105379
\(195\) 0 0
\(196\) −3.20158e7 −0.303716
\(197\) 7.14744e7 0.666068 0.333034 0.942915i \(-0.391928\pi\)
0.333034 + 0.942915i \(0.391928\pi\)
\(198\) −1.12108e6 −0.0102638
\(199\) 2.15604e8 1.93941 0.969706 0.244273i \(-0.0785493\pi\)
0.969706 + 0.244273i \(0.0785493\pi\)
\(200\) −1.36484e7 −0.120636
\(201\) 1.55090e7 0.134709
\(202\) 1.54215e8 1.31642
\(203\) −7.89572e7 −0.662454
\(204\) −5.23741e7 −0.431928
\(205\) −6.00257e7 −0.486630
\(206\) 1.23436e8 0.983800
\(207\) 4.60388e7 0.360768
\(208\) 0 0
\(209\) 2.29704e6 0.0174043
\(210\) −5.88741e7 −0.438689
\(211\) 8.93956e7 0.655130 0.327565 0.944829i \(-0.393772\pi\)
0.327565 + 0.944829i \(0.393772\pi\)
\(212\) −4.26219e7 −0.307225
\(213\) −1.47155e8 −1.04339
\(214\) 8.33990e7 0.581718
\(215\) −2.75175e7 −0.188831
\(216\) −5.68149e7 −0.383596
\(217\) 9.12990e7 0.606537
\(218\) −1.24435e8 −0.813479
\(219\) −6.29937e7 −0.405268
\(220\) 4.93527e6 0.0312487
\(221\) 0 0
\(222\) −4.89266e7 −0.300130
\(223\) 1.07527e8 0.649310 0.324655 0.945832i \(-0.394752\pi\)
0.324655 + 0.945832i \(0.394752\pi\)
\(224\) −1.86316e7 −0.110760
\(225\) −1.56809e7 −0.0917764
\(226\) 7.48861e6 0.0431541
\(227\) −2.15079e8 −1.22041 −0.610207 0.792242i \(-0.708914\pi\)
−0.610207 + 0.792242i \(0.708914\pi\)
\(228\) 2.46747e7 0.137873
\(229\) −3.12216e8 −1.71803 −0.859016 0.511949i \(-0.828924\pi\)
−0.859016 + 0.511949i \(0.828924\pi\)
\(230\) −2.02674e8 −1.09838
\(231\) 5.41600e6 0.0289092
\(232\) 7.10986e7 0.373812
\(233\) −2.62733e8 −1.36072 −0.680360 0.732878i \(-0.738177\pi\)
−0.680360 + 0.732878i \(0.738177\pi\)
\(234\) 0 0
\(235\) 3.89524e8 1.95793
\(236\) −1.59116e8 −0.787992
\(237\) −9.17947e7 −0.447918
\(238\) −9.30971e7 −0.447628
\(239\) −8.68087e7 −0.411311 −0.205656 0.978624i \(-0.565933\pi\)
−0.205656 + 0.978624i \(0.565933\pi\)
\(240\) 5.30144e7 0.247545
\(241\) 2.12576e8 0.978260 0.489130 0.872211i \(-0.337314\pi\)
0.489130 + 0.872211i \(0.337314\pi\)
\(242\) 1.55443e8 0.705048
\(243\) −1.16715e8 −0.521802
\(244\) −1.94944e8 −0.859104
\(245\) 1.61930e8 0.703471
\(246\) 5.93164e7 0.254040
\(247\) 0 0
\(248\) −8.22121e7 −0.342259
\(249\) 3.17294e8 1.30246
\(250\) −1.33282e8 −0.539487
\(251\) −1.19237e8 −0.475941 −0.237970 0.971272i \(-0.576482\pi\)
−0.237970 + 0.971272i \(0.576482\pi\)
\(252\) −2.14062e7 −0.0842630
\(253\) 1.86446e7 0.0723821
\(254\) 6.77738e7 0.259504
\(255\) 2.64899e8 1.00044
\(256\) 1.67772e7 0.0625000
\(257\) −3.44584e8 −1.26628 −0.633139 0.774038i \(-0.718234\pi\)
−0.633139 + 0.774038i \(0.718234\pi\)
\(258\) 2.71923e7 0.0985773
\(259\) −8.69690e7 −0.311039
\(260\) 0 0
\(261\) 8.16865e7 0.284386
\(262\) −9.37044e7 −0.321889
\(263\) 3.03650e7 0.102927 0.0514634 0.998675i \(-0.483611\pi\)
0.0514634 + 0.998675i \(0.483611\pi\)
\(264\) −4.87695e6 −0.0163130
\(265\) 2.15574e8 0.711599
\(266\) 4.38603e7 0.142885
\(267\) −3.25906e8 −1.04786
\(268\) −2.48240e7 −0.0787772
\(269\) 5.05780e8 1.58427 0.792134 0.610348i \(-0.208970\pi\)
0.792134 + 0.610348i \(0.208970\pi\)
\(270\) 2.87360e8 0.888490
\(271\) −3.64220e8 −1.11166 −0.555829 0.831297i \(-0.687599\pi\)
−0.555829 + 0.831297i \(0.687599\pi\)
\(272\) 8.38312e7 0.252589
\(273\) 0 0
\(274\) −2.99994e8 −0.881020
\(275\) −6.35037e6 −0.0184134
\(276\) 2.00279e8 0.573396
\(277\) −1.16752e8 −0.330055 −0.165027 0.986289i \(-0.552771\pi\)
−0.165027 + 0.986289i \(0.552771\pi\)
\(278\) 2.24847e8 0.627668
\(279\) −9.44549e7 −0.260381
\(280\) 9.42353e7 0.256543
\(281\) 3.12559e8 0.840349 0.420174 0.907443i \(-0.361969\pi\)
0.420174 + 0.907443i \(0.361969\pi\)
\(282\) −3.84921e8 −1.02212
\(283\) 2.11275e8 0.554109 0.277054 0.960854i \(-0.410642\pi\)
0.277054 + 0.960854i \(0.410642\pi\)
\(284\) 2.35540e8 0.610170
\(285\) −1.24800e8 −0.319344
\(286\) 0 0
\(287\) 1.05437e8 0.263274
\(288\) 1.92756e7 0.0475483
\(289\) 8.54345e6 0.0208205
\(290\) −3.59604e8 −0.865828
\(291\) 5.35627e7 0.127420
\(292\) 1.00829e8 0.236999
\(293\) −6.99504e8 −1.62463 −0.812313 0.583221i \(-0.801792\pi\)
−0.812313 + 0.583221i \(0.801792\pi\)
\(294\) −1.60017e8 −0.367240
\(295\) 8.04780e8 1.82516
\(296\) 7.83131e7 0.175515
\(297\) −2.64350e7 −0.0585507
\(298\) −3.67207e8 −0.803812
\(299\) 0 0
\(300\) −6.82153e7 −0.145867
\(301\) 4.83354e7 0.102160
\(302\) −3.81844e8 −0.797741
\(303\) 7.70773e8 1.59176
\(304\) −3.94949e7 −0.0806276
\(305\) 9.85992e8 1.98987
\(306\) 9.63152e7 0.192163
\(307\) 4.84159e8 0.955001 0.477500 0.878632i \(-0.341543\pi\)
0.477500 + 0.878632i \(0.341543\pi\)
\(308\) −8.66898e6 −0.0169060
\(309\) 6.16940e8 1.18957
\(310\) 4.15814e8 0.792745
\(311\) −5.82462e8 −1.09801 −0.549005 0.835819i \(-0.684993\pi\)
−0.549005 + 0.835819i \(0.684993\pi\)
\(312\) 0 0
\(313\) −6.04523e8 −1.11431 −0.557157 0.830407i \(-0.688108\pi\)
−0.557157 + 0.830407i \(0.688108\pi\)
\(314\) −5.69626e8 −1.03833
\(315\) 1.08269e8 0.195171
\(316\) 1.46929e8 0.261940
\(317\) 9.32561e8 1.64426 0.822129 0.569301i \(-0.192786\pi\)
0.822129 + 0.569301i \(0.192786\pi\)
\(318\) −2.13026e8 −0.371483
\(319\) 3.30810e7 0.0570573
\(320\) −8.48561e7 −0.144763
\(321\) 4.16832e8 0.703386
\(322\) 3.56005e8 0.594237
\(323\) −1.97346e8 −0.325851
\(324\) −2.01628e8 −0.329340
\(325\) 0 0
\(326\) −4.97649e8 −0.795539
\(327\) −6.21935e8 −0.983621
\(328\) −9.49432e7 −0.148561
\(329\) −6.84213e8 −1.05927
\(330\) 2.46667e7 0.0377844
\(331\) −6.83657e8 −1.03619 −0.518096 0.855322i \(-0.673359\pi\)
−0.518096 + 0.855322i \(0.673359\pi\)
\(332\) −5.07868e8 −0.761672
\(333\) 8.99753e7 0.133527
\(334\) −1.79661e8 −0.263840
\(335\) 1.25556e8 0.182465
\(336\) −9.31217e7 −0.133926
\(337\) 1.36368e9 1.94092 0.970459 0.241264i \(-0.0775621\pi\)
0.970459 + 0.241264i \(0.0775621\pi\)
\(338\) 0 0
\(339\) 3.74285e7 0.0521799
\(340\) −4.24003e8 −0.585050
\(341\) −3.82519e7 −0.0522412
\(342\) −4.53764e7 −0.0613393
\(343\) −7.52695e8 −1.00714
\(344\) −4.35246e7 −0.0576475
\(345\) −1.01298e9 −1.32811
\(346\) −6.89351e8 −0.894693
\(347\) −1.81419e8 −0.233093 −0.116547 0.993185i \(-0.537182\pi\)
−0.116547 + 0.993185i \(0.537182\pi\)
\(348\) 3.55355e8 0.451996
\(349\) −4.46973e8 −0.562849 −0.281425 0.959583i \(-0.590807\pi\)
−0.281425 + 0.959583i \(0.590807\pi\)
\(350\) −1.21255e8 −0.151169
\(351\) 0 0
\(352\) 7.80616e6 0.00953978
\(353\) 1.21232e8 0.146691 0.0733456 0.997307i \(-0.476632\pi\)
0.0733456 + 0.997307i \(0.476632\pi\)
\(354\) −7.95270e8 −0.952803
\(355\) −1.19132e9 −1.41328
\(356\) 5.21653e8 0.612782
\(357\) −4.65304e8 −0.541250
\(358\) 5.68912e8 0.655321
\(359\) −1.84724e8 −0.210714 −0.105357 0.994434i \(-0.533599\pi\)
−0.105357 + 0.994434i \(0.533599\pi\)
\(360\) −9.74927e7 −0.110132
\(361\) −8.00897e8 −0.895987
\(362\) −1.11536e9 −1.23576
\(363\) 7.76914e8 0.852511
\(364\) 0 0
\(365\) −5.09976e8 −0.548940
\(366\) −9.74341e8 −1.03879
\(367\) 8.90694e8 0.940583 0.470292 0.882511i \(-0.344149\pi\)
0.470292 + 0.882511i \(0.344149\pi\)
\(368\) −3.20572e8 −0.335319
\(369\) −1.09082e8 −0.113021
\(370\) −3.96093e8 −0.406529
\(371\) −3.78663e8 −0.384985
\(372\) −4.10901e8 −0.413844
\(373\) 4.42654e8 0.441655 0.220828 0.975313i \(-0.429124\pi\)
0.220828 + 0.975313i \(0.429124\pi\)
\(374\) 3.90053e7 0.0385543
\(375\) −6.66149e8 −0.652322
\(376\) 6.16114e8 0.597728
\(377\) 0 0
\(378\) −5.04757e8 −0.480686
\(379\) 1.48711e9 1.40315 0.701576 0.712595i \(-0.252480\pi\)
0.701576 + 0.712595i \(0.252480\pi\)
\(380\) 1.99758e8 0.186751
\(381\) 3.38737e8 0.313780
\(382\) 6.86423e8 0.630042
\(383\) 8.93538e8 0.812676 0.406338 0.913723i \(-0.366806\pi\)
0.406338 + 0.913723i \(0.366806\pi\)
\(384\) 8.38534e7 0.0755721
\(385\) 4.38461e7 0.0391578
\(386\) −1.88357e8 −0.166697
\(387\) −5.00062e7 −0.0438567
\(388\) −8.57337e7 −0.0745145
\(389\) −5.98070e8 −0.515143 −0.257572 0.966259i \(-0.582922\pi\)
−0.257572 + 0.966259i \(0.582922\pi\)
\(390\) 0 0
\(391\) −1.60181e9 −1.35517
\(392\) 2.56126e8 0.214760
\(393\) −4.68340e8 −0.389213
\(394\) −5.71795e8 −0.470981
\(395\) −7.43139e8 −0.606709
\(396\) 8.96863e6 0.00725760
\(397\) −2.04211e9 −1.63800 −0.818999 0.573795i \(-0.805471\pi\)
−0.818999 + 0.573795i \(0.805471\pi\)
\(398\) −1.72483e9 −1.37137
\(399\) 2.19216e8 0.172770
\(400\) 1.09187e8 0.0853024
\(401\) −1.62581e9 −1.25911 −0.629555 0.776956i \(-0.716763\pi\)
−0.629555 + 0.776956i \(0.716763\pi\)
\(402\) −1.24072e8 −0.0952538
\(403\) 0 0
\(404\) −1.23372e9 −0.930852
\(405\) 1.01980e9 0.762820
\(406\) 6.31657e8 0.468425
\(407\) 3.64378e7 0.0267899
\(408\) 4.18993e8 0.305419
\(409\) −7.07238e7 −0.0511133 −0.0255567 0.999673i \(-0.508136\pi\)
−0.0255567 + 0.999673i \(0.508136\pi\)
\(410\) 4.80206e8 0.344099
\(411\) −1.49939e9 −1.06529
\(412\) −9.87488e8 −0.695652
\(413\) −1.41362e9 −0.987436
\(414\) −3.68311e8 −0.255101
\(415\) 2.56871e9 1.76419
\(416\) 0 0
\(417\) 1.12380e9 0.758947
\(418\) −1.83763e7 −0.0123067
\(419\) 1.51778e9 1.00800 0.504000 0.863704i \(-0.331861\pi\)
0.504000 + 0.863704i \(0.331861\pi\)
\(420\) 4.70993e8 0.310200
\(421\) −6.23005e8 −0.406916 −0.203458 0.979084i \(-0.565218\pi\)
−0.203458 + 0.979084i \(0.565218\pi\)
\(422\) −7.15164e8 −0.463247
\(423\) 7.07864e8 0.454735
\(424\) 3.40975e8 0.217241
\(425\) 5.45578e8 0.344743
\(426\) 1.17724e9 0.737789
\(427\) −1.73193e9 −1.07655
\(428\) −6.67192e8 −0.411337
\(429\) 0 0
\(430\) 2.20140e8 0.133524
\(431\) −7.98630e8 −0.480480 −0.240240 0.970714i \(-0.577226\pi\)
−0.240240 + 0.970714i \(0.577226\pi\)
\(432\) 4.54519e8 0.271243
\(433\) −1.06522e9 −0.630568 −0.315284 0.948997i \(-0.602100\pi\)
−0.315284 + 0.948997i \(0.602100\pi\)
\(434\) −7.30392e8 −0.428886
\(435\) −1.79732e9 −1.04692
\(436\) 9.95483e8 0.575216
\(437\) 7.54652e8 0.432575
\(438\) 5.03950e8 0.286568
\(439\) 2.79260e9 1.57537 0.787685 0.616079i \(-0.211280\pi\)
0.787685 + 0.616079i \(0.211280\pi\)
\(440\) −3.94822e7 −0.0220961
\(441\) 2.94268e8 0.163383
\(442\) 0 0
\(443\) 1.37114e9 0.749323 0.374661 0.927162i \(-0.377759\pi\)
0.374661 + 0.927162i \(0.377759\pi\)
\(444\) 3.91413e8 0.212224
\(445\) −2.63842e9 −1.41933
\(446\) −8.60220e8 −0.459132
\(447\) −1.83532e9 −0.971932
\(448\) 1.49053e8 0.0783190
\(449\) −8.60372e8 −0.448564 −0.224282 0.974524i \(-0.572004\pi\)
−0.224282 + 0.974524i \(0.572004\pi\)
\(450\) 1.25447e8 0.0648957
\(451\) −4.41755e7 −0.0226759
\(452\) −5.99089e7 −0.0305145
\(453\) −1.90848e9 −0.964592
\(454\) 1.72063e9 0.862963
\(455\) 0 0
\(456\) −1.97398e8 −0.0974912
\(457\) −8.06859e8 −0.395449 −0.197725 0.980258i \(-0.563355\pi\)
−0.197725 + 0.980258i \(0.563355\pi\)
\(458\) 2.49773e9 1.21483
\(459\) 2.27111e9 1.09621
\(460\) 1.62139e9 0.776670
\(461\) −1.50889e8 −0.0717308 −0.0358654 0.999357i \(-0.511419\pi\)
−0.0358654 + 0.999357i \(0.511419\pi\)
\(462\) −4.33280e7 −0.0204419
\(463\) 2.52574e9 1.18265 0.591324 0.806434i \(-0.298605\pi\)
0.591324 + 0.806434i \(0.298605\pi\)
\(464\) −5.68789e8 −0.264325
\(465\) 2.07826e9 0.958550
\(466\) 2.10186e9 0.962175
\(467\) 2.68879e9 1.22165 0.610827 0.791764i \(-0.290837\pi\)
0.610827 + 0.791764i \(0.290837\pi\)
\(468\) 0 0
\(469\) −2.20543e8 −0.0987161
\(470\) −3.11619e9 −1.38447
\(471\) −2.84702e9 −1.25550
\(472\) 1.27293e9 0.557194
\(473\) −2.02513e7 −0.00879911
\(474\) 7.34358e8 0.316726
\(475\) −2.57035e8 −0.110044
\(476\) 7.44777e8 0.316520
\(477\) 3.91752e8 0.165271
\(478\) 6.94469e8 0.290841
\(479\) 2.62585e8 0.109168 0.0545841 0.998509i \(-0.482617\pi\)
0.0545841 + 0.998509i \(0.482617\pi\)
\(480\) −4.24115e8 −0.175041
\(481\) 0 0
\(482\) −1.70061e9 −0.691734
\(483\) 1.77933e9 0.718524
\(484\) −1.24355e9 −0.498544
\(485\) 4.33626e8 0.172591
\(486\) 9.33723e8 0.368970
\(487\) 2.26544e9 0.888796 0.444398 0.895830i \(-0.353418\pi\)
0.444398 + 0.895830i \(0.353418\pi\)
\(488\) 1.55955e9 0.607478
\(489\) −2.48728e9 −0.961929
\(490\) −1.29544e9 −0.497429
\(491\) 2.76777e9 1.05523 0.527613 0.849485i \(-0.323087\pi\)
0.527613 + 0.849485i \(0.323087\pi\)
\(492\) −4.74531e8 −0.179633
\(493\) −2.84209e9 −1.06825
\(494\) 0 0
\(495\) −4.53617e7 −0.0168101
\(496\) 6.57697e8 0.242014
\(497\) 2.09259e9 0.764606
\(498\) −2.53835e9 −0.920978
\(499\) 1.33804e9 0.482078 0.241039 0.970515i \(-0.422512\pi\)
0.241039 + 0.970515i \(0.422512\pi\)
\(500\) 1.06625e9 0.381475
\(501\) −8.97956e8 −0.319024
\(502\) 9.53896e8 0.336541
\(503\) 4.40806e8 0.154440 0.0772199 0.997014i \(-0.475396\pi\)
0.0772199 + 0.997014i \(0.475396\pi\)
\(504\) 1.71249e8 0.0595830
\(505\) 6.23992e9 2.15605
\(506\) −1.49157e8 −0.0511819
\(507\) 0 0
\(508\) −5.42190e8 −0.183497
\(509\) −3.24570e8 −0.109093 −0.0545464 0.998511i \(-0.517371\pi\)
−0.0545464 + 0.998511i \(0.517371\pi\)
\(510\) −2.11919e9 −0.707415
\(511\) 8.95791e8 0.296984
\(512\) −1.34218e8 −0.0441942
\(513\) −1.06998e9 −0.349915
\(514\) 2.75667e9 0.895394
\(515\) 4.99454e9 1.61128
\(516\) −2.17538e8 −0.0697047
\(517\) 2.86668e8 0.0912351
\(518\) 6.95752e8 0.219938
\(519\) −3.44541e9 −1.08182
\(520\) 0 0
\(521\) 1.45685e9 0.451320 0.225660 0.974206i \(-0.427546\pi\)
0.225660 + 0.974206i \(0.427546\pi\)
\(522\) −6.53492e8 −0.201091
\(523\) 1.89197e9 0.578306 0.289153 0.957283i \(-0.406626\pi\)
0.289153 + 0.957283i \(0.406626\pi\)
\(524\) 7.49636e8 0.227610
\(525\) −6.06041e8 −0.182787
\(526\) −2.42920e8 −0.0727803
\(527\) 3.28633e9 0.978081
\(528\) 3.90156e7 0.0115351
\(529\) 2.72052e9 0.799020
\(530\) −1.72459e9 −0.503176
\(531\) 1.46249e9 0.423898
\(532\) −3.50883e8 −0.101035
\(533\) 0 0
\(534\) 2.60725e9 0.740948
\(535\) 3.37454e9 0.952743
\(536\) 1.98592e8 0.0557039
\(537\) 2.84345e9 0.792384
\(538\) −4.04624e9 −1.12025
\(539\) 1.19171e8 0.0327802
\(540\) −2.29888e9 −0.628257
\(541\) −1.32498e9 −0.359765 −0.179883 0.983688i \(-0.557572\pi\)
−0.179883 + 0.983688i \(0.557572\pi\)
\(542\) 2.91376e9 0.786061
\(543\) −5.57464e9 −1.49423
\(544\) −6.70650e8 −0.178608
\(545\) −5.03497e9 −1.33232
\(546\) 0 0
\(547\) 1.87811e9 0.490643 0.245321 0.969442i \(-0.421107\pi\)
0.245321 + 0.969442i \(0.421107\pi\)
\(548\) 2.39995e9 0.622975
\(549\) 1.79180e9 0.462153
\(550\) 5.08029e7 0.0130203
\(551\) 1.33898e9 0.340991
\(552\) −1.60223e9 −0.405452
\(553\) 1.30535e9 0.328238
\(554\) 9.34018e8 0.233384
\(555\) −1.97970e9 −0.491556
\(556\) −1.79877e9 −0.443828
\(557\) −1.45013e8 −0.0355560 −0.0177780 0.999842i \(-0.505659\pi\)
−0.0177780 + 0.999842i \(0.505659\pi\)
\(558\) 7.55639e8 0.184117
\(559\) 0 0
\(560\) −7.53882e8 −0.181403
\(561\) 1.94950e8 0.0466181
\(562\) −2.50047e9 −0.594216
\(563\) −4.80100e9 −1.13384 −0.566921 0.823772i \(-0.691865\pi\)
−0.566921 + 0.823772i \(0.691865\pi\)
\(564\) 3.07937e9 0.722745
\(565\) 3.03009e8 0.0706782
\(566\) −1.69020e9 −0.391814
\(567\) −1.79131e9 −0.412697
\(568\) −1.88432e9 −0.431455
\(569\) −6.37330e9 −1.45035 −0.725173 0.688567i \(-0.758240\pi\)
−0.725173 + 0.688567i \(0.758240\pi\)
\(570\) 9.98403e8 0.225810
\(571\) 3.01445e9 0.677613 0.338807 0.940856i \(-0.389977\pi\)
0.338807 + 0.940856i \(0.389977\pi\)
\(572\) 0 0
\(573\) 3.43078e9 0.761818
\(574\) −8.43498e8 −0.186163
\(575\) −2.08630e9 −0.457656
\(576\) −1.54205e8 −0.0336217
\(577\) 5.46768e9 1.18492 0.592458 0.805601i \(-0.298158\pi\)
0.592458 + 0.805601i \(0.298158\pi\)
\(578\) −6.83476e7 −0.0147223
\(579\) −9.41421e8 −0.201562
\(580\) 2.87683e9 0.612233
\(581\) −4.51202e9 −0.954454
\(582\) −4.28502e8 −0.0900994
\(583\) 1.58650e8 0.0331589
\(584\) −8.06634e8 −0.167584
\(585\) 0 0
\(586\) 5.59603e9 1.14878
\(587\) 4.11829e9 0.840395 0.420197 0.907433i \(-0.361961\pi\)
0.420197 + 0.907433i \(0.361961\pi\)
\(588\) 1.28013e9 0.259678
\(589\) −1.54827e9 −0.312208
\(590\) −6.43824e9 −1.29058
\(591\) −2.85786e9 −0.569489
\(592\) −6.26505e8 −0.124108
\(593\) 6.94912e8 0.136848 0.0684240 0.997656i \(-0.478203\pi\)
0.0684240 + 0.997656i \(0.478203\pi\)
\(594\) 2.11480e8 0.0414016
\(595\) −3.76695e9 −0.733128
\(596\) 2.93766e9 0.568381
\(597\) −8.62079e9 −1.65820
\(598\) 0 0
\(599\) 5.53945e9 1.05311 0.526554 0.850142i \(-0.323484\pi\)
0.526554 + 0.850142i \(0.323484\pi\)
\(600\) 5.45723e8 0.103144
\(601\) 1.86929e9 0.351250 0.175625 0.984457i \(-0.443805\pi\)
0.175625 + 0.984457i \(0.443805\pi\)
\(602\) −3.86683e8 −0.0722383
\(603\) 2.28166e8 0.0423780
\(604\) 3.05476e9 0.564088
\(605\) 6.28964e9 1.15473
\(606\) −6.16618e9 −1.12554
\(607\) 7.85549e9 1.42565 0.712825 0.701342i \(-0.247415\pi\)
0.712825 + 0.701342i \(0.247415\pi\)
\(608\) 3.15960e8 0.0570124
\(609\) 3.15706e9 0.566398
\(610\) −7.88794e9 −1.40705
\(611\) 0 0
\(612\) −7.70521e8 −0.135880
\(613\) −1.11128e10 −1.94855 −0.974277 0.225356i \(-0.927646\pi\)
−0.974277 + 0.225356i \(0.927646\pi\)
\(614\) −3.87327e9 −0.675287
\(615\) 2.40009e9 0.416069
\(616\) 6.93518e7 0.0119543
\(617\) 2.98964e9 0.512414 0.256207 0.966622i \(-0.417527\pi\)
0.256207 + 0.966622i \(0.417527\pi\)
\(618\) −4.93552e9 −0.841150
\(619\) −4.26716e9 −0.723138 −0.361569 0.932345i \(-0.617759\pi\)
−0.361569 + 0.932345i \(0.617759\pi\)
\(620\) −3.32651e9 −0.560555
\(621\) −8.68476e9 −1.45525
\(622\) 4.65969e9 0.776410
\(623\) 4.63449e9 0.767880
\(624\) 0 0
\(625\) −7.47550e9 −1.22479
\(626\) 4.83618e9 0.787939
\(627\) −9.18459e7 −0.0148807
\(628\) 4.55701e9 0.734212
\(629\) −3.13047e9 −0.501572
\(630\) −8.66148e8 −0.138007
\(631\) 7.15079e9 1.13306 0.566528 0.824042i \(-0.308286\pi\)
0.566528 + 0.824042i \(0.308286\pi\)
\(632\) −1.17543e9 −0.185220
\(633\) −3.57443e9 −0.560136
\(634\) −7.46049e9 −1.16267
\(635\) 2.74230e9 0.425018
\(636\) 1.70421e9 0.262678
\(637\) 0 0
\(638\) −2.64648e8 −0.0403456
\(639\) −2.16493e9 −0.328239
\(640\) 6.78849e8 0.102363
\(641\) 3.08822e9 0.463133 0.231566 0.972819i \(-0.425615\pi\)
0.231566 + 0.972819i \(0.425615\pi\)
\(642\) −3.33466e9 −0.497369
\(643\) 6.17325e9 0.915747 0.457873 0.889017i \(-0.348611\pi\)
0.457873 + 0.889017i \(0.348611\pi\)
\(644\) −2.84804e9 −0.420189
\(645\) 1.10027e9 0.161451
\(646\) 1.57876e9 0.230411
\(647\) 3.79521e9 0.550897 0.275449 0.961316i \(-0.411174\pi\)
0.275449 + 0.961316i \(0.411174\pi\)
\(648\) 1.61303e9 0.232878
\(649\) 5.92272e8 0.0850481
\(650\) 0 0
\(651\) −3.65054e9 −0.518589
\(652\) 3.98119e9 0.562531
\(653\) 1.06721e10 1.49988 0.749938 0.661508i \(-0.230083\pi\)
0.749938 + 0.661508i \(0.230083\pi\)
\(654\) 4.97548e9 0.695525
\(655\) −3.79152e9 −0.527192
\(656\) 7.59546e8 0.105049
\(657\) −9.26755e8 −0.127493
\(658\) 5.47371e9 0.749015
\(659\) −1.22821e10 −1.67176 −0.835880 0.548912i \(-0.815042\pi\)
−0.835880 + 0.548912i \(0.815042\pi\)
\(660\) −1.97334e8 −0.0267176
\(661\) 7.27345e9 0.979570 0.489785 0.871843i \(-0.337075\pi\)
0.489785 + 0.871843i \(0.337075\pi\)
\(662\) 5.46926e9 0.732699
\(663\) 0 0
\(664\) 4.06295e9 0.538583
\(665\) 1.77470e9 0.234018
\(666\) −7.19802e8 −0.0944177
\(667\) 1.08682e10 1.41813
\(668\) 1.43729e9 0.186563
\(669\) −4.29942e9 −0.555161
\(670\) −1.00444e9 −0.129022
\(671\) 7.25634e8 0.0927233
\(672\) 7.44974e8 0.0946997
\(673\) −4.86569e8 −0.0615307 −0.0307654 0.999527i \(-0.509794\pi\)
−0.0307654 + 0.999527i \(0.509794\pi\)
\(674\) −1.09094e10 −1.37244
\(675\) 2.95804e9 0.370203
\(676\) 0 0
\(677\) 4.31885e9 0.534944 0.267472 0.963566i \(-0.413812\pi\)
0.267472 + 0.963566i \(0.413812\pi\)
\(678\) −2.99428e8 −0.0368968
\(679\) −7.61679e8 −0.0933744
\(680\) 3.39203e9 0.413693
\(681\) 8.59980e9 1.04345
\(682\) 3.06015e8 0.0369401
\(683\) 7.78033e9 0.934384 0.467192 0.884156i \(-0.345266\pi\)
0.467192 + 0.884156i \(0.345266\pi\)
\(684\) 3.63011e8 0.0433734
\(685\) −1.21385e10 −1.44294
\(686\) 6.02156e9 0.712156
\(687\) 1.24838e10 1.46892
\(688\) 3.48197e8 0.0407629
\(689\) 0 0
\(690\) 8.10382e9 0.939113
\(691\) −1.52753e10 −1.76123 −0.880614 0.473834i \(-0.842870\pi\)
−0.880614 + 0.473834i \(0.842870\pi\)
\(692\) 5.51481e9 0.632643
\(693\) 7.96795e7 0.00909453
\(694\) 1.45135e9 0.164822
\(695\) 9.09787e9 1.02800
\(696\) −2.84284e9 −0.319610
\(697\) 3.79525e9 0.424546
\(698\) 3.57578e9 0.397994
\(699\) 1.05052e10 1.16342
\(700\) 9.70044e8 0.106893
\(701\) −1.39687e9 −0.153159 −0.0765794 0.997063i \(-0.524400\pi\)
−0.0765794 + 0.997063i \(0.524400\pi\)
\(702\) 0 0
\(703\) 1.47484e9 0.160104
\(704\) −6.24493e7 −0.00674564
\(705\) −1.55749e10 −1.67403
\(706\) −9.69853e8 −0.103726
\(707\) −1.09606e10 −1.16645
\(708\) 6.36216e9 0.673734
\(709\) −1.39372e9 −0.146863 −0.0734315 0.997300i \(-0.523395\pi\)
−0.0734315 + 0.997300i \(0.523395\pi\)
\(710\) 9.53055e9 0.999341
\(711\) −1.35047e9 −0.140910
\(712\) −4.17322e9 −0.433303
\(713\) −1.25670e10 −1.29843
\(714\) 3.72243e9 0.382722
\(715\) 0 0
\(716\) −4.55129e9 −0.463382
\(717\) 3.47099e9 0.351671
\(718\) 1.47780e9 0.148997
\(719\) −8.13847e9 −0.816566 −0.408283 0.912855i \(-0.633872\pi\)
−0.408283 + 0.912855i \(0.633872\pi\)
\(720\) 7.79942e8 0.0778750
\(721\) −8.77308e9 −0.871724
\(722\) 6.40718e9 0.633558
\(723\) −8.49972e9 −0.836413
\(724\) 8.92289e9 0.873817
\(725\) −3.70171e9 −0.360761
\(726\) −6.21531e9 −0.602816
\(727\) −9.98246e9 −0.963534 −0.481767 0.876299i \(-0.660005\pi\)
−0.481767 + 0.876299i \(0.660005\pi\)
\(728\) 0 0
\(729\) 1.15568e10 1.10482
\(730\) 4.07981e9 0.388159
\(731\) 1.73985e9 0.164740
\(732\) 7.79473e9 0.734534
\(733\) 6.61890e9 0.620758 0.310379 0.950613i \(-0.399544\pi\)
0.310379 + 0.950613i \(0.399544\pi\)
\(734\) −7.12555e9 −0.665093
\(735\) −6.47468e9 −0.601469
\(736\) 2.56457e9 0.237106
\(737\) 9.24017e7 0.00850245
\(738\) 8.72655e8 0.0799182
\(739\) −4.04220e9 −0.368436 −0.184218 0.982885i \(-0.558975\pi\)
−0.184218 + 0.982885i \(0.558975\pi\)
\(740\) 3.16875e9 0.287459
\(741\) 0 0
\(742\) 3.02930e9 0.272226
\(743\) 1.02577e10 0.917461 0.458730 0.888576i \(-0.348304\pi\)
0.458730 + 0.888576i \(0.348304\pi\)
\(744\) 3.28720e9 0.292632
\(745\) −1.48582e10 −1.31649
\(746\) −3.54123e9 −0.312297
\(747\) 4.66799e9 0.409740
\(748\) −3.12042e8 −0.0272620
\(749\) −5.92749e9 −0.515448
\(750\) 5.32919e9 0.461261
\(751\) 1.65159e10 1.42286 0.711431 0.702756i \(-0.248048\pi\)
0.711431 + 0.702756i \(0.248048\pi\)
\(752\) −4.92891e9 −0.422658
\(753\) 4.76762e9 0.406930
\(754\) 0 0
\(755\) −1.54504e10 −1.30655
\(756\) 4.03806e9 0.339896
\(757\) 3.47806e9 0.291408 0.145704 0.989328i \(-0.453455\pi\)
0.145704 + 0.989328i \(0.453455\pi\)
\(758\) −1.18968e10 −0.992178
\(759\) −7.45493e8 −0.0618867
\(760\) −1.59807e9 −0.132053
\(761\) 1.49264e10 1.22775 0.613873 0.789404i \(-0.289611\pi\)
0.613873 + 0.789404i \(0.289611\pi\)
\(762\) −2.70990e9 −0.221876
\(763\) 8.84411e9 0.720806
\(764\) −5.49138e9 −0.445507
\(765\) 3.89716e9 0.314726
\(766\) −7.14831e9 −0.574649
\(767\) 0 0
\(768\) −6.70827e8 −0.0534375
\(769\) 9.17109e9 0.727242 0.363621 0.931547i \(-0.381540\pi\)
0.363621 + 0.931547i \(0.381540\pi\)
\(770\) −3.50769e8 −0.0276888
\(771\) 1.37780e10 1.08267
\(772\) 1.50686e9 0.117872
\(773\) −5.28554e8 −0.0411587 −0.0205793 0.999788i \(-0.506551\pi\)
−0.0205793 + 0.999788i \(0.506551\pi\)
\(774\) 4.00050e8 0.0310113
\(775\) 4.28033e9 0.330310
\(776\) 6.85870e8 0.0526897
\(777\) 3.47741e9 0.265939
\(778\) 4.78456e9 0.364261
\(779\) −1.78803e9 −0.135517
\(780\) 0 0
\(781\) −8.76743e8 −0.0658557
\(782\) 1.28145e10 0.958247
\(783\) −1.54093e10 −1.14714
\(784\) −2.04901e9 −0.151858
\(785\) −2.30485e10 −1.70059
\(786\) 3.74672e9 0.275215
\(787\) −4.23714e9 −0.309857 −0.154928 0.987926i \(-0.549515\pi\)
−0.154928 + 0.987926i \(0.549515\pi\)
\(788\) 4.57436e9 0.333034
\(789\) −1.21413e9 −0.0880025
\(790\) 5.94511e9 0.429008
\(791\) −5.32245e8 −0.0382379
\(792\) −7.17491e7 −0.00513190
\(793\) 0 0
\(794\) 1.63369e10 1.15824
\(795\) −8.61959e9 −0.608418
\(796\) 1.37986e10 0.969706
\(797\) −8.78818e9 −0.614886 −0.307443 0.951566i \(-0.599473\pi\)
−0.307443 + 0.951566i \(0.599473\pi\)
\(798\) −1.75373e9 −0.122167
\(799\) −2.46285e10 −1.70814
\(800\) −8.73496e8 −0.0603179
\(801\) −4.79469e9 −0.329645
\(802\) 1.30065e10 0.890325
\(803\) −3.75313e8 −0.0255793
\(804\) 9.92575e8 0.0673546
\(805\) 1.44049e10 0.973248
\(806\) 0 0
\(807\) −2.02233e10 −1.35455
\(808\) 9.86973e9 0.658212
\(809\) −1.41351e10 −0.938597 −0.469299 0.883039i \(-0.655493\pi\)
−0.469299 + 0.883039i \(0.655493\pi\)
\(810\) −8.15840e9 −0.539395
\(811\) 2.03802e10 1.34164 0.670818 0.741622i \(-0.265943\pi\)
0.670818 + 0.741622i \(0.265943\pi\)
\(812\) −5.05326e9 −0.331227
\(813\) 1.45631e10 0.950468
\(814\) −2.91502e8 −0.0189433
\(815\) −2.01361e10 −1.30294
\(816\) −3.35194e9 −0.215964
\(817\) −8.19684e8 −0.0525859
\(818\) 5.65791e8 0.0361426
\(819\) 0 0
\(820\) −3.84164e9 −0.243315
\(821\) −1.35670e10 −0.855622 −0.427811 0.903868i \(-0.640715\pi\)
−0.427811 + 0.903868i \(0.640715\pi\)
\(822\) 1.19951e10 0.753272
\(823\) −1.39571e10 −0.872764 −0.436382 0.899761i \(-0.643740\pi\)
−0.436382 + 0.899761i \(0.643740\pi\)
\(824\) 7.89991e9 0.491900
\(825\) 2.53916e8 0.0157435
\(826\) 1.13090e10 0.698222
\(827\) −3.26790e9 −0.200909 −0.100454 0.994942i \(-0.532030\pi\)
−0.100454 + 0.994942i \(0.532030\pi\)
\(828\) 2.94648e9 0.180384
\(829\) 1.24986e10 0.761938 0.380969 0.924588i \(-0.375590\pi\)
0.380969 + 0.924588i \(0.375590\pi\)
\(830\) −2.05497e10 −1.24747
\(831\) 4.66827e9 0.282197
\(832\) 0 0
\(833\) −1.02384e10 −0.613724
\(834\) −8.99037e9 −0.536656
\(835\) −7.26955e9 −0.432120
\(836\) 1.47011e8 0.00870216
\(837\) 1.78180e10 1.05031
\(838\) −1.21423e10 −0.712764
\(839\) −1.91725e10 −1.12076 −0.560378 0.828237i \(-0.689344\pi\)
−0.560378 + 0.828237i \(0.689344\pi\)
\(840\) −3.76794e9 −0.219345
\(841\) 2.03349e9 0.117884
\(842\) 4.98404e9 0.287733
\(843\) −1.24975e10 −0.718499
\(844\) 5.72132e9 0.327565
\(845\) 0 0
\(846\) −5.66291e9 −0.321546
\(847\) −1.10480e10 −0.624727
\(848\) −2.72780e9 −0.153613
\(849\) −8.44770e9 −0.473763
\(850\) −4.36463e9 −0.243770
\(851\) 1.19710e10 0.665850
\(852\) −9.41793e9 −0.521695
\(853\) −8.67539e9 −0.478594 −0.239297 0.970946i \(-0.576917\pi\)
−0.239297 + 0.970946i \(0.576917\pi\)
\(854\) 1.38554e10 0.761233
\(855\) −1.83605e9 −0.100462
\(856\) 5.33753e9 0.290859
\(857\) 4.53758e9 0.246258 0.123129 0.992391i \(-0.460707\pi\)
0.123129 + 0.992391i \(0.460707\pi\)
\(858\) 0 0
\(859\) −6.82340e9 −0.367303 −0.183651 0.982991i \(-0.558792\pi\)
−0.183651 + 0.982991i \(0.558792\pi\)
\(860\) −1.76112e9 −0.0944156
\(861\) −4.21585e9 −0.225099
\(862\) 6.38904e9 0.339750
\(863\) 1.16020e10 0.614463 0.307231 0.951635i \(-0.400597\pi\)
0.307231 + 0.951635i \(0.400597\pi\)
\(864\) −3.63615e9 −0.191798
\(865\) −2.78929e10 −1.46534
\(866\) 8.52177e9 0.445879
\(867\) −3.41605e8 −0.0178015
\(868\) 5.84314e9 0.303268
\(869\) −5.46908e8 −0.0282713
\(870\) 1.43786e10 0.740284
\(871\) 0 0
\(872\) −7.96386e9 −0.406739
\(873\) 7.88008e8 0.0400849
\(874\) −6.03722e9 −0.305877
\(875\) 9.47286e9 0.478027
\(876\) −4.03160e9 −0.202634
\(877\) −1.78415e10 −0.893165 −0.446583 0.894742i \(-0.647359\pi\)
−0.446583 + 0.894742i \(0.647359\pi\)
\(878\) −2.23408e10 −1.11395
\(879\) 2.79693e10 1.38906
\(880\) 3.15857e8 0.0156243
\(881\) 3.03345e9 0.149459 0.0747294 0.997204i \(-0.476191\pi\)
0.0747294 + 0.997204i \(0.476191\pi\)
\(882\) −2.35414e9 −0.115530
\(883\) −3.29743e9 −0.161181 −0.0805904 0.996747i \(-0.525681\pi\)
−0.0805904 + 0.996747i \(0.525681\pi\)
\(884\) 0 0
\(885\) −3.21787e10 −1.56051
\(886\) −1.09691e10 −0.529851
\(887\) 2.43031e10 1.16931 0.584654 0.811283i \(-0.301230\pi\)
0.584654 + 0.811283i \(0.301230\pi\)
\(888\) −3.13130e9 −0.150065
\(889\) −4.81695e9 −0.229941
\(890\) 2.11074e10 1.00362
\(891\) 7.50515e8 0.0355457
\(892\) 6.88176e9 0.324655
\(893\) 1.16031e10 0.545246
\(894\) 1.46826e10 0.687260
\(895\) 2.30196e10 1.07329
\(896\) −1.19242e9 −0.0553799
\(897\) 0 0
\(898\) 6.88297e9 0.317182
\(899\) −2.22976e10 −1.02352
\(900\) −1.00358e9 −0.0458882
\(901\) −1.36301e10 −0.620814
\(902\) 3.53404e8 0.0160342
\(903\) −1.93266e9 −0.0873472
\(904\) 4.79271e8 0.0215770
\(905\) −4.51304e10 −2.02395
\(906\) 1.52678e10 0.682069
\(907\) 8.88142e9 0.395236 0.197618 0.980279i \(-0.436679\pi\)
0.197618 + 0.980279i \(0.436679\pi\)
\(908\) −1.37650e10 −0.610207
\(909\) 1.13395e10 0.500750
\(910\) 0 0
\(911\) −1.00948e10 −0.442369 −0.221184 0.975232i \(-0.570992\pi\)
−0.221184 + 0.975232i \(0.570992\pi\)
\(912\) 1.57918e9 0.0689367
\(913\) 1.89042e9 0.0822074
\(914\) 6.45487e9 0.279625
\(915\) −3.94243e10 −1.70134
\(916\) −1.99818e10 −0.859016
\(917\) 6.65994e9 0.285219
\(918\) −1.81689e10 −0.775138
\(919\) 2.63373e10 1.11935 0.559675 0.828712i \(-0.310926\pi\)
0.559675 + 0.828712i \(0.310926\pi\)
\(920\) −1.29712e10 −0.549188
\(921\) −1.93588e10 −0.816526
\(922\) 1.20712e9 0.0507213
\(923\) 0 0
\(924\) 3.46624e8 0.0144546
\(925\) −4.07733e9 −0.169387
\(926\) −2.02059e10 −0.836259
\(927\) 9.07634e9 0.374224
\(928\) 4.55031e9 0.186906
\(929\) 2.21833e10 0.907762 0.453881 0.891062i \(-0.350039\pi\)
0.453881 + 0.891062i \(0.350039\pi\)
\(930\) −1.66261e10 −0.677797
\(931\) 4.82354e9 0.195903
\(932\) −1.68149e10 −0.680360
\(933\) 2.32894e10 0.938799
\(934\) −2.15103e10 −0.863839
\(935\) 1.57825e9 0.0631446
\(936\) 0 0
\(937\) −1.31025e10 −0.520313 −0.260156 0.965566i \(-0.583774\pi\)
−0.260156 + 0.965566i \(0.583774\pi\)
\(938\) 1.76434e9 0.0698028
\(939\) 2.41715e10 0.952739
\(940\) 2.49296e10 0.978965
\(941\) 3.23092e9 0.126404 0.0632022 0.998001i \(-0.479869\pi\)
0.0632022 + 0.998001i \(0.479869\pi\)
\(942\) 2.27762e10 0.887774
\(943\) −1.45131e10 −0.563597
\(944\) −1.01834e10 −0.393996
\(945\) −2.04238e10 −0.787272
\(946\) 1.62010e8 0.00622191
\(947\) −4.41273e10 −1.68843 −0.844214 0.536007i \(-0.819932\pi\)
−0.844214 + 0.536007i \(0.819932\pi\)
\(948\) −5.87486e9 −0.223959
\(949\) 0 0
\(950\) 2.05628e9 0.0778126
\(951\) −3.72879e10 −1.40584
\(952\) −5.95821e9 −0.223814
\(953\) −2.04661e10 −0.765967 −0.382984 0.923755i \(-0.625103\pi\)
−0.382984 + 0.923755i \(0.625103\pi\)
\(954\) −3.13402e9 −0.116864
\(955\) 2.77744e10 1.03189
\(956\) −5.55575e9 −0.205656
\(957\) −1.32273e9 −0.0487841
\(958\) −2.10068e9 −0.0771935
\(959\) 2.13217e10 0.780652
\(960\) 3.39292e9 0.123773
\(961\) −1.72972e9 −0.0628700
\(962\) 0 0
\(963\) 6.13239e9 0.221278
\(964\) 1.36049e10 0.489130
\(965\) −7.62142e9 −0.273018
\(966\) −1.42346e10 −0.508073
\(967\) 4.43495e10 1.57723 0.788617 0.614885i \(-0.210798\pi\)
0.788617 + 0.614885i \(0.210798\pi\)
\(968\) 9.94837e9 0.352524
\(969\) 7.89075e9 0.278603
\(970\) −3.46901e9 −0.122040
\(971\) −6.87519e9 −0.241000 −0.120500 0.992713i \(-0.538450\pi\)
−0.120500 + 0.992713i \(0.538450\pi\)
\(972\) −7.46978e9 −0.260901
\(973\) −1.59807e10 −0.556163
\(974\) −1.81236e10 −0.628474
\(975\) 0 0
\(976\) −1.24764e10 −0.429552
\(977\) 5.33603e10 1.83057 0.915286 0.402803i \(-0.131964\pi\)
0.915286 + 0.402803i \(0.131964\pi\)
\(978\) 1.98982e10 0.680186
\(979\) −1.94173e9 −0.0661378
\(980\) 1.03635e10 0.351736
\(981\) −9.14982e9 −0.309436
\(982\) −2.21422e10 −0.746157
\(983\) 3.38459e10 1.13650 0.568249 0.822857i \(-0.307621\pi\)
0.568249 + 0.822857i \(0.307621\pi\)
\(984\) 3.79625e9 0.127020
\(985\) −2.31363e10 −0.771377
\(986\) 2.27367e10 0.755367
\(987\) 2.73579e10 0.905675
\(988\) 0 0
\(989\) −6.65320e9 −0.218697
\(990\) 3.62894e8 0.0118866
\(991\) 9.43799e9 0.308051 0.154025 0.988067i \(-0.450776\pi\)
0.154025 + 0.988067i \(0.450776\pi\)
\(992\) −5.26158e9 −0.171130
\(993\) 2.73356e10 0.885945
\(994\) −1.67408e10 −0.540658
\(995\) −6.97910e10 −2.24605
\(996\) 2.03068e10 0.651230
\(997\) −3.40792e9 −0.108907 −0.0544536 0.998516i \(-0.517342\pi\)
−0.0544536 + 0.998516i \(0.517342\pi\)
\(998\) −1.07043e10 −0.340880
\(999\) −1.69729e10 −0.538614
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.a.i.1.2 4
13.3 even 3 26.8.c.b.9.3 yes 8
13.5 odd 4 338.8.b.h.337.6 8
13.8 odd 4 338.8.b.h.337.2 8
13.9 even 3 26.8.c.b.3.3 8
13.12 even 2 338.8.a.j.1.2 4
39.29 odd 6 234.8.h.b.217.4 8
39.35 odd 6 234.8.h.b.55.4 8
52.3 odd 6 208.8.i.b.113.2 8
52.35 odd 6 208.8.i.b.81.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.c.b.3.3 8 13.9 even 3
26.8.c.b.9.3 yes 8 13.3 even 3
208.8.i.b.81.2 8 52.35 odd 6
208.8.i.b.113.2 8 52.3 odd 6
234.8.h.b.55.4 8 39.35 odd 6
234.8.h.b.217.4 8 39.29 odd 6
338.8.a.i.1.2 4 1.1 even 1 trivial
338.8.a.j.1.2 4 13.12 even 2
338.8.b.h.337.2 8 13.8 odd 4
338.8.b.h.337.6 8 13.5 odd 4