Properties

Label 338.8.a.i.1.1
Level $338$
Weight $8$
Character 338.1
Self dual yes
Analytic conductor $105.586$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6981x^{2} - 35424x + 7188480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-71.1584\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -71.1584 q^{3} +64.0000 q^{4} +523.489 q^{5} +569.267 q^{6} -416.801 q^{7} -512.000 q^{8} +2876.52 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} -71.1584 q^{3} +64.0000 q^{4} +523.489 q^{5} +569.267 q^{6} -416.801 q^{7} -512.000 q^{8} +2876.52 q^{9} -4187.91 q^{10} +3422.78 q^{11} -4554.14 q^{12} +3334.41 q^{14} -37250.7 q^{15} +4096.00 q^{16} -6538.04 q^{17} -23012.2 q^{18} +27980.5 q^{19} +33503.3 q^{20} +29658.9 q^{21} -27382.2 q^{22} +106178. q^{23} +36433.1 q^{24} +195916. q^{25} -49065.2 q^{27} -26675.3 q^{28} +68546.0 q^{29} +298005. q^{30} +51572.8 q^{31} -32768.0 q^{32} -243560. q^{33} +52304.3 q^{34} -218191. q^{35} +184097. q^{36} +48135.4 q^{37} -223844. q^{38} -268026. q^{40} -602098. q^{41} -237271. q^{42} +916252. q^{43} +219058. q^{44} +1.50583e6 q^{45} -849424. q^{46} -326201. q^{47} -291465. q^{48} -649820. q^{49} -1.56733e6 q^{50} +465237. q^{51} +934068. q^{53} +392522. q^{54} +1.79179e6 q^{55} +213402. q^{56} -1.99105e6 q^{57} -548368. q^{58} +1.17443e6 q^{59} -2.38404e6 q^{60} -2.89090e6 q^{61} -412582. q^{62} -1.19894e6 q^{63} +262144. q^{64} +1.94848e6 q^{66} +318158. q^{67} -418435. q^{68} -7.55546e6 q^{69} +1.74553e6 q^{70} +1.28374e6 q^{71} -1.47278e6 q^{72} -1.67209e6 q^{73} -385083. q^{74} -1.39411e7 q^{75} +1.79075e6 q^{76} -1.42662e6 q^{77} -8.09160e6 q^{79} +2.14421e6 q^{80} -2.79955e6 q^{81} +4.81678e6 q^{82} +5.57141e6 q^{83} +1.89817e6 q^{84} -3.42260e6 q^{85} -7.33001e6 q^{86} -4.87762e6 q^{87} -1.75246e6 q^{88} +7.87572e6 q^{89} -1.20466e7 q^{90} +6.79540e6 q^{92} -3.66984e6 q^{93} +2.60961e6 q^{94} +1.46475e7 q^{95} +2.33172e6 q^{96} -6.80847e6 q^{97} +5.19856e6 q^{98} +9.84569e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} + 278 q^{5} + 548 q^{7} - 2048 q^{8} + 5214 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 32 q^{2} + 256 q^{4} + 278 q^{5} + 548 q^{7} - 2048 q^{8} + 5214 q^{9} - 2224 q^{10} + 7392 q^{11} - 4384 q^{14} - 15528 q^{15} + 16384 q^{16} - 28316 q^{17} - 41712 q^{18} + 99888 q^{19} + 17792 q^{20} + 91074 q^{21} - 59136 q^{22} + 33388 q^{23} + 86878 q^{25} + 106272 q^{27} + 35072 q^{28} - 93140 q^{29} + 124224 q^{30} + 311160 q^{31} - 131072 q^{32} - 238638 q^{33} + 226528 q^{34} - 141544 q^{35} + 333696 q^{36} + 9636 q^{37} - 799104 q^{38} - 142336 q^{40} - 82892 q^{41} - 728592 q^{42} + 569264 q^{43} + 473088 q^{44} + 2303394 q^{45} - 267104 q^{46} - 574200 q^{47} + 717798 q^{49} - 695024 q^{50} - 2729928 q^{51} + 1235350 q^{53} - 850176 q^{54} + 1092512 q^{55} - 280576 q^{56} + 3528462 q^{57} + 745120 q^{58} - 231504 q^{59} - 993792 q^{60} - 685684 q^{61} - 2489280 q^{62} + 5951712 q^{63} + 1048576 q^{64} + 1909104 q^{66} - 3271056 q^{67} - 1812224 q^{68} - 5600034 q^{69} + 1132352 q^{70} + 175012 q^{71} - 2669568 q^{72} + 7137890 q^{73} - 77088 q^{74} - 22200960 q^{75} + 6392832 q^{76} - 13915206 q^{77} - 7053952 q^{79} + 1138688 q^{80} - 3758004 q^{81} + 663136 q^{82} + 657288 q^{83} + 5828736 q^{84} - 11814998 q^{85} - 4554112 q^{86} + 7182900 q^{87} - 3784704 q^{88} + 11452234 q^{89} - 18427152 q^{90} + 2136832 q^{92} - 2984688 q^{93} + 4593600 q^{94} + 23334088 q^{95} + 428002 q^{97} - 5742384 q^{98} - 10357656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −71.1584 −1.52160 −0.760802 0.648984i \(-0.775194\pi\)
−0.760802 + 0.648984i \(0.775194\pi\)
\(4\) 64.0000 0.500000
\(5\) 523.489 1.87289 0.936446 0.350812i \(-0.114094\pi\)
0.936446 + 0.350812i \(0.114094\pi\)
\(6\) 569.267 1.07594
\(7\) −416.801 −0.459289 −0.229644 0.973275i \(-0.573756\pi\)
−0.229644 + 0.973275i \(0.573756\pi\)
\(8\) −512.000 −0.353553
\(9\) 2876.52 1.31528
\(10\) −4187.91 −1.32433
\(11\) 3422.78 0.775362 0.387681 0.921794i \(-0.373276\pi\)
0.387681 + 0.921794i \(0.373276\pi\)
\(12\) −4554.14 −0.760802
\(13\) 0 0
\(14\) 3334.41 0.324766
\(15\) −37250.7 −2.84980
\(16\) 4096.00 0.250000
\(17\) −6538.04 −0.322758 −0.161379 0.986893i \(-0.551594\pi\)
−0.161379 + 0.986893i \(0.551594\pi\)
\(18\) −23012.2 −0.930045
\(19\) 27980.5 0.935875 0.467937 0.883762i \(-0.344997\pi\)
0.467937 + 0.883762i \(0.344997\pi\)
\(20\) 33503.3 0.936446
\(21\) 29658.9 0.698856
\(22\) −27382.2 −0.548264
\(23\) 106178. 1.81965 0.909824 0.414995i \(-0.136217\pi\)
0.909824 + 0.414995i \(0.136217\pi\)
\(24\) 36433.1 0.537969
\(25\) 195916. 2.50772
\(26\) 0 0
\(27\) −49065.2 −0.479734
\(28\) −26675.3 −0.229644
\(29\) 68546.0 0.521902 0.260951 0.965352i \(-0.415964\pi\)
0.260951 + 0.965352i \(0.415964\pi\)
\(30\) 298005. 2.01511
\(31\) 51572.8 0.310924 0.155462 0.987842i \(-0.450313\pi\)
0.155462 + 0.987842i \(0.450313\pi\)
\(32\) −32768.0 −0.176777
\(33\) −243560. −1.17979
\(34\) 52304.3 0.228224
\(35\) −218191. −0.860198
\(36\) 184097. 0.657641
\(37\) 48135.4 0.156228 0.0781140 0.996944i \(-0.475110\pi\)
0.0781140 + 0.996944i \(0.475110\pi\)
\(38\) −223844. −0.661763
\(39\) 0 0
\(40\) −268026. −0.662167
\(41\) −602098. −1.36434 −0.682172 0.731192i \(-0.738964\pi\)
−0.682172 + 0.731192i \(0.738964\pi\)
\(42\) −237271. −0.494166
\(43\) 916252. 1.75742 0.878709 0.477357i \(-0.158405\pi\)
0.878709 + 0.477357i \(0.158405\pi\)
\(44\) 219058. 0.387681
\(45\) 1.50583e6 2.46338
\(46\) −849424. −1.28669
\(47\) −326201. −0.458293 −0.229146 0.973392i \(-0.573593\pi\)
−0.229146 + 0.973392i \(0.573593\pi\)
\(48\) −291465. −0.380401
\(49\) −649820. −0.789054
\(50\) −1.56733e6 −1.77323
\(51\) 465237. 0.491110
\(52\) 0 0
\(53\) 934068. 0.861813 0.430907 0.902397i \(-0.358194\pi\)
0.430907 + 0.902397i \(0.358194\pi\)
\(54\) 392522. 0.339223
\(55\) 1.79179e6 1.45217
\(56\) 213402. 0.162383
\(57\) −1.99105e6 −1.42403
\(58\) −548368. −0.369040
\(59\) 1.17443e6 0.744469 0.372235 0.928139i \(-0.378592\pi\)
0.372235 + 0.928139i \(0.378592\pi\)
\(60\) −2.38404e6 −1.42490
\(61\) −2.89090e6 −1.63072 −0.815358 0.578957i \(-0.803460\pi\)
−0.815358 + 0.578957i \(0.803460\pi\)
\(62\) −412582. −0.219857
\(63\) −1.19894e6 −0.604094
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 1.94848e6 0.834241
\(67\) 318158. 0.129235 0.0646176 0.997910i \(-0.479417\pi\)
0.0646176 + 0.997910i \(0.479417\pi\)
\(68\) −418435. −0.161379
\(69\) −7.55546e6 −2.76878
\(70\) 1.74553e6 0.608252
\(71\) 1.28374e6 0.425669 0.212834 0.977088i \(-0.431730\pi\)
0.212834 + 0.977088i \(0.431730\pi\)
\(72\) −1.47278e6 −0.465022
\(73\) −1.67209e6 −0.503070 −0.251535 0.967848i \(-0.580935\pi\)
−0.251535 + 0.967848i \(0.580935\pi\)
\(74\) −385083. −0.110470
\(75\) −1.39411e7 −3.81577
\(76\) 1.79075e6 0.467937
\(77\) −1.42662e6 −0.356115
\(78\) 0 0
\(79\) −8.09160e6 −1.84646 −0.923229 0.384250i \(-0.874460\pi\)
−0.923229 + 0.384250i \(0.874460\pi\)
\(80\) 2.14421e6 0.468223
\(81\) −2.79955e6 −0.585316
\(82\) 4.81678e6 0.964736
\(83\) 5.57141e6 1.06953 0.534764 0.845002i \(-0.320401\pi\)
0.534764 + 0.845002i \(0.320401\pi\)
\(84\) 1.89817e6 0.349428
\(85\) −3.42260e6 −0.604490
\(86\) −7.33001e6 −1.24268
\(87\) −4.87762e6 −0.794129
\(88\) −1.75246e6 −0.274132
\(89\) 7.87572e6 1.18420 0.592100 0.805864i \(-0.298299\pi\)
0.592100 + 0.805864i \(0.298299\pi\)
\(90\) −1.20466e7 −1.74187
\(91\) 0 0
\(92\) 6.79540e6 0.909824
\(93\) −3.66984e6 −0.473104
\(94\) 2.60961e6 0.324062
\(95\) 1.46475e7 1.75279
\(96\) 2.33172e6 0.268984
\(97\) −6.80847e6 −0.757441 −0.378720 0.925511i \(-0.623636\pi\)
−0.378720 + 0.925511i \(0.623636\pi\)
\(98\) 5.19856e6 0.557945
\(99\) 9.84569e6 1.01982
\(100\) 1.25386e7 1.25386
\(101\) 1.61012e6 0.155501 0.0777506 0.996973i \(-0.475226\pi\)
0.0777506 + 0.996973i \(0.475226\pi\)
\(102\) −3.72189e6 −0.347267
\(103\) 4.93664e6 0.445145 0.222572 0.974916i \(-0.428555\pi\)
0.222572 + 0.974916i \(0.428555\pi\)
\(104\) 0 0
\(105\) 1.55261e7 1.30888
\(106\) −7.47255e6 −0.609394
\(107\) −1.22703e7 −0.968304 −0.484152 0.874984i \(-0.660872\pi\)
−0.484152 + 0.874984i \(0.660872\pi\)
\(108\) −3.14017e6 −0.239867
\(109\) −1.65278e7 −1.22243 −0.611213 0.791467i \(-0.709318\pi\)
−0.611213 + 0.791467i \(0.709318\pi\)
\(110\) −1.43343e7 −1.02684
\(111\) −3.42524e6 −0.237717
\(112\) −1.70722e6 −0.114822
\(113\) 1.32876e7 0.866307 0.433154 0.901320i \(-0.357401\pi\)
0.433154 + 0.901320i \(0.357401\pi\)
\(114\) 1.59284e7 1.00694
\(115\) 5.55831e7 3.40800
\(116\) 4.38694e6 0.260951
\(117\) 0 0
\(118\) −9.39547e6 −0.526419
\(119\) 2.72506e6 0.148239
\(120\) 1.90723e7 1.00756
\(121\) −7.77175e6 −0.398814
\(122\) 2.31272e7 1.15309
\(123\) 4.28443e7 2.07599
\(124\) 3.30066e6 0.155462
\(125\) 6.16623e7 2.82381
\(126\) 9.59150e6 0.427159
\(127\) 2.72872e6 0.118208 0.0591040 0.998252i \(-0.481176\pi\)
0.0591040 + 0.998252i \(0.481176\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −6.51990e7 −2.67410
\(130\) 0 0
\(131\) 1.96041e7 0.761898 0.380949 0.924596i \(-0.375597\pi\)
0.380949 + 0.924596i \(0.375597\pi\)
\(132\) −1.55878e7 −0.589897
\(133\) −1.16623e7 −0.429837
\(134\) −2.54526e6 −0.0913831
\(135\) −2.56851e7 −0.898490
\(136\) 3.34748e6 0.114112
\(137\) 652397. 0.0216765 0.0108383 0.999941i \(-0.496550\pi\)
0.0108383 + 0.999941i \(0.496550\pi\)
\(138\) 6.04437e7 1.95783
\(139\) 9.21661e6 0.291085 0.145542 0.989352i \(-0.453507\pi\)
0.145542 + 0.989352i \(0.453507\pi\)
\(140\) −1.39642e7 −0.430099
\(141\) 2.32120e7 0.697341
\(142\) −1.02699e7 −0.300993
\(143\) 0 0
\(144\) 1.17822e7 0.328820
\(145\) 3.58831e7 0.977466
\(146\) 1.33767e7 0.355724
\(147\) 4.62401e7 1.20063
\(148\) 3.08067e6 0.0781140
\(149\) −2.44462e6 −0.0605424 −0.0302712 0.999542i \(-0.509637\pi\)
−0.0302712 + 0.999542i \(0.509637\pi\)
\(150\) 1.11529e8 2.69815
\(151\) −2.73196e7 −0.645736 −0.322868 0.946444i \(-0.604647\pi\)
−0.322868 + 0.946444i \(0.604647\pi\)
\(152\) −1.43260e7 −0.330882
\(153\) −1.88068e7 −0.424517
\(154\) 1.14129e7 0.251811
\(155\) 2.69978e7 0.582328
\(156\) 0 0
\(157\) 5.54490e7 1.14352 0.571761 0.820420i \(-0.306260\pi\)
0.571761 + 0.820420i \(0.306260\pi\)
\(158\) 6.47328e7 1.30564
\(159\) −6.64668e7 −1.31134
\(160\) −1.71537e7 −0.331084
\(161\) −4.42551e7 −0.835744
\(162\) 2.23964e7 0.413881
\(163\) 3.20013e7 0.578777 0.289388 0.957212i \(-0.406548\pi\)
0.289388 + 0.957212i \(0.406548\pi\)
\(164\) −3.85343e7 −0.682172
\(165\) −1.27501e8 −2.20963
\(166\) −4.45713e7 −0.756270
\(167\) −1.93461e7 −0.321429 −0.160715 0.987001i \(-0.551380\pi\)
−0.160715 + 0.987001i \(0.551380\pi\)
\(168\) −1.51854e7 −0.247083
\(169\) 0 0
\(170\) 2.73808e7 0.427439
\(171\) 8.04865e7 1.23094
\(172\) 5.86401e7 0.878709
\(173\) 4.13749e7 0.607540 0.303770 0.952745i \(-0.401754\pi\)
0.303770 + 0.952745i \(0.401754\pi\)
\(174\) 3.90210e7 0.561534
\(175\) −8.16580e7 −1.15177
\(176\) 1.40197e7 0.193840
\(177\) −8.35709e7 −1.13279
\(178\) −6.30058e7 −0.837356
\(179\) −3.22877e7 −0.420776 −0.210388 0.977618i \(-0.567473\pi\)
−0.210388 + 0.977618i \(0.567473\pi\)
\(180\) 9.63730e7 1.23169
\(181\) −8.08975e7 −1.01405 −0.507026 0.861931i \(-0.669255\pi\)
−0.507026 + 0.861931i \(0.669255\pi\)
\(182\) 0 0
\(183\) 2.05712e8 2.48130
\(184\) −5.43632e7 −0.643343
\(185\) 2.51984e7 0.292598
\(186\) 2.93587e7 0.334535
\(187\) −2.23783e7 −0.250254
\(188\) −2.08769e7 −0.229146
\(189\) 2.04504e7 0.220336
\(190\) −1.17180e8 −1.23941
\(191\) −1.36342e7 −0.141584 −0.0707919 0.997491i \(-0.522553\pi\)
−0.0707919 + 0.997491i \(0.522553\pi\)
\(192\) −1.86538e7 −0.190201
\(193\) 1.73244e7 0.173463 0.0867316 0.996232i \(-0.472358\pi\)
0.0867316 + 0.996232i \(0.472358\pi\)
\(194\) 5.44678e7 0.535591
\(195\) 0 0
\(196\) −4.15885e7 −0.394527
\(197\) 6.23747e7 0.581269 0.290634 0.956834i \(-0.406134\pi\)
0.290634 + 0.956834i \(0.406134\pi\)
\(198\) −7.87656e7 −0.721121
\(199\) −2.41707e6 −0.0217422 −0.0108711 0.999941i \(-0.503460\pi\)
−0.0108711 + 0.999941i \(0.503460\pi\)
\(200\) −1.00309e8 −0.886615
\(201\) −2.26396e7 −0.196645
\(202\) −1.28810e7 −0.109956
\(203\) −2.85700e7 −0.239704
\(204\) 2.97752e7 0.245555
\(205\) −3.15192e8 −2.55527
\(206\) −3.94931e7 −0.314765
\(207\) 3.05423e8 2.39335
\(208\) 0 0
\(209\) 9.57711e7 0.725642
\(210\) −1.24209e8 −0.925519
\(211\) 9.72678e7 0.712821 0.356411 0.934329i \(-0.384000\pi\)
0.356411 + 0.934329i \(0.384000\pi\)
\(212\) 5.97804e7 0.430907
\(213\) −9.13487e7 −0.647700
\(214\) 9.81624e7 0.684694
\(215\) 4.79648e8 3.29146
\(216\) 2.51214e7 0.169612
\(217\) −2.14956e7 −0.142804
\(218\) 1.32222e8 0.864385
\(219\) 1.18983e8 0.765474
\(220\) 1.14674e8 0.726085
\(221\) 0 0
\(222\) 2.74019e7 0.168091
\(223\) 1.67120e8 1.00917 0.504583 0.863363i \(-0.331646\pi\)
0.504583 + 0.863363i \(0.331646\pi\)
\(224\) 1.36577e7 0.0811915
\(225\) 5.63556e8 3.29836
\(226\) −1.06301e8 −0.612572
\(227\) 5.70679e7 0.323818 0.161909 0.986806i \(-0.448235\pi\)
0.161909 + 0.986806i \(0.448235\pi\)
\(228\) −1.27427e8 −0.712016
\(229\) 2.68753e8 1.47886 0.739432 0.673231i \(-0.235094\pi\)
0.739432 + 0.673231i \(0.235094\pi\)
\(230\) −4.44665e8 −2.40982
\(231\) 1.01516e8 0.541866
\(232\) −3.50955e7 −0.184520
\(233\) −6.53750e7 −0.338584 −0.169292 0.985566i \(-0.554148\pi\)
−0.169292 + 0.985566i \(0.554148\pi\)
\(234\) 0 0
\(235\) −1.70763e8 −0.858333
\(236\) 7.51638e7 0.372235
\(237\) 5.75785e8 2.80958
\(238\) −2.18005e7 −0.104821
\(239\) −2.06797e8 −0.979832 −0.489916 0.871770i \(-0.662973\pi\)
−0.489916 + 0.871770i \(0.662973\pi\)
\(240\) −1.52579e8 −0.712450
\(241\) −2.80476e8 −1.29073 −0.645365 0.763874i \(-0.723295\pi\)
−0.645365 + 0.763874i \(0.723295\pi\)
\(242\) 6.21740e7 0.282004
\(243\) 3.06517e8 1.37035
\(244\) −1.85017e8 −0.815358
\(245\) −3.40174e8 −1.47781
\(246\) −3.42755e8 −1.46795
\(247\) 0 0
\(248\) −2.64053e7 −0.109928
\(249\) −3.96453e8 −1.62740
\(250\) −4.93299e8 −1.99673
\(251\) −3.11949e8 −1.24516 −0.622580 0.782556i \(-0.713916\pi\)
−0.622580 + 0.782556i \(0.713916\pi\)
\(252\) −7.67320e7 −0.302047
\(253\) 3.63424e8 1.41089
\(254\) −2.18298e7 −0.0835856
\(255\) 2.43546e8 0.919795
\(256\) 1.67772e7 0.0625000
\(257\) 2.14289e8 0.787471 0.393736 0.919224i \(-0.371183\pi\)
0.393736 + 0.919224i \(0.371183\pi\)
\(258\) 5.21592e8 1.89087
\(259\) −2.00629e7 −0.0717537
\(260\) 0 0
\(261\) 1.97174e8 0.686448
\(262\) −1.56833e8 −0.538743
\(263\) 1.74837e8 0.592637 0.296318 0.955089i \(-0.404241\pi\)
0.296318 + 0.955089i \(0.404241\pi\)
\(264\) 1.24702e8 0.417120
\(265\) 4.88975e8 1.61408
\(266\) 9.32984e7 0.303941
\(267\) −5.60424e8 −1.80189
\(268\) 2.03621e7 0.0646176
\(269\) 2.83096e8 0.886749 0.443374 0.896336i \(-0.353781\pi\)
0.443374 + 0.896336i \(0.353781\pi\)
\(270\) 2.05481e8 0.635328
\(271\) 2.17755e8 0.664624 0.332312 0.943170i \(-0.392171\pi\)
0.332312 + 0.943170i \(0.392171\pi\)
\(272\) −2.67798e7 −0.0806894
\(273\) 0 0
\(274\) −5.21918e6 −0.0153276
\(275\) 6.70577e8 1.94439
\(276\) −4.83550e8 −1.38439
\(277\) −5.50259e8 −1.55556 −0.777782 0.628534i \(-0.783655\pi\)
−0.777782 + 0.628534i \(0.783655\pi\)
\(278\) −7.37329e7 −0.205828
\(279\) 1.48350e8 0.408953
\(280\) 1.11714e8 0.304126
\(281\) −1.42673e8 −0.383591 −0.191796 0.981435i \(-0.561431\pi\)
−0.191796 + 0.981435i \(0.561431\pi\)
\(282\) −1.85696e8 −0.493094
\(283\) −2.59247e7 −0.0679926 −0.0339963 0.999422i \(-0.510823\pi\)
−0.0339963 + 0.999422i \(0.510823\pi\)
\(284\) 8.21592e7 0.212834
\(285\) −1.04229e9 −2.66706
\(286\) 0 0
\(287\) 2.50955e8 0.626627
\(288\) −9.42578e7 −0.232511
\(289\) −3.67593e8 −0.895827
\(290\) −2.87065e8 −0.691173
\(291\) 4.84480e8 1.15253
\(292\) −1.07014e8 −0.251535
\(293\) 7.43864e8 1.72765 0.863827 0.503788i \(-0.168061\pi\)
0.863827 + 0.503788i \(0.168061\pi\)
\(294\) −3.69921e8 −0.848972
\(295\) 6.14804e8 1.39431
\(296\) −2.46453e7 −0.0552349
\(297\) −1.67939e8 −0.371967
\(298\) 1.95570e7 0.0428099
\(299\) 0 0
\(300\) −8.92229e8 −1.90788
\(301\) −3.81895e8 −0.807163
\(302\) 2.18557e8 0.456605
\(303\) −1.14574e8 −0.236611
\(304\) 1.14608e8 0.233969
\(305\) −1.51335e9 −3.05415
\(306\) 1.50455e8 0.300179
\(307\) 2.86830e8 0.565771 0.282886 0.959154i \(-0.408708\pi\)
0.282886 + 0.959154i \(0.408708\pi\)
\(308\) −9.13036e7 −0.178058
\(309\) −3.51284e8 −0.677335
\(310\) −2.15982e8 −0.411768
\(311\) 7.18890e8 1.35519 0.677596 0.735434i \(-0.263022\pi\)
0.677596 + 0.735434i \(0.263022\pi\)
\(312\) 0 0
\(313\) 6.20382e8 1.14355 0.571774 0.820411i \(-0.306255\pi\)
0.571774 + 0.820411i \(0.306255\pi\)
\(314\) −4.43592e8 −0.808593
\(315\) −6.27631e8 −1.13140
\(316\) −5.17862e8 −0.923229
\(317\) 1.67254e8 0.294897 0.147448 0.989070i \(-0.452894\pi\)
0.147448 + 0.989070i \(0.452894\pi\)
\(318\) 5.31735e8 0.927257
\(319\) 2.34618e8 0.404663
\(320\) 1.37230e8 0.234112
\(321\) 8.73135e8 1.47338
\(322\) 3.54041e8 0.590960
\(323\) −1.82938e8 −0.302061
\(324\) −1.79171e8 −0.292658
\(325\) 0 0
\(326\) −2.56010e8 −0.409257
\(327\) 1.17609e9 1.86005
\(328\) 3.08274e8 0.482368
\(329\) 1.35961e8 0.210489
\(330\) 1.02001e9 1.56244
\(331\) 7.89285e8 1.19629 0.598144 0.801388i \(-0.295905\pi\)
0.598144 + 0.801388i \(0.295905\pi\)
\(332\) 3.56570e8 0.534764
\(333\) 1.38463e8 0.205484
\(334\) 1.54769e8 0.227285
\(335\) 1.66552e8 0.242044
\(336\) 1.21483e8 0.174714
\(337\) −6.94195e8 −0.988046 −0.494023 0.869449i \(-0.664474\pi\)
−0.494023 + 0.869449i \(0.664474\pi\)
\(338\) 0 0
\(339\) −9.45525e8 −1.31818
\(340\) −2.19046e8 −0.302245
\(341\) 1.76522e8 0.241079
\(342\) −6.43892e8 −0.870405
\(343\) 6.14099e8 0.821692
\(344\) −4.69121e8 −0.621341
\(345\) −3.95520e9 −5.18564
\(346\) −3.30999e8 −0.429596
\(347\) −2.64528e7 −0.0339875 −0.0169937 0.999856i \(-0.505410\pi\)
−0.0169937 + 0.999856i \(0.505410\pi\)
\(348\) −3.12168e8 −0.397064
\(349\) 7.79391e8 0.981446 0.490723 0.871316i \(-0.336733\pi\)
0.490723 + 0.871316i \(0.336733\pi\)
\(350\) 6.53264e8 0.814424
\(351\) 0 0
\(352\) −1.12158e8 −0.137066
\(353\) −7.29412e8 −0.882595 −0.441297 0.897361i \(-0.645482\pi\)
−0.441297 + 0.897361i \(0.645482\pi\)
\(354\) 6.68567e8 0.801002
\(355\) 6.72023e8 0.797232
\(356\) 5.04046e8 0.592100
\(357\) −1.93911e8 −0.225561
\(358\) 2.58301e8 0.297533
\(359\) −5.70058e8 −0.650262 −0.325131 0.945669i \(-0.605408\pi\)
−0.325131 + 0.945669i \(0.605408\pi\)
\(360\) −7.70984e8 −0.870936
\(361\) −1.10964e8 −0.124138
\(362\) 6.47180e8 0.717042
\(363\) 5.53026e8 0.606837
\(364\) 0 0
\(365\) −8.75319e8 −0.942196
\(366\) −1.64569e9 −1.75455
\(367\) −4.82133e8 −0.509139 −0.254569 0.967055i \(-0.581934\pi\)
−0.254569 + 0.967055i \(0.581934\pi\)
\(368\) 4.34905e8 0.454912
\(369\) −1.73195e9 −1.79450
\(370\) −2.01587e8 −0.206898
\(371\) −3.89321e8 −0.395821
\(372\) −2.34870e8 −0.236552
\(373\) −2.99359e8 −0.298684 −0.149342 0.988786i \(-0.547716\pi\)
−0.149342 + 0.988786i \(0.547716\pi\)
\(374\) 1.79026e8 0.176956
\(375\) −4.38779e9 −4.29672
\(376\) 1.67015e8 0.162031
\(377\) 0 0
\(378\) −1.63604e8 −0.155801
\(379\) 1.01064e9 0.953587 0.476793 0.879015i \(-0.341799\pi\)
0.476793 + 0.879015i \(0.341799\pi\)
\(380\) 9.37439e8 0.876396
\(381\) −1.94172e8 −0.179866
\(382\) 1.09074e8 0.100115
\(383\) 8.85754e8 0.805596 0.402798 0.915289i \(-0.368038\pi\)
0.402798 + 0.915289i \(0.368038\pi\)
\(384\) 1.49230e8 0.134492
\(385\) −7.46819e8 −0.666965
\(386\) −1.38595e8 −0.122657
\(387\) 2.63562e9 2.31150
\(388\) −4.35742e8 −0.378720
\(389\) 2.15563e9 1.85674 0.928370 0.371656i \(-0.121210\pi\)
0.928370 + 0.371656i \(0.121210\pi\)
\(390\) 0 0
\(391\) −6.94197e8 −0.587305
\(392\) 3.32708e8 0.278973
\(393\) −1.39500e9 −1.15931
\(394\) −4.98998e8 −0.411019
\(395\) −4.23586e9 −3.45822
\(396\) 6.30124e8 0.509910
\(397\) −9.47072e8 −0.759654 −0.379827 0.925057i \(-0.624017\pi\)
−0.379827 + 0.925057i \(0.624017\pi\)
\(398\) 1.93366e7 0.0153741
\(399\) 8.29871e8 0.654042
\(400\) 8.02472e8 0.626931
\(401\) −1.53757e9 −1.19077 −0.595386 0.803440i \(-0.703001\pi\)
−0.595386 + 0.803440i \(0.703001\pi\)
\(402\) 1.81117e8 0.139049
\(403\) 0 0
\(404\) 1.03048e8 0.0777506
\(405\) −1.46553e9 −1.09623
\(406\) 2.28560e8 0.169496
\(407\) 1.64757e8 0.121133
\(408\) −2.38201e8 −0.173633
\(409\) 9.56109e8 0.690997 0.345498 0.938419i \(-0.387710\pi\)
0.345498 + 0.938419i \(0.387710\pi\)
\(410\) 2.52153e9 1.80685
\(411\) −4.64236e7 −0.0329831
\(412\) 3.15945e8 0.222572
\(413\) −4.89506e8 −0.341926
\(414\) −2.44339e9 −1.69235
\(415\) 2.91657e9 2.00311
\(416\) 0 0
\(417\) −6.55839e8 −0.442916
\(418\) −7.66168e8 −0.513106
\(419\) 2.00130e9 1.32912 0.664559 0.747236i \(-0.268620\pi\)
0.664559 + 0.747236i \(0.268620\pi\)
\(420\) 9.93672e8 0.654441
\(421\) 2.08228e9 1.36004 0.680020 0.733194i \(-0.261971\pi\)
0.680020 + 0.733194i \(0.261971\pi\)
\(422\) −7.78143e8 −0.504041
\(423\) −9.38325e8 −0.602784
\(424\) −4.78243e8 −0.304697
\(425\) −1.28091e9 −0.809387
\(426\) 7.30790e8 0.457993
\(427\) 1.20493e9 0.748969
\(428\) −7.85299e8 −0.484152
\(429\) 0 0
\(430\) −3.83718e9 −2.32741
\(431\) −7.37289e8 −0.443575 −0.221788 0.975095i \(-0.571189\pi\)
−0.221788 + 0.975095i \(0.571189\pi\)
\(432\) −2.00971e8 −0.119933
\(433\) −4.40104e8 −0.260524 −0.130262 0.991480i \(-0.541582\pi\)
−0.130262 + 0.991480i \(0.541582\pi\)
\(434\) 1.71965e8 0.100978
\(435\) −2.55338e9 −1.48732
\(436\) −1.05778e9 −0.611213
\(437\) 2.97091e9 1.70296
\(438\) −9.51864e8 −0.541272
\(439\) −2.17758e9 −1.22842 −0.614212 0.789141i \(-0.710526\pi\)
−0.614212 + 0.789141i \(0.710526\pi\)
\(440\) −9.17395e8 −0.513419
\(441\) −1.86922e9 −1.03783
\(442\) 0 0
\(443\) 1.78526e9 0.975639 0.487819 0.872945i \(-0.337793\pi\)
0.487819 + 0.872945i \(0.337793\pi\)
\(444\) −2.19215e8 −0.118859
\(445\) 4.12285e9 2.21788
\(446\) −1.33696e9 −0.713588
\(447\) 1.73955e8 0.0921216
\(448\) −1.09262e8 −0.0574111
\(449\) −9.37542e8 −0.488797 −0.244398 0.969675i \(-0.578590\pi\)
−0.244398 + 0.969675i \(0.578590\pi\)
\(450\) −4.50845e9 −2.33230
\(451\) −2.06085e9 −1.05786
\(452\) 8.50406e8 0.433154
\(453\) 1.94402e9 0.982556
\(454\) −4.56543e8 −0.228974
\(455\) 0 0
\(456\) 1.01942e9 0.503471
\(457\) 3.07434e9 1.50676 0.753381 0.657584i \(-0.228421\pi\)
0.753381 + 0.657584i \(0.228421\pi\)
\(458\) −2.15002e9 −1.04572
\(459\) 3.20790e8 0.154838
\(460\) 3.55732e9 1.70400
\(461\) 3.28755e9 1.56286 0.781428 0.623995i \(-0.214491\pi\)
0.781428 + 0.623995i \(0.214491\pi\)
\(462\) −8.12127e8 −0.383157
\(463\) 8.40096e7 0.0393365 0.0196682 0.999807i \(-0.493739\pi\)
0.0196682 + 0.999807i \(0.493739\pi\)
\(464\) 2.80764e8 0.130475
\(465\) −1.92112e9 −0.886072
\(466\) 5.23000e8 0.239415
\(467\) 3.33082e9 1.51336 0.756681 0.653785i \(-0.226820\pi\)
0.756681 + 0.653785i \(0.226820\pi\)
\(468\) 0 0
\(469\) −1.32609e8 −0.0593563
\(470\) 1.36610e9 0.606933
\(471\) −3.94566e9 −1.73999
\(472\) −6.01310e8 −0.263210
\(473\) 3.13613e9 1.36264
\(474\) −4.60628e9 −1.98667
\(475\) 5.48183e9 2.34692
\(476\) 1.74404e8 0.0741195
\(477\) 2.68687e9 1.13353
\(478\) 1.65438e9 0.692846
\(479\) −8.98971e8 −0.373741 −0.186871 0.982385i \(-0.559835\pi\)
−0.186871 + 0.982385i \(0.559835\pi\)
\(480\) 1.22063e9 0.503779
\(481\) 0 0
\(482\) 2.24380e9 0.912684
\(483\) 3.14913e9 1.27167
\(484\) −4.97392e8 −0.199407
\(485\) −3.56416e9 −1.41860
\(486\) −2.45214e9 −0.968986
\(487\) −2.66963e9 −1.04737 −0.523685 0.851912i \(-0.675443\pi\)
−0.523685 + 0.851912i \(0.675443\pi\)
\(488\) 1.48014e9 0.576545
\(489\) −2.27716e9 −0.880670
\(490\) 2.72139e9 1.04497
\(491\) 3.41098e9 1.30045 0.650225 0.759741i \(-0.274674\pi\)
0.650225 + 0.759741i \(0.274674\pi\)
\(492\) 2.74204e9 1.03800
\(493\) −4.48157e8 −0.168448
\(494\) 0 0
\(495\) 5.15412e9 1.91001
\(496\) 2.11242e8 0.0777311
\(497\) −5.35063e8 −0.195505
\(498\) 3.17162e9 1.15074
\(499\) −5.43259e9 −1.95729 −0.978645 0.205559i \(-0.934099\pi\)
−0.978645 + 0.205559i \(0.934099\pi\)
\(500\) 3.94639e9 1.41190
\(501\) 1.37664e9 0.489088
\(502\) 2.49559e9 0.880461
\(503\) 1.16913e9 0.409616 0.204808 0.978802i \(-0.434343\pi\)
0.204808 + 0.978802i \(0.434343\pi\)
\(504\) 6.13856e8 0.213579
\(505\) 8.42881e8 0.291237
\(506\) −2.90739e9 −0.997647
\(507\) 0 0
\(508\) 1.74638e8 0.0591040
\(509\) 2.17002e9 0.729375 0.364688 0.931130i \(-0.381176\pi\)
0.364688 + 0.931130i \(0.381176\pi\)
\(510\) −1.94837e9 −0.650394
\(511\) 6.96928e8 0.231055
\(512\) −1.34218e8 −0.0441942
\(513\) −1.37287e9 −0.448971
\(514\) −1.71432e9 −0.556826
\(515\) 2.58428e9 0.833708
\(516\) −4.17274e9 −1.33705
\(517\) −1.11651e9 −0.355343
\(518\) 1.60503e8 0.0507376
\(519\) −2.94417e9 −0.924436
\(520\) 0 0
\(521\) −5.57218e9 −1.72621 −0.863103 0.505027i \(-0.831482\pi\)
−0.863103 + 0.505027i \(0.831482\pi\)
\(522\) −1.57739e9 −0.485392
\(523\) −6.67518e8 −0.204036 −0.102018 0.994783i \(-0.532530\pi\)
−0.102018 + 0.994783i \(0.532530\pi\)
\(524\) 1.25466e9 0.380949
\(525\) 5.81066e9 1.75254
\(526\) −1.39870e9 −0.419058
\(527\) −3.37185e8 −0.100353
\(528\) −9.97620e8 −0.294949
\(529\) 7.86895e9 2.31112
\(530\) −3.91180e9 −1.14133
\(531\) 3.37828e9 0.979187
\(532\) −7.46387e8 −0.214918
\(533\) 0 0
\(534\) 4.48339e9 1.27413
\(535\) −6.42337e9 −1.81353
\(536\) −1.62897e8 −0.0456916
\(537\) 2.29754e9 0.640255
\(538\) −2.26477e9 −0.627026
\(539\) −2.22419e9 −0.611802
\(540\) −1.64385e9 −0.449245
\(541\) 4.87524e9 1.32375 0.661875 0.749614i \(-0.269761\pi\)
0.661875 + 0.749614i \(0.269761\pi\)
\(542\) −1.74204e9 −0.469960
\(543\) 5.75654e9 1.54299
\(544\) 2.14239e8 0.0570560
\(545\) −8.65212e9 −2.28947
\(546\) 0 0
\(547\) 6.55899e8 0.171349 0.0856744 0.996323i \(-0.472696\pi\)
0.0856744 + 0.996323i \(0.472696\pi\)
\(548\) 4.17534e7 0.0108383
\(549\) −8.31573e9 −2.14485
\(550\) −5.36462e9 −1.37489
\(551\) 1.91795e9 0.488435
\(552\) 3.86840e9 0.978913
\(553\) 3.37259e9 0.848057
\(554\) 4.40207e9 1.09995
\(555\) −1.79308e9 −0.445219
\(556\) 5.89863e8 0.145542
\(557\) −1.46638e9 −0.359545 −0.179773 0.983708i \(-0.557536\pi\)
−0.179773 + 0.983708i \(0.557536\pi\)
\(558\) −1.18680e9 −0.289173
\(559\) 0 0
\(560\) −8.93710e8 −0.215050
\(561\) 1.59240e9 0.380788
\(562\) 1.14138e9 0.271240
\(563\) −3.01372e9 −0.711743 −0.355872 0.934535i \(-0.615816\pi\)
−0.355872 + 0.934535i \(0.615816\pi\)
\(564\) 1.48557e9 0.348670
\(565\) 6.95592e9 1.62250
\(566\) 2.07398e8 0.0480780
\(567\) 1.16686e9 0.268829
\(568\) −6.57273e8 −0.150497
\(569\) −7.50194e9 −1.70718 −0.853592 0.520942i \(-0.825581\pi\)
−0.853592 + 0.520942i \(0.825581\pi\)
\(570\) 8.33834e9 1.88589
\(571\) −1.19452e9 −0.268514 −0.134257 0.990947i \(-0.542865\pi\)
−0.134257 + 0.990947i \(0.542865\pi\)
\(572\) 0 0
\(573\) 9.70190e8 0.215435
\(574\) −2.00764e9 −0.443093
\(575\) 2.08020e10 4.56318
\(576\) 7.54063e8 0.164410
\(577\) −4.85637e9 −1.05244 −0.526219 0.850349i \(-0.676391\pi\)
−0.526219 + 0.850349i \(0.676391\pi\)
\(578\) 2.94074e9 0.633446
\(579\) −1.23278e9 −0.263943
\(580\) 2.29652e9 0.488733
\(581\) −2.32217e9 −0.491222
\(582\) −3.87584e9 −0.814959
\(583\) 3.19711e9 0.668217
\(584\) 8.56108e8 0.177862
\(585\) 0 0
\(586\) −5.95091e9 −1.22164
\(587\) −2.02484e9 −0.413196 −0.206598 0.978426i \(-0.566239\pi\)
−0.206598 + 0.978426i \(0.566239\pi\)
\(588\) 2.95937e9 0.600314
\(589\) 1.44303e9 0.290986
\(590\) −4.91843e9 −0.985926
\(591\) −4.43849e9 −0.884461
\(592\) 1.97163e8 0.0390570
\(593\) 9.30040e8 0.183151 0.0915757 0.995798i \(-0.470810\pi\)
0.0915757 + 0.995798i \(0.470810\pi\)
\(594\) 1.34351e9 0.263021
\(595\) 1.42654e9 0.277636
\(596\) −1.56456e8 −0.0302712
\(597\) 1.71995e8 0.0330831
\(598\) 0 0
\(599\) 2.25978e9 0.429608 0.214804 0.976657i \(-0.431089\pi\)
0.214804 + 0.976657i \(0.431089\pi\)
\(600\) 7.13783e9 1.34908
\(601\) 1.45670e9 0.273722 0.136861 0.990590i \(-0.456299\pi\)
0.136861 + 0.990590i \(0.456299\pi\)
\(602\) 3.05516e9 0.570750
\(603\) 9.15188e8 0.169981
\(604\) −1.74846e9 −0.322868
\(605\) −4.06843e9 −0.746935
\(606\) 9.16589e8 0.167309
\(607\) −5.28287e9 −0.958758 −0.479379 0.877608i \(-0.659138\pi\)
−0.479379 + 0.877608i \(0.659138\pi\)
\(608\) −9.16865e8 −0.165441
\(609\) 2.03300e9 0.364734
\(610\) 1.21068e10 2.15961
\(611\) 0 0
\(612\) −1.20364e9 −0.212259
\(613\) −2.41287e9 −0.423079 −0.211540 0.977369i \(-0.567848\pi\)
−0.211540 + 0.977369i \(0.567848\pi\)
\(614\) −2.29464e9 −0.400061
\(615\) 2.24285e10 3.88811
\(616\) 7.30429e8 0.125906
\(617\) 9.37862e9 1.60746 0.803732 0.594992i \(-0.202845\pi\)
0.803732 + 0.594992i \(0.202845\pi\)
\(618\) 2.81027e9 0.478948
\(619\) 2.73222e9 0.463019 0.231510 0.972833i \(-0.425634\pi\)
0.231510 + 0.972833i \(0.425634\pi\)
\(620\) 1.72786e9 0.291164
\(621\) −5.20965e9 −0.872947
\(622\) −5.75112e9 −0.958266
\(623\) −3.28261e9 −0.543890
\(624\) 0 0
\(625\) 1.69736e10 2.78096
\(626\) −4.96306e9 −0.808610
\(627\) −6.81492e9 −1.10414
\(628\) 3.54873e9 0.571761
\(629\) −3.14711e8 −0.0504238
\(630\) 5.02105e9 0.800023
\(631\) 9.05266e9 1.43441 0.717205 0.696862i \(-0.245421\pi\)
0.717205 + 0.696862i \(0.245421\pi\)
\(632\) 4.14290e9 0.652821
\(633\) −6.92142e9 −1.08463
\(634\) −1.33803e9 −0.208523
\(635\) 1.42846e9 0.221391
\(636\) −4.25388e9 −0.655670
\(637\) 0 0
\(638\) −1.87694e9 −0.286140
\(639\) 3.69270e9 0.559874
\(640\) −1.09784e9 −0.165542
\(641\) −1.03610e10 −1.55382 −0.776910 0.629612i \(-0.783214\pi\)
−0.776910 + 0.629612i \(0.783214\pi\)
\(642\) −6.98508e9 −1.04183
\(643\) −3.92800e9 −0.582684 −0.291342 0.956619i \(-0.594102\pi\)
−0.291342 + 0.956619i \(0.594102\pi\)
\(644\) −2.83233e9 −0.417872
\(645\) −3.41310e10 −5.00829
\(646\) 1.46350e9 0.213589
\(647\) −1.12735e10 −1.63641 −0.818206 0.574926i \(-0.805031\pi\)
−0.818206 + 0.574926i \(0.805031\pi\)
\(648\) 1.43337e9 0.206940
\(649\) 4.01983e9 0.577233
\(650\) 0 0
\(651\) 1.52959e9 0.217291
\(652\) 2.04808e9 0.289388
\(653\) −1.38664e10 −1.94880 −0.974401 0.224815i \(-0.927822\pi\)
−0.974401 + 0.224815i \(0.927822\pi\)
\(654\) −9.40874e9 −1.31525
\(655\) 1.02625e10 1.42695
\(656\) −2.46619e9 −0.341086
\(657\) −4.80979e9 −0.661679
\(658\) −1.08769e9 −0.148838
\(659\) −1.58849e8 −0.0216215 −0.0108107 0.999942i \(-0.503441\pi\)
−0.0108107 + 0.999942i \(0.503441\pi\)
\(660\) −8.16005e9 −1.10481
\(661\) 1.11754e10 1.50508 0.752539 0.658548i \(-0.228829\pi\)
0.752539 + 0.658548i \(0.228829\pi\)
\(662\) −6.31428e9 −0.845904
\(663\) 0 0
\(664\) −2.85256e9 −0.378135
\(665\) −6.10509e9 −0.805038
\(666\) −1.10770e9 −0.145299
\(667\) 7.27808e9 0.949678
\(668\) −1.23815e9 −0.160715
\(669\) −1.18920e10 −1.53555
\(670\) −1.33242e9 −0.171151
\(671\) −9.89490e9 −1.26439
\(672\) −9.71863e8 −0.123541
\(673\) −5.39911e9 −0.682762 −0.341381 0.939925i \(-0.610895\pi\)
−0.341381 + 0.939925i \(0.610895\pi\)
\(674\) 5.55356e9 0.698654
\(675\) −9.61266e9 −1.20304
\(676\) 0 0
\(677\) −7.69486e9 −0.953104 −0.476552 0.879146i \(-0.658114\pi\)
−0.476552 + 0.879146i \(0.658114\pi\)
\(678\) 7.56420e9 0.932092
\(679\) 2.83778e9 0.347884
\(680\) 1.75237e9 0.213720
\(681\) −4.06086e9 −0.492724
\(682\) −1.41218e9 −0.170468
\(683\) −5.09851e9 −0.612309 −0.306155 0.951982i \(-0.599042\pi\)
−0.306155 + 0.951982i \(0.599042\pi\)
\(684\) 5.15113e9 0.615469
\(685\) 3.41523e8 0.0405978
\(686\) −4.91279e9 −0.581024
\(687\) −1.91240e10 −2.25025
\(688\) 3.75297e9 0.439355
\(689\) 0 0
\(690\) 3.16416e10 3.66680
\(691\) −3.07222e8 −0.0354225 −0.0177112 0.999843i \(-0.505638\pi\)
−0.0177112 + 0.999843i \(0.505638\pi\)
\(692\) 2.64799e9 0.303770
\(693\) −4.10370e9 −0.468392
\(694\) 2.11623e8 0.0240328
\(695\) 4.82480e9 0.545170
\(696\) 2.49734e9 0.280767
\(697\) 3.93654e9 0.440352
\(698\) −6.23513e9 −0.693987
\(699\) 4.65198e9 0.515191
\(700\) −5.22611e9 −0.575885
\(701\) 1.35330e9 0.148382 0.0741910 0.997244i \(-0.476363\pi\)
0.0741910 + 0.997244i \(0.476363\pi\)
\(702\) 0 0
\(703\) 1.34685e9 0.146210
\(704\) 8.97261e8 0.0969202
\(705\) 1.21512e10 1.30604
\(706\) 5.83529e9 0.624089
\(707\) −6.71100e8 −0.0714199
\(708\) −5.34854e9 −0.566394
\(709\) 1.09112e10 1.14977 0.574887 0.818233i \(-0.305046\pi\)
0.574887 + 0.818233i \(0.305046\pi\)
\(710\) −5.37618e9 −0.563728
\(711\) −2.32756e10 −2.42861
\(712\) −4.03237e9 −0.418678
\(713\) 5.47590e9 0.565773
\(714\) 1.55129e9 0.159496
\(715\) 0 0
\(716\) −2.06641e9 −0.210388
\(717\) 1.47154e10 1.49092
\(718\) 4.56047e9 0.459805
\(719\) −1.02932e10 −1.03276 −0.516379 0.856360i \(-0.672720\pi\)
−0.516379 + 0.856360i \(0.672720\pi\)
\(720\) 6.16787e9 0.615845
\(721\) −2.05760e9 −0.204450
\(722\) 8.87709e8 0.0877790
\(723\) 1.99582e10 1.96398
\(724\) −5.17744e9 −0.507026
\(725\) 1.34293e10 1.30879
\(726\) −4.42421e9 −0.429099
\(727\) 7.61641e9 0.735156 0.367578 0.929993i \(-0.380187\pi\)
0.367578 + 0.929993i \(0.380187\pi\)
\(728\) 0 0
\(729\) −1.56887e10 −1.49982
\(730\) 7.00255e9 0.666233
\(731\) −5.99049e9 −0.567220
\(732\) 1.31655e10 1.24065
\(733\) 5.63920e9 0.528875 0.264438 0.964403i \(-0.414814\pi\)
0.264438 + 0.964403i \(0.414814\pi\)
\(734\) 3.85707e9 0.360015
\(735\) 2.42062e10 2.24865
\(736\) −3.47924e9 −0.321671
\(737\) 1.08898e9 0.100204
\(738\) 1.38556e10 1.26890
\(739\) 2.18346e10 1.99017 0.995083 0.0990445i \(-0.0315786\pi\)
0.995083 + 0.0990445i \(0.0315786\pi\)
\(740\) 1.61270e9 0.146299
\(741\) 0 0
\(742\) 3.11457e9 0.279888
\(743\) −1.14865e10 −1.02737 −0.513684 0.857979i \(-0.671720\pi\)
−0.513684 + 0.857979i \(0.671720\pi\)
\(744\) 1.87896e9 0.167267
\(745\) −1.27973e9 −0.113389
\(746\) 2.39487e9 0.211201
\(747\) 1.60263e10 1.40673
\(748\) −1.43221e9 −0.125127
\(749\) 5.11427e9 0.444731
\(750\) 3.51023e10 3.03824
\(751\) 6.97497e9 0.600900 0.300450 0.953798i \(-0.402863\pi\)
0.300450 + 0.953798i \(0.402863\pi\)
\(752\) −1.33612e9 −0.114573
\(753\) 2.21978e10 1.89464
\(754\) 0 0
\(755\) −1.43015e10 −1.20939
\(756\) 1.30883e9 0.110168
\(757\) −3.17517e9 −0.266030 −0.133015 0.991114i \(-0.542466\pi\)
−0.133015 + 0.991114i \(0.542466\pi\)
\(758\) −8.08514e9 −0.674288
\(759\) −2.58607e10 −2.14681
\(760\) −7.49951e9 −0.619706
\(761\) 1.53073e10 1.25908 0.629540 0.776968i \(-0.283243\pi\)
0.629540 + 0.776968i \(0.283243\pi\)
\(762\) 1.55337e9 0.127184
\(763\) 6.88881e9 0.561446
\(764\) −8.72590e8 −0.0707919
\(765\) −9.84517e9 −0.795075
\(766\) −7.08603e9 −0.569642
\(767\) 0 0
\(768\) −1.19384e9 −0.0951003
\(769\) 2.95358e9 0.234211 0.117105 0.993119i \(-0.462638\pi\)
0.117105 + 0.993119i \(0.462638\pi\)
\(770\) 5.97456e9 0.471615
\(771\) −1.52485e10 −1.19822
\(772\) 1.10876e9 0.0867316
\(773\) 9.84588e9 0.766701 0.383351 0.923603i \(-0.374770\pi\)
0.383351 + 0.923603i \(0.374770\pi\)
\(774\) −2.10849e10 −1.63448
\(775\) 1.01039e10 0.779712
\(776\) 3.48594e9 0.267796
\(777\) 1.42764e9 0.109181
\(778\) −1.72451e10 −1.31291
\(779\) −1.68470e10 −1.27685
\(780\) 0 0
\(781\) 4.39395e9 0.330047
\(782\) 5.55357e9 0.415288
\(783\) −3.36322e9 −0.250374
\(784\) −2.66166e9 −0.197263
\(785\) 2.90269e10 2.14169
\(786\) 1.11600e10 0.819755
\(787\) −5.21130e9 −0.381096 −0.190548 0.981678i \(-0.561026\pi\)
−0.190548 + 0.981678i \(0.561026\pi\)
\(788\) 3.99198e9 0.290634
\(789\) −1.24411e10 −0.901759
\(790\) 3.38869e10 2.44533
\(791\) −5.53829e9 −0.397885
\(792\) −5.04100e9 −0.360561
\(793\) 0 0
\(794\) 7.57657e9 0.537157
\(795\) −3.47947e10 −2.45600
\(796\) −1.54693e8 −0.0108711
\(797\) 7.85960e9 0.549916 0.274958 0.961456i \(-0.411336\pi\)
0.274958 + 0.961456i \(0.411336\pi\)
\(798\) −6.63897e9 −0.462477
\(799\) 2.13272e9 0.147918
\(800\) −6.41978e9 −0.443307
\(801\) 2.26547e10 1.55756
\(802\) 1.23005e10 0.842003
\(803\) −5.72318e9 −0.390062
\(804\) −1.44894e9 −0.0983225
\(805\) −2.31671e10 −1.56526
\(806\) 0 0
\(807\) −2.01447e10 −1.34928
\(808\) −8.24382e8 −0.0549780
\(809\) −6.45868e9 −0.428868 −0.214434 0.976738i \(-0.568791\pi\)
−0.214434 + 0.976738i \(0.568791\pi\)
\(810\) 1.17243e10 0.775154
\(811\) −2.35320e10 −1.54912 −0.774562 0.632498i \(-0.782030\pi\)
−0.774562 + 0.632498i \(0.782030\pi\)
\(812\) −1.82848e9 −0.119852
\(813\) −1.54951e10 −1.01130
\(814\) −1.31806e9 −0.0856541
\(815\) 1.67523e10 1.08399
\(816\) 1.90561e9 0.122777
\(817\) 2.56372e10 1.64472
\(818\) −7.64887e9 −0.488608
\(819\) 0 0
\(820\) −2.01723e10 −1.27763
\(821\) −2.52398e9 −0.159179 −0.0795894 0.996828i \(-0.525361\pi\)
−0.0795894 + 0.996828i \(0.525361\pi\)
\(822\) 3.71388e8 0.0233226
\(823\) −1.73764e10 −1.08658 −0.543289 0.839546i \(-0.682821\pi\)
−0.543289 + 0.839546i \(0.682821\pi\)
\(824\) −2.52756e9 −0.157382
\(825\) −4.77172e10 −2.95860
\(826\) 3.91605e9 0.241778
\(827\) 1.96660e10 1.20906 0.604530 0.796583i \(-0.293361\pi\)
0.604530 + 0.796583i \(0.293361\pi\)
\(828\) 1.95471e10 1.19667
\(829\) 3.06688e10 1.86963 0.934817 0.355130i \(-0.115563\pi\)
0.934817 + 0.355130i \(0.115563\pi\)
\(830\) −2.33326e10 −1.41641
\(831\) 3.91555e10 2.36695
\(832\) 0 0
\(833\) 4.24855e9 0.254673
\(834\) 5.24672e9 0.313189
\(835\) −1.01275e10 −0.602002
\(836\) 6.12935e9 0.362821
\(837\) −2.53043e9 −0.149161
\(838\) −1.60104e10 −0.939828
\(839\) −3.00838e10 −1.75859 −0.879297 0.476275i \(-0.841987\pi\)
−0.879297 + 0.476275i \(0.841987\pi\)
\(840\) −7.94937e9 −0.462760
\(841\) −1.25513e10 −0.727618
\(842\) −1.66582e10 −0.961693
\(843\) 1.01524e10 0.583674
\(844\) 6.22514e9 0.356411
\(845\) 0 0
\(846\) 7.50660e9 0.426233
\(847\) 3.23928e9 0.183171
\(848\) 3.82594e9 0.215453
\(849\) 1.84476e9 0.103458
\(850\) 1.02473e10 0.572323
\(851\) 5.11092e9 0.284280
\(852\) −5.84632e9 −0.323850
\(853\) −8.80922e9 −0.485977 −0.242989 0.970029i \(-0.578128\pi\)
−0.242989 + 0.970029i \(0.578128\pi\)
\(854\) −9.63943e9 −0.529601
\(855\) 4.21338e10 2.30542
\(856\) 6.28239e9 0.342347
\(857\) 1.71306e10 0.929696 0.464848 0.885391i \(-0.346109\pi\)
0.464848 + 0.885391i \(0.346109\pi\)
\(858\) 0 0
\(859\) 9.23130e9 0.496921 0.248460 0.968642i \(-0.420075\pi\)
0.248460 + 0.968642i \(0.420075\pi\)
\(860\) 3.06975e10 1.64573
\(861\) −1.78576e10 −0.953479
\(862\) 5.89831e9 0.313655
\(863\) −2.02167e10 −1.07071 −0.535356 0.844627i \(-0.679822\pi\)
−0.535356 + 0.844627i \(0.679822\pi\)
\(864\) 1.60777e9 0.0848058
\(865\) 2.16593e10 1.13786
\(866\) 3.52083e9 0.184218
\(867\) 2.61573e10 1.36310
\(868\) −1.37572e9 −0.0714020
\(869\) −2.76957e10 −1.43167
\(870\) 2.04271e10 1.05169
\(871\) 0 0
\(872\) 8.46223e9 0.432193
\(873\) −1.95847e10 −0.996248
\(874\) −2.37673e10 −1.20418
\(875\) −2.57009e10 −1.29694
\(876\) 7.61491e9 0.382737
\(877\) −1.42090e10 −0.711318 −0.355659 0.934616i \(-0.615744\pi\)
−0.355659 + 0.934616i \(0.615744\pi\)
\(878\) 1.74207e10 0.868628
\(879\) −5.29322e10 −2.62881
\(880\) 7.33916e9 0.363042
\(881\) −1.51920e10 −0.748511 −0.374256 0.927326i \(-0.622102\pi\)
−0.374256 + 0.927326i \(0.622102\pi\)
\(882\) 1.49538e10 0.733855
\(883\) 5.15139e8 0.0251803 0.0125902 0.999921i \(-0.495992\pi\)
0.0125902 + 0.999921i \(0.495992\pi\)
\(884\) 0 0
\(885\) −4.37485e10 −2.12159
\(886\) −1.42821e10 −0.689881
\(887\) 2.75987e10 1.32787 0.663936 0.747789i \(-0.268885\pi\)
0.663936 + 0.747789i \(0.268885\pi\)
\(888\) 1.75372e9 0.0840457
\(889\) −1.13734e9 −0.0542916
\(890\) −3.29828e10 −1.56828
\(891\) −9.58223e9 −0.453832
\(892\) 1.06957e10 0.504583
\(893\) −9.12727e9 −0.428905
\(894\) −1.39164e9 −0.0651398
\(895\) −1.69022e10 −0.788068
\(896\) 8.74095e8 0.0405958
\(897\) 0 0
\(898\) 7.50033e9 0.345632
\(899\) 3.53511e9 0.162272
\(900\) 3.60676e10 1.64918
\(901\) −6.10698e9 −0.278157
\(902\) 1.64868e10 0.748020
\(903\) 2.71750e10 1.22818
\(904\) −6.80325e9 −0.306286
\(905\) −4.23489e10 −1.89921
\(906\) −1.55522e10 −0.694772
\(907\) −2.39342e10 −1.06511 −0.532555 0.846396i \(-0.678768\pi\)
−0.532555 + 0.846396i \(0.678768\pi\)
\(908\) 3.65235e9 0.161909
\(909\) 4.63155e9 0.204528
\(910\) 0 0
\(911\) −2.98472e10 −1.30794 −0.653972 0.756519i \(-0.726898\pi\)
−0.653972 + 0.756519i \(0.726898\pi\)
\(912\) −8.15533e9 −0.356008
\(913\) 1.90697e10 0.829271
\(914\) −2.45947e10 −1.06544
\(915\) 1.07688e11 4.64722
\(916\) 1.72002e10 0.739432
\(917\) −8.17100e9 −0.349931
\(918\) −2.56632e9 −0.109487
\(919\) −8.23752e9 −0.350100 −0.175050 0.984560i \(-0.556009\pi\)
−0.175050 + 0.984560i \(0.556009\pi\)
\(920\) −2.84585e10 −1.20491
\(921\) −2.04104e10 −0.860880
\(922\) −2.63004e10 −1.10511
\(923\) 0 0
\(924\) 6.49702e9 0.270933
\(925\) 9.43050e9 0.391777
\(926\) −6.72077e8 −0.0278151
\(927\) 1.42004e10 0.585491
\(928\) −2.24611e9 −0.0922601
\(929\) 3.30769e10 1.35353 0.676767 0.736197i \(-0.263380\pi\)
0.676767 + 0.736197i \(0.263380\pi\)
\(930\) 1.53690e10 0.626548
\(931\) −1.81823e10 −0.738456
\(932\) −4.18400e9 −0.169292
\(933\) −5.11551e10 −2.06207
\(934\) −2.66466e10 −1.07011
\(935\) −1.17148e10 −0.468699
\(936\) 0 0
\(937\) 6.86759e9 0.272719 0.136360 0.990659i \(-0.456460\pi\)
0.136360 + 0.990659i \(0.456460\pi\)
\(938\) 1.06087e9 0.0419712
\(939\) −4.41454e10 −1.74003
\(940\) −1.09288e10 −0.429167
\(941\) −3.10041e10 −1.21298 −0.606492 0.795090i \(-0.707424\pi\)
−0.606492 + 0.795090i \(0.707424\pi\)
\(942\) 3.15653e10 1.23036
\(943\) −6.39296e10 −2.48262
\(944\) 4.81048e9 0.186117
\(945\) 1.07056e10 0.412666
\(946\) −2.50890e10 −0.963529
\(947\) −2.16546e10 −0.828561 −0.414280 0.910149i \(-0.635967\pi\)
−0.414280 + 0.910149i \(0.635967\pi\)
\(948\) 3.68503e10 1.40479
\(949\) 0 0
\(950\) −4.38546e10 −1.65952
\(951\) −1.19016e10 −0.448716
\(952\) −1.39523e9 −0.0524104
\(953\) −1.23673e10 −0.462862 −0.231431 0.972851i \(-0.574341\pi\)
−0.231431 + 0.972851i \(0.574341\pi\)
\(954\) −2.14949e10 −0.801525
\(955\) −7.13737e9 −0.265171
\(956\) −1.32350e10 −0.489916
\(957\) −1.66950e10 −0.615737
\(958\) 7.19177e9 0.264275
\(959\) −2.71920e8 −0.00995579
\(960\) −9.76504e9 −0.356225
\(961\) −2.48529e10 −0.903326
\(962\) 0 0
\(963\) −3.52958e10 −1.27359
\(964\) −1.79504e10 −0.645365
\(965\) 9.06914e9 0.324878
\(966\) −2.51930e10 −0.899208
\(967\) 3.71093e10 1.31974 0.659872 0.751378i \(-0.270610\pi\)
0.659872 + 0.751378i \(0.270610\pi\)
\(968\) 3.97914e9 0.141002
\(969\) 1.30176e10 0.459617
\(970\) 2.85133e10 1.00310
\(971\) −2.70025e10 −0.946534 −0.473267 0.880919i \(-0.656925\pi\)
−0.473267 + 0.880919i \(0.656925\pi\)
\(972\) 1.96171e10 0.685177
\(973\) −3.84149e9 −0.133692
\(974\) 2.13570e10 0.740602
\(975\) 0 0
\(976\) −1.18411e10 −0.407679
\(977\) 3.00925e10 1.03235 0.516175 0.856483i \(-0.327356\pi\)
0.516175 + 0.856483i \(0.327356\pi\)
\(978\) 1.82173e10 0.622727
\(979\) 2.69568e10 0.918184
\(980\) −2.17711e10 −0.738906
\(981\) −4.75426e10 −1.60783
\(982\) −2.72878e10 −0.919557
\(983\) −5.51343e10 −1.85133 −0.925667 0.378340i \(-0.876495\pi\)
−0.925667 + 0.378340i \(0.876495\pi\)
\(984\) −2.19363e10 −0.733974
\(985\) 3.26525e10 1.08865
\(986\) 3.58525e9 0.119111
\(987\) −9.67477e9 −0.320281
\(988\) 0 0
\(989\) 9.72858e10 3.19788
\(990\) −4.12329e10 −1.35058
\(991\) −1.53856e10 −0.502177 −0.251089 0.967964i \(-0.580789\pi\)
−0.251089 + 0.967964i \(0.580789\pi\)
\(992\) −1.68994e9 −0.0549642
\(993\) −5.61643e10 −1.82028
\(994\) 4.28051e9 0.138243
\(995\) −1.26531e9 −0.0407209
\(996\) −2.53730e10 −0.813699
\(997\) −2.79656e10 −0.893700 −0.446850 0.894609i \(-0.647454\pi\)
−0.446850 + 0.894609i \(0.647454\pi\)
\(998\) 4.34607e10 1.38401
\(999\) −2.36177e9 −0.0749478
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.a.i.1.1 4
13.3 even 3 26.8.c.b.9.4 yes 8
13.5 odd 4 338.8.b.h.337.5 8
13.8 odd 4 338.8.b.h.337.1 8
13.9 even 3 26.8.c.b.3.4 8
13.12 even 2 338.8.a.j.1.1 4
39.29 odd 6 234.8.h.b.217.1 8
39.35 odd 6 234.8.h.b.55.1 8
52.3 odd 6 208.8.i.b.113.1 8
52.35 odd 6 208.8.i.b.81.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.c.b.3.4 8 13.9 even 3
26.8.c.b.9.4 yes 8 13.3 even 3
208.8.i.b.81.1 8 52.35 odd 6
208.8.i.b.113.1 8 52.3 odd 6
234.8.h.b.55.1 8 39.35 odd 6
234.8.h.b.217.1 8 39.29 odd 6
338.8.a.i.1.1 4 1.1 even 1 trivial
338.8.a.j.1.1 4 13.12 even 2
338.8.b.h.337.1 8 13.8 odd 4
338.8.b.h.337.5 8 13.5 odd 4