Properties

Label 338.6.b.b
Level $338$
Weight $6$
Character orbit 338.b
Analytic conductor $54.210$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,6,Mod(337,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.337"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,18,-64,0,0,0,0,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.2097310968\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{849})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 425x^{2} + 44944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{2} q^{2} + ( - \beta_{3} + 5) q^{3} - 16 q^{4} + (19 \beta_{2} + 3 \beta_1) q^{5} + (8 \beta_{2} - 4 \beta_1) q^{6} + ( - 41 \beta_{2} - 9 \beta_1) q^{7} - 32 \beta_{2} q^{8} + ( - 9 \beta_{3} - 6) q^{9}+ \cdots + ( - 23811 \beta_{2} - 1242 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} - 64 q^{4} - 42 q^{9} - 584 q^{10} - 288 q^{12} + 1240 q^{14} + 1024 q^{16} + 378 q^{17} - 1760 q^{22} + 6088 q^{23} - 470 q^{25} + 3078 q^{27} + 3800 q^{29} + 7560 q^{30} + 34238 q^{35}+ \cdots + 335028 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 425x^{2} + 44944 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 213\nu ) / 106 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 213 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 213 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 106\beta_{2} - 213\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
14.0688i
15.0688i
14.0688i
15.0688i
4.00000i −10.0688 −16.0000 80.2064i 40.2752i 208.619i 64.0000i −141.619 −320.826
337.2 4.00000i 19.0688 −16.0000 7.20641i 76.2752i 53.6192i 64.0000i 120.619 28.8256
337.3 4.00000i −10.0688 −16.0000 80.2064i 40.2752i 208.619i 64.0000i −141.619 −320.826
337.4 4.00000i 19.0688 −16.0000 7.20641i 76.2752i 53.6192i 64.0000i 120.619 28.8256
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.6.b.b 4
13.b even 2 1 inner 338.6.b.b 4
13.d odd 4 1 26.6.a.c 2
13.d odd 4 1 338.6.a.f 2
39.f even 4 1 234.6.a.h 2
52.f even 4 1 208.6.a.g 2
65.f even 4 1 650.6.b.h 4
65.g odd 4 1 650.6.a.b 2
65.k even 4 1 650.6.b.h 4
104.j odd 4 1 832.6.a.k 2
104.m even 4 1 832.6.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.c 2 13.d odd 4 1
208.6.a.g 2 52.f even 4 1
234.6.a.h 2 39.f even 4 1
338.6.a.f 2 13.d odd 4 1
338.6.b.b 4 1.a even 1 1 trivial
338.6.b.b 4 13.b even 2 1 inner
650.6.a.b 2 65.g odd 4 1
650.6.b.h 4 65.f even 4 1
650.6.b.h 4 65.k even 4 1
832.6.a.k 2 104.j odd 4 1
832.6.a.m 2 104.m even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 9T_{3} - 192 \) acting on \(S_{6}^{\mathrm{new}}(338, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 9 T - 192)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 6485 T^{2} + 334084 \) Copy content Toggle raw display
$7$ \( T^{4} + 46397 T^{2} + 125126596 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 12134344336 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 189 T - 3523122)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 629489907216 \) Copy content Toggle raw display
$23$ \( (T^{2} - 3044 T - 159200)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 1900 T - 13890476)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 804852814725184 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 52\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 131469156000000 \) Copy content Toggle raw display
$43$ \( (T^{2} - 4069 T - 6040532)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4614 T - 129839400)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 86\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( (T^{2} - 96830 T + 2309711776)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 34\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} - 52024 T + 439936528)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 69\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
show more
show less