Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [338,4,Mod(23,338)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(338, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("338.23");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 338.e (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(19.9426455819\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.73205 | + | 1.00000i | −5.00428 | − | 8.66767i | 2.00000 | − | 3.46410i | 13.8136i | 17.3353 | + | 10.0086i | 0.227146 | + | 0.131143i | 8.00000i | −36.5857 | + | 63.3682i | −13.8136 | − | 23.9258i | ||||
23.2 | −1.73205 | + | 1.00000i | 0.622927 | + | 1.07894i | 2.00000 | − | 3.46410i | − | 20.5002i | −2.15788 | − | 1.24585i | −18.4070 | − | 10.6273i | 8.00000i | 12.7239 | − | 22.0385i | 20.5002 | + | 35.5074i | |||
23.3 | −1.73205 | + | 1.00000i | 1.96372 | + | 3.40126i | 2.00000 | − | 3.46410i | 0.152827i | −6.80251 | − | 3.92743i | −29.4373 | − | 16.9956i | 8.00000i | 5.78763 | − | 10.0245i | −0.152827 | − | 0.264703i | ||||
23.4 | −1.73205 | + | 1.00000i | −4.47729 | − | 7.75489i | 2.00000 | − | 3.46410i | − | 17.3267i | 15.5098 | + | 8.95458i | 14.5068 | + | 8.37550i | 8.00000i | −26.5923 | + | 46.0591i | 17.3267 | + | 30.0108i | |||
23.5 | −1.73205 | + | 1.00000i | 4.07401 | + | 7.05638i | 2.00000 | − | 3.46410i | 12.6646i | −14.1128 | − | 8.14801i | 24.9160 | + | 14.3853i | 8.00000i | −19.6950 | + | 34.1128i | −12.6646 | − | 21.9357i | ||||
23.6 | −1.73205 | + | 1.00000i | −1.67908 | − | 2.90825i | 2.00000 | − | 3.46410i | − | 6.80407i | 5.81649 | + | 3.35815i | −13.4563 | − | 7.76902i | 8.00000i | 7.86140 | − | 13.6163i | 6.80407 | + | 11.7850i | |||
23.7 | 1.73205 | − | 1.00000i | −4.47729 | − | 7.75489i | 2.00000 | − | 3.46410i | 17.3267i | −15.5098 | − | 8.95458i | −14.5068 | − | 8.37550i | − | 8.00000i | −26.5923 | + | 46.0591i | 17.3267 | + | 30.0108i | |||
23.8 | 1.73205 | − | 1.00000i | 0.622927 | + | 1.07894i | 2.00000 | − | 3.46410i | 20.5002i | 2.15788 | + | 1.24585i | 18.4070 | + | 10.6273i | − | 8.00000i | 12.7239 | − | 22.0385i | 20.5002 | + | 35.5074i | |||
23.9 | 1.73205 | − | 1.00000i | −1.67908 | − | 2.90825i | 2.00000 | − | 3.46410i | 6.80407i | −5.81649 | − | 3.35815i | 13.4563 | + | 7.76902i | − | 8.00000i | 7.86140 | − | 13.6163i | 6.80407 | + | 11.7850i | |||
23.10 | 1.73205 | − | 1.00000i | −5.00428 | − | 8.66767i | 2.00000 | − | 3.46410i | − | 13.8136i | −17.3353 | − | 10.0086i | −0.227146 | − | 0.131143i | − | 8.00000i | −36.5857 | + | 63.3682i | −13.8136 | − | 23.9258i | ||
23.11 | 1.73205 | − | 1.00000i | 1.96372 | + | 3.40126i | 2.00000 | − | 3.46410i | − | 0.152827i | 6.80251 | + | 3.92743i | 29.4373 | + | 16.9956i | − | 8.00000i | 5.78763 | − | 10.0245i | −0.152827 | − | 0.264703i | ||
23.12 | 1.73205 | − | 1.00000i | 4.07401 | + | 7.05638i | 2.00000 | − | 3.46410i | − | 12.6646i | 14.1128 | + | 8.14801i | −24.9160 | − | 14.3853i | − | 8.00000i | −19.6950 | + | 34.1128i | −12.6646 | − | 21.9357i | ||
147.1 | −1.73205 | − | 1.00000i | −5.00428 | + | 8.66767i | 2.00000 | + | 3.46410i | − | 13.8136i | 17.3353 | − | 10.0086i | 0.227146 | − | 0.131143i | − | 8.00000i | −36.5857 | − | 63.3682i | −13.8136 | + | 23.9258i | ||
147.2 | −1.73205 | − | 1.00000i | 0.622927 | − | 1.07894i | 2.00000 | + | 3.46410i | 20.5002i | −2.15788 | + | 1.24585i | −18.4070 | + | 10.6273i | − | 8.00000i | 12.7239 | + | 22.0385i | 20.5002 | − | 35.5074i | |||
147.3 | −1.73205 | − | 1.00000i | 1.96372 | − | 3.40126i | 2.00000 | + | 3.46410i | − | 0.152827i | −6.80251 | + | 3.92743i | −29.4373 | + | 16.9956i | − | 8.00000i | 5.78763 | + | 10.0245i | −0.152827 | + | 0.264703i | ||
147.4 | −1.73205 | − | 1.00000i | −4.47729 | + | 7.75489i | 2.00000 | + | 3.46410i | 17.3267i | 15.5098 | − | 8.95458i | 14.5068 | − | 8.37550i | − | 8.00000i | −26.5923 | − | 46.0591i | 17.3267 | − | 30.0108i | |||
147.5 | −1.73205 | − | 1.00000i | 4.07401 | − | 7.05638i | 2.00000 | + | 3.46410i | − | 12.6646i | −14.1128 | + | 8.14801i | 24.9160 | − | 14.3853i | − | 8.00000i | −19.6950 | − | 34.1128i | −12.6646 | + | 21.9357i | ||
147.6 | −1.73205 | − | 1.00000i | −1.67908 | + | 2.90825i | 2.00000 | + | 3.46410i | 6.80407i | 5.81649 | − | 3.35815i | −13.4563 | + | 7.76902i | − | 8.00000i | 7.86140 | + | 13.6163i | 6.80407 | − | 11.7850i | |||
147.7 | 1.73205 | + | 1.00000i | −4.47729 | + | 7.75489i | 2.00000 | + | 3.46410i | − | 17.3267i | −15.5098 | + | 8.95458i | −14.5068 | + | 8.37550i | 8.00000i | −26.5923 | − | 46.0591i | 17.3267 | − | 30.0108i | |||
147.8 | 1.73205 | + | 1.00000i | 0.622927 | − | 1.07894i | 2.00000 | + | 3.46410i | − | 20.5002i | 2.15788 | − | 1.24585i | 18.4070 | − | 10.6273i | 8.00000i | 12.7239 | + | 22.0385i | 20.5002 | − | 35.5074i | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 338.4.e.i | 24 | |
13.b | even | 2 | 1 | inner | 338.4.e.i | 24 | |
13.c | even | 3 | 1 | 338.4.b.h | 12 | ||
13.c | even | 3 | 1 | inner | 338.4.e.i | 24 | |
13.d | odd | 4 | 1 | 338.4.c.o | 12 | ||
13.d | odd | 4 | 1 | 338.4.c.p | 12 | ||
13.e | even | 6 | 1 | 338.4.b.h | 12 | ||
13.e | even | 6 | 1 | inner | 338.4.e.i | 24 | |
13.f | odd | 12 | 1 | 338.4.a.n | ✓ | 6 | |
13.f | odd | 12 | 1 | 338.4.a.o | yes | 6 | |
13.f | odd | 12 | 1 | 338.4.c.o | 12 | ||
13.f | odd | 12 | 1 | 338.4.c.p | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
338.4.a.n | ✓ | 6 | 13.f | odd | 12 | 1 | |
338.4.a.o | yes | 6 | 13.f | odd | 12 | 1 | |
338.4.b.h | 12 | 13.c | even | 3 | 1 | ||
338.4.b.h | 12 | 13.e | even | 6 | 1 | ||
338.4.c.o | 12 | 13.d | odd | 4 | 1 | ||
338.4.c.o | 12 | 13.f | odd | 12 | 1 | ||
338.4.c.p | 12 | 13.d | odd | 4 | 1 | ||
338.4.c.p | 12 | 13.f | odd | 12 | 1 | ||
338.4.e.i | 24 | 1.a | even | 1 | 1 | trivial | |
338.4.e.i | 24 | 13.b | even | 2 | 1 | inner | |
338.4.e.i | 24 | 13.c | even | 3 | 1 | inner | |
338.4.e.i | 24 | 13.e | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\):
\( T_{3}^{12} + 9 T_{3}^{11} + 178 T_{3}^{10} + 589 T_{3}^{9} + 13675 T_{3}^{8} + 37320 T_{3}^{7} + \cdots + 143976001 \) |
\( T_{5}^{12} + 1118T_{5}^{10} + 459449T_{5}^{8} + 85344405T_{5}^{6} + 6935622164T_{5}^{4} + 178926938144T_{5}^{2} + 4175227456 \) |