Properties

Label 338.4.c.g
Level $338$
Weight $4$
Character orbit 338.c
Analytic conductor $19.943$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(191,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} + ( - \zeta_{6} + 1) q^{3} - 4 \zeta_{6} q^{4} - 17 q^{5} - 2 \zeta_{6} q^{6} - 35 \zeta_{6} q^{7} - 8 q^{8} + 26 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{6} + 2) q^{2} + ( - \zeta_{6} + 1) q^{3} - 4 \zeta_{6} q^{4} - 17 q^{5} - 2 \zeta_{6} q^{6} - 35 \zeta_{6} q^{7} - 8 q^{8} + 26 \zeta_{6} q^{9} + (34 \zeta_{6} - 34) q^{10} + ( - 2 \zeta_{6} + 2) q^{11} - 4 q^{12} - 70 q^{14} + (17 \zeta_{6} - 17) q^{15} + (16 \zeta_{6} - 16) q^{16} + 19 \zeta_{6} q^{17} + 52 q^{18} + 94 \zeta_{6} q^{19} + 68 \zeta_{6} q^{20} - 35 q^{21} - 4 \zeta_{6} q^{22} + ( - 72 \zeta_{6} + 72) q^{23} + (8 \zeta_{6} - 8) q^{24} + 164 q^{25} + 53 q^{27} + (140 \zeta_{6} - 140) q^{28} + (246 \zeta_{6} - 246) q^{29} + 34 \zeta_{6} q^{30} + 100 q^{31} + 32 \zeta_{6} q^{32} - 2 \zeta_{6} q^{33} + 38 q^{34} + 595 \zeta_{6} q^{35} + ( - 104 \zeta_{6} + 104) q^{36} + (11 \zeta_{6} - 11) q^{37} + 188 q^{38} + 136 q^{40} + (280 \zeta_{6} - 280) q^{41} + (70 \zeta_{6} - 70) q^{42} - 241 \zeta_{6} q^{43} - 8 q^{44} - 442 \zeta_{6} q^{45} - 144 \zeta_{6} q^{46} - 137 q^{47} + 16 \zeta_{6} q^{48} + (882 \zeta_{6} - 882) q^{49} + ( - 328 \zeta_{6} + 328) q^{50} + 19 q^{51} - 232 q^{53} + ( - 106 \zeta_{6} + 106) q^{54} + (34 \zeta_{6} - 34) q^{55} + 280 \zeta_{6} q^{56} + 94 q^{57} + 492 \zeta_{6} q^{58} - 386 \zeta_{6} q^{59} + 68 q^{60} - 64 \zeta_{6} q^{61} + ( - 200 \zeta_{6} + 200) q^{62} + ( - 910 \zeta_{6} + 910) q^{63} + 64 q^{64} - 4 q^{66} + (670 \zeta_{6} - 670) q^{67} + ( - 76 \zeta_{6} + 76) q^{68} - 72 \zeta_{6} q^{69} + 1190 q^{70} + 55 \zeta_{6} q^{71} - 208 \zeta_{6} q^{72} + 838 q^{73} + 22 \zeta_{6} q^{74} + ( - 164 \zeta_{6} + 164) q^{75} + ( - 376 \zeta_{6} + 376) q^{76} - 70 q^{77} + 1016 q^{79} + ( - 272 \zeta_{6} + 272) q^{80} + (649 \zeta_{6} - 649) q^{81} + 560 \zeta_{6} q^{82} - 420 q^{83} + 140 \zeta_{6} q^{84} - 323 \zeta_{6} q^{85} - 482 q^{86} + 246 \zeta_{6} q^{87} + (16 \zeta_{6} - 16) q^{88} + (934 \zeta_{6} - 934) q^{89} - 884 q^{90} - 288 q^{92} + ( - 100 \zeta_{6} + 100) q^{93} + (274 \zeta_{6} - 274) q^{94} - 1598 \zeta_{6} q^{95} + 32 q^{96} - 1154 \zeta_{6} q^{97} + 1764 \zeta_{6} q^{98} + 52 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} - 4 q^{4} - 34 q^{5} - 2 q^{6} - 35 q^{7} - 16 q^{8} + 26 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + q^{3} - 4 q^{4} - 34 q^{5} - 2 q^{6} - 35 q^{7} - 16 q^{8} + 26 q^{9} - 34 q^{10} + 2 q^{11} - 8 q^{12} - 140 q^{14} - 17 q^{15} - 16 q^{16} + 19 q^{17} + 104 q^{18} + 94 q^{19} + 68 q^{20} - 70 q^{21} - 4 q^{22} + 72 q^{23} - 8 q^{24} + 328 q^{25} + 106 q^{27} - 140 q^{28} - 246 q^{29} + 34 q^{30} + 200 q^{31} + 32 q^{32} - 2 q^{33} + 76 q^{34} + 595 q^{35} + 104 q^{36} - 11 q^{37} + 376 q^{38} + 272 q^{40} - 280 q^{41} - 70 q^{42} - 241 q^{43} - 16 q^{44} - 442 q^{45} - 144 q^{46} - 274 q^{47} + 16 q^{48} - 882 q^{49} + 328 q^{50} + 38 q^{51} - 464 q^{53} + 106 q^{54} - 34 q^{55} + 280 q^{56} + 188 q^{57} + 492 q^{58} - 386 q^{59} + 136 q^{60} - 64 q^{61} + 200 q^{62} + 910 q^{63} + 128 q^{64} - 8 q^{66} - 670 q^{67} + 76 q^{68} - 72 q^{69} + 2380 q^{70} + 55 q^{71} - 208 q^{72} + 1676 q^{73} + 22 q^{74} + 164 q^{75} + 376 q^{76} - 140 q^{77} + 2032 q^{79} + 272 q^{80} - 649 q^{81} + 560 q^{82} - 840 q^{83} + 140 q^{84} - 323 q^{85} - 964 q^{86} + 246 q^{87} - 16 q^{88} - 934 q^{89} - 1768 q^{90} - 576 q^{92} + 100 q^{93} - 274 q^{94} - 1598 q^{95} + 64 q^{96} - 1154 q^{97} + 1764 q^{98} + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 1.73205i 0.500000 0.866025i −2.00000 3.46410i −17.0000 −1.00000 1.73205i −17.5000 30.3109i −8.00000 13.0000 + 22.5167i −17.0000 + 29.4449i
315.1 1.00000 + 1.73205i 0.500000 + 0.866025i −2.00000 + 3.46410i −17.0000 −1.00000 + 1.73205i −17.5000 + 30.3109i −8.00000 13.0000 22.5167i −17.0000 29.4449i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.c.g 2
13.b even 2 1 338.4.c.c 2
13.c even 3 1 338.4.a.b 1
13.c even 3 1 inner 338.4.c.g 2
13.d odd 4 2 338.4.e.c 4
13.e even 6 1 26.4.a.b 1
13.e even 6 1 338.4.c.c 2
13.f odd 12 2 338.4.b.b 2
13.f odd 12 2 338.4.e.c 4
39.h odd 6 1 234.4.a.a 1
52.i odd 6 1 208.4.a.e 1
65.l even 6 1 650.4.a.c 1
65.r odd 12 2 650.4.b.d 2
91.t odd 6 1 1274.4.a.f 1
104.p odd 6 1 832.4.a.g 1
104.s even 6 1 832.4.a.j 1
156.r even 6 1 1872.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.b 1 13.e even 6 1
208.4.a.e 1 52.i odd 6 1
234.4.a.a 1 39.h odd 6 1
338.4.a.b 1 13.c even 3 1
338.4.b.b 2 13.f odd 12 2
338.4.c.c 2 13.b even 2 1
338.4.c.c 2 13.e even 6 1
338.4.c.g 2 1.a even 1 1 trivial
338.4.c.g 2 13.c even 3 1 inner
338.4.e.c 4 13.d odd 4 2
338.4.e.c 4 13.f odd 12 2
650.4.a.c 1 65.l even 6 1
650.4.b.d 2 65.r odd 12 2
832.4.a.g 1 104.p odd 6 1
832.4.a.j 1 104.s even 6 1
1274.4.a.f 1 91.t odd 6 1
1872.4.a.b 1 156.r even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(338, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{5} + 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( (T + 17)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 35T + 1225 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 19T + 361 \) Copy content Toggle raw display
$19$ \( T^{2} - 94T + 8836 \) Copy content Toggle raw display
$23$ \( T^{2} - 72T + 5184 \) Copy content Toggle raw display
$29$ \( T^{2} + 246T + 60516 \) Copy content Toggle raw display
$31$ \( (T - 100)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} + 280T + 78400 \) Copy content Toggle raw display
$43$ \( T^{2} + 241T + 58081 \) Copy content Toggle raw display
$47$ \( (T + 137)^{2} \) Copy content Toggle raw display
$53$ \( (T + 232)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 386T + 148996 \) Copy content Toggle raw display
$61$ \( T^{2} + 64T + 4096 \) Copy content Toggle raw display
$67$ \( T^{2} + 670T + 448900 \) Copy content Toggle raw display
$71$ \( T^{2} - 55T + 3025 \) Copy content Toggle raw display
$73$ \( (T - 838)^{2} \) Copy content Toggle raw display
$79$ \( (T - 1016)^{2} \) Copy content Toggle raw display
$83$ \( (T + 420)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 934T + 872356 \) Copy content Toggle raw display
$97$ \( T^{2} + 1154 T + 1331716 \) Copy content Toggle raw display
show more
show less