Properties

Label 338.4.a.n.1.6
Level $338$
Weight $4$
Character 338.1
Self dual yes
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6681389953.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 107x^{4} + 85x^{3} + 3703x^{2} - 1659x - 41951 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(5.84973\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +10.0086 q^{3} +4.00000 q^{4} +13.8136 q^{5} -20.0171 q^{6} +0.262285 q^{7} -8.00000 q^{8} +73.1713 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} +10.0086 q^{3} +4.00000 q^{4} +13.8136 q^{5} -20.0171 q^{6} +0.262285 q^{7} -8.00000 q^{8} +73.1713 q^{9} -27.6271 q^{10} -40.0159 q^{11} +40.0343 q^{12} -0.524571 q^{14} +138.254 q^{15} +16.0000 q^{16} +79.7361 q^{17} -146.343 q^{18} +22.5864 q^{19} +55.2543 q^{20} +2.62510 q^{21} +80.0318 q^{22} -65.5291 q^{23} -80.0685 q^{24} +65.8147 q^{25} +462.109 q^{27} +1.04914 q^{28} +40.1368 q^{29} -276.508 q^{30} +113.748 q^{31} -32.0000 q^{32} -400.502 q^{33} -159.472 q^{34} +3.62310 q^{35} +292.685 q^{36} -121.080 q^{37} -45.1727 q^{38} -110.509 q^{40} -396.184 q^{41} -5.25020 q^{42} -275.900 q^{43} -160.064 q^{44} +1010.76 q^{45} +131.058 q^{46} +440.483 q^{47} +160.137 q^{48} -342.931 q^{49} -131.629 q^{50} +798.043 q^{51} -615.108 q^{53} -924.217 q^{54} -552.762 q^{55} -2.09828 q^{56} +226.057 q^{57} -80.2736 q^{58} +230.908 q^{59} +553.016 q^{60} -109.524 q^{61} -227.495 q^{62} +19.1918 q^{63} +64.0000 q^{64} +801.003 q^{66} +221.132 q^{67} +318.944 q^{68} -655.852 q^{69} -7.24620 q^{70} +322.203 q^{71} -585.371 q^{72} +323.664 q^{73} +242.160 q^{74} +658.711 q^{75} +90.3455 q^{76} -10.4956 q^{77} +743.263 q^{79} +221.017 q^{80} +2649.42 q^{81} +792.369 q^{82} -539.296 q^{83} +10.5004 q^{84} +1101.44 q^{85} +551.800 q^{86} +401.712 q^{87} +320.127 q^{88} +1264.14 q^{89} -2021.51 q^{90} -262.116 q^{92} +1138.45 q^{93} -880.967 q^{94} +311.998 q^{95} -320.274 q^{96} -326.080 q^{97} +685.862 q^{98} -2928.02 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9} + 36 q^{10} - 37 q^{11} + 36 q^{12} + 50 q^{14} - 118 q^{15} + 96 q^{16} + 99 q^{17} - 226 q^{18} + 81 q^{19} - 72 q^{20} + 26 q^{21} + 74 q^{22} + 267 q^{23} - 72 q^{24} + 368 q^{25} + 669 q^{27} - 100 q^{28} - 119 q^{29} + 236 q^{30} + 625 q^{31} - 192 q^{32} - 762 q^{33} - 198 q^{34} + 614 q^{35} + 452 q^{36} - 274 q^{37} - 162 q^{38} + 144 q^{40} - 1140 q^{41} - 52 q^{42} + 428 q^{43} - 148 q^{44} + 1215 q^{45} - 534 q^{46} + 986 q^{47} + 144 q^{48} + 899 q^{49} - 736 q^{50} + 289 q^{51} + 89 q^{53} - 1338 q^{54} + 1126 q^{55} + 200 q^{56} + 2553 q^{57} + 238 q^{58} - 1088 q^{59} - 472 q^{60} + 1704 q^{61} - 1250 q^{62} + 3222 q^{63} + 384 q^{64} + 1524 q^{66} + 1692 q^{67} + 396 q^{68} + 1168 q^{69} - 1228 q^{70} + 1221 q^{71} - 904 q^{72} + 1554 q^{73} + 548 q^{74} + 1798 q^{75} + 324 q^{76} + 2790 q^{77} - 875 q^{79} - 288 q^{80} + 3338 q^{81} + 2280 q^{82} + 126 q^{83} + 104 q^{84} + 3721 q^{85} - 856 q^{86} + 1602 q^{87} + 296 q^{88} + 374 q^{89} - 2430 q^{90} + 1068 q^{92} + 1868 q^{93} - 1972 q^{94} - 4093 q^{95} - 288 q^{96} + 330 q^{97} - 1798 q^{98} + 1344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 10.0086 1.92615 0.963074 0.269235i \(-0.0867710\pi\)
0.963074 + 0.269235i \(0.0867710\pi\)
\(4\) 4.00000 0.500000
\(5\) 13.8136 1.23552 0.617762 0.786365i \(-0.288040\pi\)
0.617762 + 0.786365i \(0.288040\pi\)
\(6\) −20.0171 −1.36199
\(7\) 0.262285 0.0141621 0.00708104 0.999975i \(-0.497746\pi\)
0.00708104 + 0.999975i \(0.497746\pi\)
\(8\) −8.00000 −0.353553
\(9\) 73.1713 2.71005
\(10\) −27.6271 −0.873647
\(11\) −40.0159 −1.09684 −0.548420 0.836203i \(-0.684771\pi\)
−0.548420 + 0.836203i \(0.684771\pi\)
\(12\) 40.0343 0.963074
\(13\) 0 0
\(14\) −0.524571 −0.0100141
\(15\) 138.254 2.37980
\(16\) 16.0000 0.250000
\(17\) 79.7361 1.13758 0.568789 0.822483i \(-0.307412\pi\)
0.568789 + 0.822483i \(0.307412\pi\)
\(18\) −146.343 −1.91629
\(19\) 22.5864 0.272719 0.136360 0.990659i \(-0.456460\pi\)
0.136360 + 0.990659i \(0.456460\pi\)
\(20\) 55.2543 0.617762
\(21\) 2.62510 0.0272783
\(22\) 80.0318 0.775583
\(23\) −65.5291 −0.594077 −0.297038 0.954866i \(-0.595999\pi\)
−0.297038 + 0.954866i \(0.595999\pi\)
\(24\) −80.0685 −0.680996
\(25\) 65.8147 0.526518
\(26\) 0 0
\(27\) 462.109 3.29381
\(28\) 1.04914 0.00708104
\(29\) 40.1368 0.257007 0.128504 0.991709i \(-0.458983\pi\)
0.128504 + 0.991709i \(0.458983\pi\)
\(30\) −276.508 −1.68277
\(31\) 113.748 0.659022 0.329511 0.944152i \(-0.393116\pi\)
0.329511 + 0.944152i \(0.393116\pi\)
\(32\) −32.0000 −0.176777
\(33\) −400.502 −2.11268
\(34\) −159.472 −0.804389
\(35\) 3.62310 0.0174976
\(36\) 292.685 1.35502
\(37\) −121.080 −0.537984 −0.268992 0.963142i \(-0.586690\pi\)
−0.268992 + 0.963142i \(0.586690\pi\)
\(38\) −45.1727 −0.192842
\(39\) 0 0
\(40\) −110.509 −0.436823
\(41\) −396.184 −1.50911 −0.754556 0.656236i \(-0.772148\pi\)
−0.754556 + 0.656236i \(0.772148\pi\)
\(42\) −5.25020 −0.0192887
\(43\) −275.900 −0.978473 −0.489237 0.872151i \(-0.662725\pi\)
−0.489237 + 0.872151i \(0.662725\pi\)
\(44\) −160.064 −0.548420
\(45\) 1010.76 3.34833
\(46\) 131.058 0.420076
\(47\) 440.483 1.36704 0.683522 0.729930i \(-0.260447\pi\)
0.683522 + 0.729930i \(0.260447\pi\)
\(48\) 160.137 0.481537
\(49\) −342.931 −0.999799
\(50\) −131.629 −0.372304
\(51\) 798.043 2.19115
\(52\) 0 0
\(53\) −615.108 −1.59418 −0.797091 0.603860i \(-0.793629\pi\)
−0.797091 + 0.603860i \(0.793629\pi\)
\(54\) −924.217 −2.32907
\(55\) −552.762 −1.35517
\(56\) −2.09828 −0.00500705
\(57\) 226.057 0.525298
\(58\) −80.2736 −0.181732
\(59\) 230.908 0.509520 0.254760 0.967004i \(-0.418004\pi\)
0.254760 + 0.967004i \(0.418004\pi\)
\(60\) 553.016 1.18990
\(61\) −109.524 −0.229886 −0.114943 0.993372i \(-0.536669\pi\)
−0.114943 + 0.993372i \(0.536669\pi\)
\(62\) −227.495 −0.465999
\(63\) 19.1918 0.0383799
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 801.003 1.49389
\(67\) 221.132 0.403218 0.201609 0.979466i \(-0.435383\pi\)
0.201609 + 0.979466i \(0.435383\pi\)
\(68\) 318.944 0.568789
\(69\) −655.852 −1.14428
\(70\) −7.24620 −0.0123727
\(71\) 322.203 0.538571 0.269285 0.963060i \(-0.413213\pi\)
0.269285 + 0.963060i \(0.413213\pi\)
\(72\) −585.371 −0.958147
\(73\) 323.664 0.518932 0.259466 0.965752i \(-0.416453\pi\)
0.259466 + 0.965752i \(0.416453\pi\)
\(74\) 242.160 0.380412
\(75\) 658.711 1.01415
\(76\) 90.3455 0.136360
\(77\) −10.4956 −0.0155335
\(78\) 0 0
\(79\) 743.263 1.05853 0.529263 0.848458i \(-0.322468\pi\)
0.529263 + 0.848458i \(0.322468\pi\)
\(80\) 221.017 0.308881
\(81\) 2649.42 3.63432
\(82\) 792.369 1.06710
\(83\) −539.296 −0.713198 −0.356599 0.934258i \(-0.616064\pi\)
−0.356599 + 0.934258i \(0.616064\pi\)
\(84\) 10.5004 0.0136391
\(85\) 1101.44 1.40550
\(86\) 551.800 0.691885
\(87\) 401.712 0.495035
\(88\) 320.127 0.387792
\(89\) 1264.14 1.50560 0.752801 0.658248i \(-0.228702\pi\)
0.752801 + 0.658248i \(0.228702\pi\)
\(90\) −2021.51 −2.36763
\(91\) 0 0
\(92\) −262.116 −0.297038
\(93\) 1138.45 1.26937
\(94\) −880.967 −0.966646
\(95\) 311.998 0.336951
\(96\) −320.274 −0.340498
\(97\) −326.080 −0.341324 −0.170662 0.985330i \(-0.554591\pi\)
−0.170662 + 0.985330i \(0.554591\pi\)
\(98\) 685.862 0.706965
\(99\) −2928.02 −2.97249
\(100\) 263.259 0.263259
\(101\) −1435.16 −1.41390 −0.706948 0.707266i \(-0.749928\pi\)
−0.706948 + 0.707266i \(0.749928\pi\)
\(102\) −1596.09 −1.54937
\(103\) 1853.77 1.77337 0.886684 0.462375i \(-0.153003\pi\)
0.886684 + 0.462375i \(0.153003\pi\)
\(104\) 0 0
\(105\) 36.2620 0.0337029
\(106\) 1230.22 1.12726
\(107\) −153.925 −0.139070 −0.0695352 0.997580i \(-0.522152\pi\)
−0.0695352 + 0.997580i \(0.522152\pi\)
\(108\) 1848.43 1.64690
\(109\) −1788.06 −1.57124 −0.785621 0.618708i \(-0.787657\pi\)
−0.785621 + 0.618708i \(0.787657\pi\)
\(110\) 1105.52 0.958251
\(111\) −1211.83 −1.03624
\(112\) 4.19657 0.00354052
\(113\) −929.781 −0.774039 −0.387020 0.922071i \(-0.626495\pi\)
−0.387020 + 0.922071i \(0.626495\pi\)
\(114\) −452.114 −0.371442
\(115\) −905.191 −0.733995
\(116\) 160.547 0.128504
\(117\) 0 0
\(118\) −461.816 −0.360285
\(119\) 20.9136 0.0161105
\(120\) −1106.03 −0.841387
\(121\) 270.272 0.203059
\(122\) 219.047 0.162554
\(123\) −3965.24 −2.90677
\(124\) 454.991 0.329511
\(125\) −817.560 −0.584998
\(126\) −38.3835 −0.0271387
\(127\) −785.484 −0.548822 −0.274411 0.961612i \(-0.588483\pi\)
−0.274411 + 0.961612i \(0.588483\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2761.36 −1.88469
\(130\) 0 0
\(131\) −2851.17 −1.90159 −0.950793 0.309826i \(-0.899729\pi\)
−0.950793 + 0.309826i \(0.899729\pi\)
\(132\) −1602.01 −1.05634
\(133\) 5.92408 0.00386228
\(134\) −442.264 −0.285118
\(135\) 6383.37 4.06958
\(136\) −637.888 −0.402195
\(137\) 402.079 0.250744 0.125372 0.992110i \(-0.459988\pi\)
0.125372 + 0.992110i \(0.459988\pi\)
\(138\) 1311.70 0.809128
\(139\) 860.223 0.524915 0.262457 0.964944i \(-0.415467\pi\)
0.262457 + 0.964944i \(0.415467\pi\)
\(140\) 14.4924 0.00874879
\(141\) 4408.60 2.63313
\(142\) −644.407 −0.380827
\(143\) 0 0
\(144\) 1170.74 0.677512
\(145\) 554.433 0.317539
\(146\) −647.328 −0.366940
\(147\) −3432.25 −1.92576
\(148\) −484.319 −0.268992
\(149\) 1430.01 0.786249 0.393125 0.919485i \(-0.371394\pi\)
0.393125 + 0.919485i \(0.371394\pi\)
\(150\) −1317.42 −0.717114
\(151\) 941.478 0.507393 0.253697 0.967284i \(-0.418354\pi\)
0.253697 + 0.967284i \(0.418354\pi\)
\(152\) −180.691 −0.0964209
\(153\) 5834.39 3.08289
\(154\) 20.9912 0.0109839
\(155\) 1571.26 0.814237
\(156\) 0 0
\(157\) −182.395 −0.0927179 −0.0463590 0.998925i \(-0.514762\pi\)
−0.0463590 + 0.998925i \(0.514762\pi\)
\(158\) −1486.53 −0.748492
\(159\) −6156.35 −3.07063
\(160\) −442.034 −0.218412
\(161\) −17.1873 −0.00841336
\(162\) −5298.83 −2.56985
\(163\) −887.221 −0.426335 −0.213167 0.977016i \(-0.568378\pi\)
−0.213167 + 0.977016i \(0.568378\pi\)
\(164\) −1584.74 −0.754556
\(165\) −5532.36 −2.61026
\(166\) 1078.59 0.504307
\(167\) −2898.67 −1.34315 −0.671574 0.740938i \(-0.734381\pi\)
−0.671574 + 0.740938i \(0.734381\pi\)
\(168\) −21.0008 −0.00964433
\(169\) 0 0
\(170\) −2202.88 −0.993842
\(171\) 1652.67 0.739083
\(172\) −1103.60 −0.489237
\(173\) 2756.98 1.21162 0.605808 0.795611i \(-0.292850\pi\)
0.605808 + 0.795611i \(0.292850\pi\)
\(174\) −803.423 −0.350042
\(175\) 17.2622 0.00745659
\(176\) −640.254 −0.274210
\(177\) 2311.06 0.981411
\(178\) −2528.28 −1.06462
\(179\) −2106.68 −0.879668 −0.439834 0.898079i \(-0.644963\pi\)
−0.439834 + 0.898079i \(0.644963\pi\)
\(180\) 4043.03 1.67416
\(181\) 778.123 0.319544 0.159772 0.987154i \(-0.448924\pi\)
0.159772 + 0.987154i \(0.448924\pi\)
\(182\) 0 0
\(183\) −1096.17 −0.442795
\(184\) 524.233 0.210038
\(185\) −1672.54 −0.664691
\(186\) −2276.90 −0.897583
\(187\) −3190.71 −1.24774
\(188\) 1761.93 0.683522
\(189\) 121.204 0.0466472
\(190\) −623.997 −0.238260
\(191\) −1791.06 −0.678517 −0.339259 0.940693i \(-0.610176\pi\)
−0.339259 + 0.940693i \(0.610176\pi\)
\(192\) 640.548 0.240769
\(193\) −1876.99 −0.700043 −0.350022 0.936742i \(-0.613826\pi\)
−0.350022 + 0.936742i \(0.613826\pi\)
\(194\) 652.161 0.241353
\(195\) 0 0
\(196\) −1371.72 −0.499900
\(197\) −1584.04 −0.572885 −0.286443 0.958097i \(-0.592473\pi\)
−0.286443 + 0.958097i \(0.592473\pi\)
\(198\) 5856.03 2.10187
\(199\) 4968.18 1.76977 0.884887 0.465807i \(-0.154236\pi\)
0.884887 + 0.465807i \(0.154236\pi\)
\(200\) −526.518 −0.186152
\(201\) 2213.21 0.776657
\(202\) 2870.31 0.999775
\(203\) 10.5273 0.00363976
\(204\) 3192.17 1.09557
\(205\) −5472.72 −1.86454
\(206\) −3707.53 −1.25396
\(207\) −4794.85 −1.60998
\(208\) 0 0
\(209\) −903.814 −0.299130
\(210\) −72.5240 −0.0238316
\(211\) 3662.67 1.19502 0.597509 0.801862i \(-0.296157\pi\)
0.597509 + 0.801862i \(0.296157\pi\)
\(212\) −2460.43 −0.797091
\(213\) 3224.79 1.03737
\(214\) 307.851 0.0983376
\(215\) −3811.16 −1.20893
\(216\) −3696.87 −1.16454
\(217\) 29.8344 0.00933312
\(218\) 3576.13 1.11104
\(219\) 3239.41 0.999540
\(220\) −2211.05 −0.677586
\(221\) 0 0
\(222\) 2423.67 0.732730
\(223\) 4495.24 1.34988 0.674940 0.737872i \(-0.264169\pi\)
0.674940 + 0.737872i \(0.264169\pi\)
\(224\) −8.39313 −0.00250353
\(225\) 4815.75 1.42689
\(226\) 1859.56 0.547328
\(227\) −3601.61 −1.05307 −0.526536 0.850153i \(-0.676509\pi\)
−0.526536 + 0.850153i \(0.676509\pi\)
\(228\) 904.229 0.262649
\(229\) −5162.11 −1.48962 −0.744808 0.667279i \(-0.767459\pi\)
−0.744808 + 0.667279i \(0.767459\pi\)
\(230\) 1810.38 0.519013
\(231\) −105.046 −0.0299199
\(232\) −321.094 −0.0908659
\(233\) −2022.92 −0.568781 −0.284390 0.958709i \(-0.591791\pi\)
−0.284390 + 0.958709i \(0.591791\pi\)
\(234\) 0 0
\(235\) 6084.65 1.68902
\(236\) 923.633 0.254760
\(237\) 7438.99 2.03888
\(238\) −41.8272 −0.0113918
\(239\) −1423.12 −0.385163 −0.192581 0.981281i \(-0.561686\pi\)
−0.192581 + 0.981281i \(0.561686\pi\)
\(240\) 2212.06 0.594950
\(241\) 3554.34 0.950021 0.475011 0.879980i \(-0.342444\pi\)
0.475011 + 0.879980i \(0.342444\pi\)
\(242\) −540.544 −0.143585
\(243\) 14039.9 3.70643
\(244\) −438.094 −0.114943
\(245\) −4737.10 −1.23528
\(246\) 7930.47 2.05540
\(247\) 0 0
\(248\) −909.981 −0.232999
\(249\) −5397.58 −1.37373
\(250\) 1635.12 0.413656
\(251\) −1152.40 −0.289797 −0.144899 0.989447i \(-0.546286\pi\)
−0.144899 + 0.989447i \(0.546286\pi\)
\(252\) 76.7671 0.0191900
\(253\) 2622.21 0.651607
\(254\) 1570.97 0.388076
\(255\) 11023.8 2.70721
\(256\) 256.000 0.0625000
\(257\) −1849.01 −0.448787 −0.224393 0.974499i \(-0.572040\pi\)
−0.224393 + 0.974499i \(0.572040\pi\)
\(258\) 5522.73 1.33267
\(259\) −31.7575 −0.00761897
\(260\) 0 0
\(261\) 2936.86 0.696503
\(262\) 5702.34 1.34462
\(263\) −3350.88 −0.785643 −0.392822 0.919615i \(-0.628501\pi\)
−0.392822 + 0.919615i \(0.628501\pi\)
\(264\) 3204.01 0.746945
\(265\) −8496.84 −1.96965
\(266\) −11.8482 −0.00273104
\(267\) 12652.2 2.90001
\(268\) 884.529 0.201609
\(269\) −834.127 −0.189062 −0.0945309 0.995522i \(-0.530135\pi\)
−0.0945309 + 0.995522i \(0.530135\pi\)
\(270\) −12766.7 −2.87763
\(271\) 8061.06 1.80692 0.903459 0.428675i \(-0.141019\pi\)
0.903459 + 0.428675i \(0.141019\pi\)
\(272\) 1275.78 0.284395
\(273\) 0 0
\(274\) −804.157 −0.177303
\(275\) −2633.64 −0.577506
\(276\) −2623.41 −0.572140
\(277\) −4709.54 −1.02155 −0.510774 0.859715i \(-0.670641\pi\)
−0.510774 + 0.859715i \(0.670641\pi\)
\(278\) −1720.45 −0.371171
\(279\) 8323.07 1.78598
\(280\) −28.9848 −0.00618633
\(281\) −2110.40 −0.448028 −0.224014 0.974586i \(-0.571916\pi\)
−0.224014 + 0.974586i \(0.571916\pi\)
\(282\) −8817.21 −1.86190
\(283\) 1093.59 0.229708 0.114854 0.993382i \(-0.463360\pi\)
0.114854 + 0.993382i \(0.463360\pi\)
\(284\) 1288.81 0.269285
\(285\) 3122.66 0.649018
\(286\) 0 0
\(287\) −103.913 −0.0213722
\(288\) −2341.48 −0.479074
\(289\) 1444.84 0.294085
\(290\) −1108.87 −0.224534
\(291\) −3263.60 −0.657441
\(292\) 1294.66 0.259466
\(293\) −9605.18 −1.91516 −0.957578 0.288174i \(-0.906952\pi\)
−0.957578 + 0.288174i \(0.906952\pi\)
\(294\) 6864.50 1.36172
\(295\) 3189.67 0.629524
\(296\) 968.638 0.190206
\(297\) −18491.7 −3.61278
\(298\) −2860.02 −0.555962
\(299\) 0 0
\(300\) 2634.84 0.507076
\(301\) −72.3646 −0.0138572
\(302\) −1882.96 −0.358781
\(303\) −14363.9 −2.72337
\(304\) 361.382 0.0681799
\(305\) −1512.91 −0.284030
\(306\) −11668.8 −2.17993
\(307\) 4387.82 0.815721 0.407860 0.913044i \(-0.366275\pi\)
0.407860 + 0.913044i \(0.366275\pi\)
\(308\) −41.9823 −0.00776677
\(309\) 18553.5 3.41577
\(310\) −3142.52 −0.575752
\(311\) 2875.57 0.524304 0.262152 0.965027i \(-0.415568\pi\)
0.262152 + 0.965027i \(0.415568\pi\)
\(312\) 0 0
\(313\) 5715.61 1.03216 0.516078 0.856541i \(-0.327391\pi\)
0.516078 + 0.856541i \(0.327391\pi\)
\(314\) 364.790 0.0655615
\(315\) 265.107 0.0474193
\(316\) 2973.05 0.529263
\(317\) 7381.87 1.30791 0.653954 0.756534i \(-0.273109\pi\)
0.653954 + 0.756534i \(0.273109\pi\)
\(318\) 12312.7 2.17126
\(319\) −1606.11 −0.281896
\(320\) 884.069 0.154440
\(321\) −1540.57 −0.267870
\(322\) 34.3747 0.00594915
\(323\) 1800.95 0.310240
\(324\) 10597.7 1.81716
\(325\) 0 0
\(326\) 1774.44 0.301464
\(327\) −17895.9 −3.02645
\(328\) 3169.47 0.533552
\(329\) 115.532 0.0193602
\(330\) 11064.7 1.84573
\(331\) −6054.59 −1.00541 −0.502704 0.864458i \(-0.667662\pi\)
−0.502704 + 0.864458i \(0.667662\pi\)
\(332\) −2157.18 −0.356599
\(333\) −8859.57 −1.45796
\(334\) 5797.34 0.949749
\(335\) 3054.62 0.498185
\(336\) 42.0016 0.00681957
\(337\) −3686.95 −0.595967 −0.297984 0.954571i \(-0.596314\pi\)
−0.297984 + 0.954571i \(0.596314\pi\)
\(338\) 0 0
\(339\) −9305.77 −1.49091
\(340\) 4405.76 0.702752
\(341\) −4551.71 −0.722842
\(342\) −3305.35 −0.522611
\(343\) −179.910 −0.0283213
\(344\) 2207.20 0.345943
\(345\) −9059.66 −1.41378
\(346\) −5513.97 −0.856742
\(347\) −6535.10 −1.01102 −0.505508 0.862822i \(-0.668695\pi\)
−0.505508 + 0.862822i \(0.668695\pi\)
\(348\) 1606.85 0.247517
\(349\) 2973.40 0.456053 0.228027 0.973655i \(-0.426773\pi\)
0.228027 + 0.973655i \(0.426773\pi\)
\(350\) −34.5245 −0.00527260
\(351\) 0 0
\(352\) 1280.51 0.193896
\(353\) −11092.2 −1.67246 −0.836232 0.548375i \(-0.815246\pi\)
−0.836232 + 0.548375i \(0.815246\pi\)
\(354\) −4622.12 −0.693963
\(355\) 4450.78 0.665417
\(356\) 5056.56 0.752801
\(357\) 209.315 0.0310312
\(358\) 4213.36 0.622019
\(359\) 5263.11 0.773751 0.386875 0.922132i \(-0.373554\pi\)
0.386875 + 0.922132i \(0.373554\pi\)
\(360\) −8086.06 −1.18381
\(361\) −6348.86 −0.925624
\(362\) −1556.25 −0.225951
\(363\) 2705.03 0.391122
\(364\) 0 0
\(365\) 4470.96 0.641152
\(366\) 2192.35 0.313103
\(367\) 8669.12 1.23304 0.616518 0.787341i \(-0.288543\pi\)
0.616518 + 0.787341i \(0.288543\pi\)
\(368\) −1048.47 −0.148519
\(369\) −28989.3 −4.08977
\(370\) 3345.09 0.470008
\(371\) −161.334 −0.0225769
\(372\) 4553.80 0.634687
\(373\) 7859.73 1.09105 0.545524 0.838095i \(-0.316330\pi\)
0.545524 + 0.838095i \(0.316330\pi\)
\(374\) 6381.42 0.882287
\(375\) −8182.60 −1.12679
\(376\) −3523.87 −0.483323
\(377\) 0 0
\(378\) −242.409 −0.0329846
\(379\) 3080.51 0.417508 0.208754 0.977968i \(-0.433059\pi\)
0.208754 + 0.977968i \(0.433059\pi\)
\(380\) 1247.99 0.168476
\(381\) −7861.56 −1.05711
\(382\) 3582.13 0.479784
\(383\) 1431.12 0.190932 0.0954661 0.995433i \(-0.469566\pi\)
0.0954661 + 0.995433i \(0.469566\pi\)
\(384\) −1281.10 −0.170249
\(385\) −144.982 −0.0191921
\(386\) 3753.97 0.495005
\(387\) −20188.0 −2.65171
\(388\) −1304.32 −0.170662
\(389\) 11639.0 1.51701 0.758507 0.651665i \(-0.225929\pi\)
0.758507 + 0.651665i \(0.225929\pi\)
\(390\) 0 0
\(391\) −5225.03 −0.675809
\(392\) 2743.45 0.353482
\(393\) −28536.1 −3.66274
\(394\) 3168.09 0.405091
\(395\) 10267.1 1.30783
\(396\) −11712.1 −1.48625
\(397\) −1187.22 −0.150088 −0.0750438 0.997180i \(-0.523910\pi\)
−0.0750438 + 0.997180i \(0.523910\pi\)
\(398\) −9936.36 −1.25142
\(399\) 59.2915 0.00743932
\(400\) 1053.04 0.131629
\(401\) 3348.27 0.416969 0.208485 0.978026i \(-0.433147\pi\)
0.208485 + 0.978026i \(0.433147\pi\)
\(402\) −4426.43 −0.549180
\(403\) 0 0
\(404\) −5740.63 −0.706948
\(405\) 36597.9 4.49028
\(406\) −21.0546 −0.00257370
\(407\) 4845.12 0.590082
\(408\) −6384.35 −0.774687
\(409\) −16139.6 −1.95123 −0.975615 0.219491i \(-0.929560\pi\)
−0.975615 + 0.219491i \(0.929560\pi\)
\(410\) 10945.4 1.31843
\(411\) 4024.23 0.482970
\(412\) 7415.06 0.886684
\(413\) 60.5638 0.00721586
\(414\) 9589.70 1.13843
\(415\) −7449.60 −0.881173
\(416\) 0 0
\(417\) 8609.60 1.01106
\(418\) 1807.63 0.211517
\(419\) 6346.58 0.739978 0.369989 0.929036i \(-0.379361\pi\)
0.369989 + 0.929036i \(0.379361\pi\)
\(420\) 145.048 0.0168515
\(421\) 5135.18 0.594473 0.297236 0.954804i \(-0.403935\pi\)
0.297236 + 0.954804i \(0.403935\pi\)
\(422\) −7325.35 −0.845005
\(423\) 32230.7 3.70476
\(424\) 4920.87 0.563628
\(425\) 5247.81 0.598955
\(426\) −6449.59 −0.733529
\(427\) −28.7264 −0.00325567
\(428\) −615.701 −0.0695352
\(429\) 0 0
\(430\) 7622.33 0.854840
\(431\) −7044.54 −0.787293 −0.393647 0.919262i \(-0.628787\pi\)
−0.393647 + 0.919262i \(0.628787\pi\)
\(432\) 7393.74 0.823452
\(433\) 10173.8 1.12915 0.564576 0.825381i \(-0.309040\pi\)
0.564576 + 0.825381i \(0.309040\pi\)
\(434\) −59.6687 −0.00659951
\(435\) 5549.07 0.611627
\(436\) −7152.26 −0.785621
\(437\) −1480.06 −0.162016
\(438\) −6478.83 −0.706781
\(439\) 6385.59 0.694231 0.347116 0.937822i \(-0.387161\pi\)
0.347116 + 0.937822i \(0.387161\pi\)
\(440\) 4422.10 0.479126
\(441\) −25092.7 −2.70951
\(442\) 0 0
\(443\) 2362.81 0.253410 0.126705 0.991940i \(-0.459560\pi\)
0.126705 + 0.991940i \(0.459560\pi\)
\(444\) −4847.34 −0.518118
\(445\) 17462.3 1.86021
\(446\) −8990.47 −0.954510
\(447\) 14312.4 1.51443
\(448\) 16.7863 0.00177026
\(449\) −8148.20 −0.856431 −0.428216 0.903677i \(-0.640858\pi\)
−0.428216 + 0.903677i \(0.640858\pi\)
\(450\) −9631.50 −1.00896
\(451\) 15853.7 1.65526
\(452\) −3719.12 −0.387020
\(453\) 9422.84 0.977315
\(454\) 7203.22 0.744634
\(455\) 0 0
\(456\) −1808.46 −0.185721
\(457\) 14034.4 1.43655 0.718273 0.695762i \(-0.244933\pi\)
0.718273 + 0.695762i \(0.244933\pi\)
\(458\) 10324.2 1.05332
\(459\) 36846.7 3.74697
\(460\) −3620.76 −0.366998
\(461\) 7691.70 0.777089 0.388545 0.921430i \(-0.372978\pi\)
0.388545 + 0.921430i \(0.372978\pi\)
\(462\) 210.091 0.0211566
\(463\) −15555.9 −1.56144 −0.780719 0.624883i \(-0.785147\pi\)
−0.780719 + 0.624883i \(0.785147\pi\)
\(464\) 642.189 0.0642519
\(465\) 15726.1 1.56834
\(466\) 4045.84 0.402189
\(467\) −11941.8 −1.18330 −0.591648 0.806197i \(-0.701522\pi\)
−0.591648 + 0.806197i \(0.701522\pi\)
\(468\) 0 0
\(469\) 57.9997 0.00571040
\(470\) −12169.3 −1.19431
\(471\) −1825.51 −0.178589
\(472\) −1847.27 −0.180143
\(473\) 11040.4 1.07323
\(474\) −14878.0 −1.44171
\(475\) 1486.52 0.143592
\(476\) 83.6544 0.00805524
\(477\) −45008.3 −4.32031
\(478\) 2846.24 0.272351
\(479\) 14856.4 1.41714 0.708568 0.705642i \(-0.249342\pi\)
0.708568 + 0.705642i \(0.249342\pi\)
\(480\) −4424.13 −0.420693
\(481\) 0 0
\(482\) −7108.68 −0.671767
\(483\) −172.020 −0.0162054
\(484\) 1081.09 0.101530
\(485\) −4504.34 −0.421714
\(486\) −28079.9 −2.62084
\(487\) −14063.6 −1.30859 −0.654295 0.756239i \(-0.727035\pi\)
−0.654295 + 0.756239i \(0.727035\pi\)
\(488\) 876.188 0.0812770
\(489\) −8879.81 −0.821184
\(490\) 9474.21 0.873472
\(491\) −8218.07 −0.755349 −0.377675 0.925938i \(-0.623276\pi\)
−0.377675 + 0.925938i \(0.623276\pi\)
\(492\) −15860.9 −1.45339
\(493\) 3200.35 0.292366
\(494\) 0 0
\(495\) −40446.4 −3.67258
\(496\) 1819.96 0.164755
\(497\) 84.5093 0.00762728
\(498\) 10795.2 0.971370
\(499\) 6081.91 0.545619 0.272809 0.962068i \(-0.412047\pi\)
0.272809 + 0.962068i \(0.412047\pi\)
\(500\) −3270.24 −0.292499
\(501\) −29011.5 −2.58710
\(502\) 2304.81 0.204917
\(503\) −3226.70 −0.286027 −0.143013 0.989721i \(-0.545679\pi\)
−0.143013 + 0.989721i \(0.545679\pi\)
\(504\) −153.534 −0.0135694
\(505\) −19824.6 −1.74690
\(506\) −5244.41 −0.460756
\(507\) 0 0
\(508\) −3141.93 −0.274411
\(509\) −629.071 −0.0547801 −0.0273901 0.999625i \(-0.508720\pi\)
−0.0273901 + 0.999625i \(0.508720\pi\)
\(510\) −22047.7 −1.91429
\(511\) 84.8924 0.00734915
\(512\) −512.000 −0.0441942
\(513\) 10437.4 0.898286
\(514\) 3698.02 0.317340
\(515\) 25607.1 2.19104
\(516\) −11045.5 −0.942343
\(517\) −17626.3 −1.49943
\(518\) 63.5149 0.00538742
\(519\) 27593.4 2.33375
\(520\) 0 0
\(521\) −785.154 −0.0660235 −0.0330117 0.999455i \(-0.510510\pi\)
−0.0330117 + 0.999455i \(0.510510\pi\)
\(522\) −5873.73 −0.492502
\(523\) −990.379 −0.0828035 −0.0414018 0.999143i \(-0.513182\pi\)
−0.0414018 + 0.999143i \(0.513182\pi\)
\(524\) −11404.7 −0.950793
\(525\) 172.770 0.0143625
\(526\) 6701.76 0.555534
\(527\) 9069.79 0.749689
\(528\) −6408.03 −0.528170
\(529\) −7872.94 −0.647073
\(530\) 16993.7 1.39275
\(531\) 16895.9 1.38082
\(532\) 23.6963 0.00193114
\(533\) 0 0
\(534\) −25304.5 −2.05062
\(535\) −2126.26 −0.171825
\(536\) −1769.06 −0.142559
\(537\) −21084.8 −1.69437
\(538\) 1668.25 0.133687
\(539\) 13722.7 1.09662
\(540\) 25533.5 2.03479
\(541\) −2509.00 −0.199390 −0.0996952 0.995018i \(-0.531787\pi\)
−0.0996952 + 0.995018i \(0.531787\pi\)
\(542\) −16122.1 −1.27768
\(543\) 7787.89 0.615489
\(544\) −2551.55 −0.201097
\(545\) −24699.5 −1.94131
\(546\) 0 0
\(547\) 24461.5 1.91206 0.956032 0.293264i \(-0.0947415\pi\)
0.956032 + 0.293264i \(0.0947415\pi\)
\(548\) 1608.31 0.125372
\(549\) −8013.98 −0.623003
\(550\) 5267.27 0.408359
\(551\) 906.545 0.0700909
\(552\) 5246.82 0.404564
\(553\) 194.947 0.0149909
\(554\) 9419.08 0.722344
\(555\) −16739.8 −1.28029
\(556\) 3440.89 0.262457
\(557\) 12228.8 0.930250 0.465125 0.885245i \(-0.346009\pi\)
0.465125 + 0.885245i \(0.346009\pi\)
\(558\) −16646.1 −1.26288
\(559\) 0 0
\(560\) 57.9696 0.00437440
\(561\) −31934.4 −2.40334
\(562\) 4220.80 0.316804
\(563\) −1932.20 −0.144641 −0.0723203 0.997381i \(-0.523040\pi\)
−0.0723203 + 0.997381i \(0.523040\pi\)
\(564\) 17634.4 1.31657
\(565\) −12843.6 −0.956344
\(566\) −2187.18 −0.162428
\(567\) 694.904 0.0514695
\(568\) −2577.63 −0.190413
\(569\) 19743.1 1.45461 0.727307 0.686313i \(-0.240772\pi\)
0.727307 + 0.686313i \(0.240772\pi\)
\(570\) −6245.31 −0.458925
\(571\) 1327.51 0.0972933 0.0486466 0.998816i \(-0.484509\pi\)
0.0486466 + 0.998816i \(0.484509\pi\)
\(572\) 0 0
\(573\) −17926.0 −1.30692
\(574\) 207.827 0.0151124
\(575\) −4312.78 −0.312792
\(576\) 4682.97 0.338756
\(577\) 15077.5 1.08784 0.543921 0.839137i \(-0.316939\pi\)
0.543921 + 0.839137i \(0.316939\pi\)
\(578\) −2889.68 −0.207949
\(579\) −18785.9 −1.34839
\(580\) 2217.73 0.158769
\(581\) −141.449 −0.0101004
\(582\) 6527.19 0.464881
\(583\) 24614.1 1.74856
\(584\) −2589.31 −0.183470
\(585\) 0 0
\(586\) 19210.4 1.35422
\(587\) 7156.56 0.503207 0.251604 0.967830i \(-0.419042\pi\)
0.251604 + 0.967830i \(0.419042\pi\)
\(588\) −13729.0 −0.962881
\(589\) 2569.15 0.179728
\(590\) −6379.33 −0.445141
\(591\) −15854.0 −1.10346
\(592\) −1937.28 −0.134496
\(593\) 14729.2 1.01999 0.509997 0.860176i \(-0.329646\pi\)
0.509997 + 0.860176i \(0.329646\pi\)
\(594\) 36983.4 2.55462
\(595\) 288.892 0.0199049
\(596\) 5720.05 0.393125
\(597\) 49724.3 3.40885
\(598\) 0 0
\(599\) 28634.9 1.95324 0.976621 0.214970i \(-0.0689653\pi\)
0.976621 + 0.214970i \(0.0689653\pi\)
\(600\) −5269.69 −0.358557
\(601\) 5515.59 0.374352 0.187176 0.982326i \(-0.440066\pi\)
0.187176 + 0.982326i \(0.440066\pi\)
\(602\) 144.729 0.00979854
\(603\) 16180.5 1.09274
\(604\) 3765.91 0.253697
\(605\) 3733.42 0.250885
\(606\) 28727.7 1.92572
\(607\) 12898.1 0.862470 0.431235 0.902240i \(-0.358078\pi\)
0.431235 + 0.902240i \(0.358078\pi\)
\(608\) −722.764 −0.0482104
\(609\) 105.363 0.00701072
\(610\) 3025.82 0.200839
\(611\) 0 0
\(612\) 23337.6 1.54145
\(613\) 16080.3 1.05951 0.529754 0.848151i \(-0.322284\pi\)
0.529754 + 0.848151i \(0.322284\pi\)
\(614\) −8775.64 −0.576802
\(615\) −54774.1 −3.59139
\(616\) 83.9647 0.00549194
\(617\) −923.247 −0.0602407 −0.0301203 0.999546i \(-0.509589\pi\)
−0.0301203 + 0.999546i \(0.509589\pi\)
\(618\) −37107.1 −2.41532
\(619\) −25650.3 −1.66555 −0.832773 0.553615i \(-0.813248\pi\)
−0.832773 + 0.553615i \(0.813248\pi\)
\(620\) 6285.04 0.407118
\(621\) −30281.6 −1.95678
\(622\) −5751.14 −0.370739
\(623\) 331.566 0.0213225
\(624\) 0 0
\(625\) −19520.3 −1.24930
\(626\) −11431.2 −0.729845
\(627\) −9045.88 −0.576168
\(628\) −729.581 −0.0463590
\(629\) −9654.42 −0.611999
\(630\) −530.214 −0.0335305
\(631\) 21747.9 1.37206 0.686029 0.727574i \(-0.259352\pi\)
0.686029 + 0.727574i \(0.259352\pi\)
\(632\) −5946.10 −0.374246
\(633\) 36658.1 2.30178
\(634\) −14763.7 −0.924831
\(635\) −10850.3 −0.678082
\(636\) −24625.4 −1.53532
\(637\) 0 0
\(638\) 3212.22 0.199331
\(639\) 23576.1 1.45955
\(640\) −1768.14 −0.109206
\(641\) 22227.7 1.36964 0.684822 0.728711i \(-0.259880\pi\)
0.684822 + 0.728711i \(0.259880\pi\)
\(642\) 3081.14 0.189413
\(643\) −2848.45 −0.174700 −0.0873498 0.996178i \(-0.527840\pi\)
−0.0873498 + 0.996178i \(0.527840\pi\)
\(644\) −68.7493 −0.00420668
\(645\) −38144.3 −2.32857
\(646\) −3601.90 −0.219373
\(647\) 4148.86 0.252100 0.126050 0.992024i \(-0.459770\pi\)
0.126050 + 0.992024i \(0.459770\pi\)
\(648\) −21195.3 −1.28493
\(649\) −9240.00 −0.558862
\(650\) 0 0
\(651\) 298.599 0.0179770
\(652\) −3548.88 −0.213167
\(653\) 12417.8 0.744173 0.372087 0.928198i \(-0.378642\pi\)
0.372087 + 0.928198i \(0.378642\pi\)
\(654\) 35791.9 2.14002
\(655\) −39384.8 −2.34945
\(656\) −6338.95 −0.377278
\(657\) 23682.9 1.40633
\(658\) −231.065 −0.0136897
\(659\) −15902.9 −0.940043 −0.470022 0.882655i \(-0.655754\pi\)
−0.470022 + 0.882655i \(0.655754\pi\)
\(660\) −22129.4 −1.30513
\(661\) −26324.6 −1.54903 −0.774514 0.632556i \(-0.782006\pi\)
−0.774514 + 0.632556i \(0.782006\pi\)
\(662\) 12109.2 0.710931
\(663\) 0 0
\(664\) 4314.37 0.252154
\(665\) 81.8327 0.00477193
\(666\) 17719.1 1.03093
\(667\) −2630.13 −0.152682
\(668\) −11594.7 −0.671574
\(669\) 44990.9 2.60007
\(670\) −6109.25 −0.352270
\(671\) 4382.68 0.252148
\(672\) −84.0032 −0.00482216
\(673\) 11586.6 0.663643 0.331821 0.943342i \(-0.392337\pi\)
0.331821 + 0.943342i \(0.392337\pi\)
\(674\) 7373.90 0.421413
\(675\) 30413.6 1.73425
\(676\) 0 0
\(677\) −7512.76 −0.426498 −0.213249 0.976998i \(-0.568405\pi\)
−0.213249 + 0.976998i \(0.568405\pi\)
\(678\) 18611.5 1.05424
\(679\) −85.5262 −0.00483386
\(680\) −8811.52 −0.496921
\(681\) −36047.0 −2.02837
\(682\) 9103.43 0.511126
\(683\) −4354.81 −0.243971 −0.121986 0.992532i \(-0.538926\pi\)
−0.121986 + 0.992532i \(0.538926\pi\)
\(684\) 6610.70 0.369542
\(685\) 5554.14 0.309800
\(686\) 359.820 0.0200262
\(687\) −51665.3 −2.86922
\(688\) −4414.40 −0.244618
\(689\) 0 0
\(690\) 18119.3 0.999697
\(691\) 20534.9 1.13051 0.565255 0.824916i \(-0.308778\pi\)
0.565255 + 0.824916i \(0.308778\pi\)
\(692\) 11027.9 0.605808
\(693\) −767.976 −0.0420967
\(694\) 13070.2 0.714896
\(695\) 11882.8 0.648544
\(696\) −3213.69 −0.175021
\(697\) −31590.2 −1.71673
\(698\) −5946.81 −0.322478
\(699\) −20246.5 −1.09556
\(700\) 69.0490 0.00372829
\(701\) 19666.5 1.05962 0.529810 0.848117i \(-0.322263\pi\)
0.529810 + 0.848117i \(0.322263\pi\)
\(702\) 0 0
\(703\) −2734.75 −0.146719
\(704\) −2561.02 −0.137105
\(705\) 60898.6 3.25329
\(706\) 22184.5 1.18261
\(707\) −376.421 −0.0200237
\(708\) 9244.23 0.490706
\(709\) 7433.68 0.393763 0.196881 0.980427i \(-0.436919\pi\)
0.196881 + 0.980427i \(0.436919\pi\)
\(710\) −8901.56 −0.470521
\(711\) 54385.5 2.86866
\(712\) −10113.1 −0.532311
\(713\) −7453.78 −0.391510
\(714\) −418.630 −0.0219424
\(715\) 0 0
\(716\) −8426.72 −0.439834
\(717\) −14243.4 −0.741880
\(718\) −10526.2 −0.547124
\(719\) −24845.3 −1.28870 −0.644348 0.764733i \(-0.722871\pi\)
−0.644348 + 0.764733i \(0.722871\pi\)
\(720\) 16172.1 0.837082
\(721\) 486.216 0.0251146
\(722\) 12697.7 0.654515
\(723\) 35573.8 1.82988
\(724\) 3112.49 0.159772
\(725\) 2641.59 0.135319
\(726\) −5410.07 −0.276565
\(727\) 8215.91 0.419135 0.209568 0.977794i \(-0.432794\pi\)
0.209568 + 0.977794i \(0.432794\pi\)
\(728\) 0 0
\(729\) 68985.2 3.50481
\(730\) −8941.91 −0.453363
\(731\) −21999.2 −1.11309
\(732\) −4384.69 −0.221397
\(733\) 5235.91 0.263838 0.131919 0.991261i \(-0.457886\pi\)
0.131919 + 0.991261i \(0.457886\pi\)
\(734\) −17338.2 −0.871888
\(735\) −47411.6 −2.37932
\(736\) 2096.93 0.105019
\(737\) −8848.80 −0.442266
\(738\) 57978.7 2.89190
\(739\) 11585.1 0.576678 0.288339 0.957528i \(-0.406897\pi\)
0.288339 + 0.957528i \(0.406897\pi\)
\(740\) −6690.18 −0.332346
\(741\) 0 0
\(742\) 322.668 0.0159643
\(743\) 27000.0 1.33316 0.666578 0.745435i \(-0.267758\pi\)
0.666578 + 0.745435i \(0.267758\pi\)
\(744\) −9107.60 −0.448792
\(745\) 19753.6 0.971429
\(746\) −15719.5 −0.771488
\(747\) −39461.0 −1.93280
\(748\) −12762.8 −0.623871
\(749\) −40.3724 −0.00196953
\(750\) 16365.2 0.796763
\(751\) 7972.51 0.387378 0.193689 0.981063i \(-0.437955\pi\)
0.193689 + 0.981063i \(0.437955\pi\)
\(752\) 7047.73 0.341761
\(753\) −11533.9 −0.558192
\(754\) 0 0
\(755\) 13005.2 0.626896
\(756\) 484.817 0.0233236
\(757\) 20621.0 0.990068 0.495034 0.868873i \(-0.335156\pi\)
0.495034 + 0.868873i \(0.335156\pi\)
\(758\) −6161.03 −0.295222
\(759\) 26244.5 1.25509
\(760\) −2495.99 −0.119130
\(761\) −25100.5 −1.19565 −0.597826 0.801626i \(-0.703969\pi\)
−0.597826 + 0.801626i \(0.703969\pi\)
\(762\) 15723.1 0.747492
\(763\) −468.983 −0.0222521
\(764\) −7164.25 −0.339259
\(765\) 80593.8 3.80899
\(766\) −2862.25 −0.135009
\(767\) 0 0
\(768\) 2562.19 0.120384
\(769\) −34363.4 −1.61141 −0.805705 0.592317i \(-0.798213\pi\)
−0.805705 + 0.592317i \(0.798213\pi\)
\(770\) 289.963 0.0135708
\(771\) −18505.9 −0.864430
\(772\) −7507.94 −0.350022
\(773\) 27266.7 1.26871 0.634357 0.773040i \(-0.281265\pi\)
0.634357 + 0.773040i \(0.281265\pi\)
\(774\) 40375.9 1.87504
\(775\) 7486.27 0.346987
\(776\) 2608.64 0.120676
\(777\) −317.847 −0.0146753
\(778\) −23277.9 −1.07269
\(779\) −8948.37 −0.411564
\(780\) 0 0
\(781\) −12893.3 −0.590726
\(782\) 10450.1 0.477869
\(783\) 18547.6 0.846534
\(784\) −5486.90 −0.249950
\(785\) −2519.53 −0.114555
\(786\) 57072.2 2.58995
\(787\) −14620.7 −0.662225 −0.331112 0.943591i \(-0.607424\pi\)
−0.331112 + 0.943591i \(0.607424\pi\)
\(788\) −6336.17 −0.286443
\(789\) −33537.5 −1.51327
\(790\) −20534.2 −0.924779
\(791\) −243.868 −0.0109620
\(792\) 23424.1 1.05093
\(793\) 0 0
\(794\) 2374.44 0.106128
\(795\) −85041.2 −3.79384
\(796\) 19872.7 0.884887
\(797\) 8273.19 0.367693 0.183846 0.982955i \(-0.441145\pi\)
0.183846 + 0.982955i \(0.441145\pi\)
\(798\) −118.583 −0.00526039
\(799\) 35122.4 1.55512
\(800\) −2106.07 −0.0930761
\(801\) 92498.9 4.08026
\(802\) −6696.55 −0.294842
\(803\) −12951.7 −0.569185
\(804\) 8852.86 0.388329
\(805\) −237.418 −0.0103949
\(806\) 0 0
\(807\) −8348.41 −0.364161
\(808\) 11481.3 0.499888
\(809\) −45346.3 −1.97069 −0.985346 0.170567i \(-0.945440\pi\)
−0.985346 + 0.170567i \(0.945440\pi\)
\(810\) −73195.8 −3.17511
\(811\) −20946.4 −0.906940 −0.453470 0.891272i \(-0.649814\pi\)
−0.453470 + 0.891272i \(0.649814\pi\)
\(812\) 42.1092 0.00181988
\(813\) 80679.7 3.48039
\(814\) −9690.23 −0.417251
\(815\) −12255.7 −0.526746
\(816\) 12768.7 0.547786
\(817\) −6231.58 −0.266849
\(818\) 32279.2 1.37973
\(819\) 0 0
\(820\) −21890.9 −0.932272
\(821\) 21533.3 0.915366 0.457683 0.889115i \(-0.348679\pi\)
0.457683 + 0.889115i \(0.348679\pi\)
\(822\) −8048.46 −0.341511
\(823\) 21993.9 0.931542 0.465771 0.884905i \(-0.345777\pi\)
0.465771 + 0.884905i \(0.345777\pi\)
\(824\) −14830.1 −0.626980
\(825\) −26358.9 −1.11236
\(826\) −121.128 −0.00510239
\(827\) −7954.97 −0.334488 −0.167244 0.985916i \(-0.553487\pi\)
−0.167244 + 0.985916i \(0.553487\pi\)
\(828\) −19179.4 −0.804988
\(829\) 4576.45 0.191733 0.0958665 0.995394i \(-0.469438\pi\)
0.0958665 + 0.995394i \(0.469438\pi\)
\(830\) 14899.2 0.623083
\(831\) −47135.7 −1.96765
\(832\) 0 0
\(833\) −27344.0 −1.13735
\(834\) −17219.2 −0.714930
\(835\) −40041.0 −1.65949
\(836\) −3615.26 −0.149565
\(837\) 52563.8 2.17069
\(838\) −12693.2 −0.523244
\(839\) −8134.37 −0.334719 −0.167360 0.985896i \(-0.553524\pi\)
−0.167360 + 0.985896i \(0.553524\pi\)
\(840\) −290.096 −0.0119158
\(841\) −22778.0 −0.933947
\(842\) −10270.4 −0.420356
\(843\) −21122.1 −0.862969
\(844\) 14650.7 0.597509
\(845\) 0 0
\(846\) −64461.5 −2.61966
\(847\) 70.8884 0.00287574
\(848\) −9841.73 −0.398545
\(849\) 10945.3 0.442451
\(850\) −10495.6 −0.423525
\(851\) 7934.25 0.319604
\(852\) 12899.2 0.518684
\(853\) 44562.9 1.78875 0.894375 0.447317i \(-0.147620\pi\)
0.894375 + 0.447317i \(0.147620\pi\)
\(854\) 57.4528 0.00230210
\(855\) 22829.3 0.913154
\(856\) 1231.40 0.0491688
\(857\) 18917.8 0.754048 0.377024 0.926204i \(-0.376947\pi\)
0.377024 + 0.926204i \(0.376947\pi\)
\(858\) 0 0
\(859\) −27153.9 −1.07855 −0.539277 0.842128i \(-0.681303\pi\)
−0.539277 + 0.842128i \(0.681303\pi\)
\(860\) −15244.7 −0.604463
\(861\) −1040.02 −0.0411660
\(862\) 14089.1 0.556700
\(863\) 33687.7 1.32879 0.664393 0.747384i \(-0.268690\pi\)
0.664393 + 0.747384i \(0.268690\pi\)
\(864\) −14787.5 −0.582269
\(865\) 38083.8 1.49698
\(866\) −20347.6 −0.798431
\(867\) 14460.8 0.566451
\(868\) 119.337 0.00466656
\(869\) −29742.3 −1.16104
\(870\) −11098.1 −0.432486
\(871\) 0 0
\(872\) 14304.5 0.555518
\(873\) −23859.7 −0.925006
\(874\) 2960.13 0.114563
\(875\) −214.434 −0.00828479
\(876\) 12957.7 0.499770
\(877\) 42475.9 1.63547 0.817737 0.575592i \(-0.195228\pi\)
0.817737 + 0.575592i \(0.195228\pi\)
\(878\) −12771.2 −0.490895
\(879\) −96134.1 −3.68888
\(880\) −8844.20 −0.338793
\(881\) −19806.6 −0.757438 −0.378719 0.925512i \(-0.623635\pi\)
−0.378719 + 0.925512i \(0.623635\pi\)
\(882\) 50185.5 1.91591
\(883\) 29417.9 1.12117 0.560584 0.828098i \(-0.310577\pi\)
0.560584 + 0.828098i \(0.310577\pi\)
\(884\) 0 0
\(885\) 31924.0 1.21256
\(886\) −4725.62 −0.179188
\(887\) −32286.2 −1.22217 −0.611084 0.791565i \(-0.709266\pi\)
−0.611084 + 0.791565i \(0.709266\pi\)
\(888\) 9694.68 0.366365
\(889\) −206.021 −0.00777246
\(890\) −34924.6 −1.31537
\(891\) −106019. −3.98627
\(892\) 17980.9 0.674940
\(893\) 9948.92 0.372820
\(894\) −28624.7 −1.07087
\(895\) −29100.8 −1.08685
\(896\) −33.5725 −0.00125176
\(897\) 0 0
\(898\) 16296.4 0.605588
\(899\) 4565.47 0.169374
\(900\) 19263.0 0.713445
\(901\) −49046.3 −1.81351
\(902\) −31707.3 −1.17044
\(903\) −724.265 −0.0266911
\(904\) 7438.25 0.273664
\(905\) 10748.7 0.394804
\(906\) −18845.7 −0.691066
\(907\) 25746.5 0.942556 0.471278 0.881985i \(-0.343793\pi\)
0.471278 + 0.881985i \(0.343793\pi\)
\(908\) −14406.4 −0.526536
\(909\) −105012. −3.83173
\(910\) 0 0
\(911\) 7802.68 0.283770 0.141885 0.989883i \(-0.454684\pi\)
0.141885 + 0.989883i \(0.454684\pi\)
\(912\) 3616.91 0.131325
\(913\) 21580.4 0.782264
\(914\) −28068.8 −1.01579
\(915\) −15142.1 −0.547083
\(916\) −20648.4 −0.744808
\(917\) −747.820 −0.0269304
\(918\) −73693.4 −2.64951
\(919\) −412.898 −0.0148207 −0.00741037 0.999973i \(-0.502359\pi\)
−0.00741037 + 0.999973i \(0.502359\pi\)
\(920\) 7241.53 0.259507
\(921\) 43915.8 1.57120
\(922\) −15383.4 −0.549485
\(923\) 0 0
\(924\) −420.183 −0.0149600
\(925\) −7968.83 −0.283258
\(926\) 31111.9 1.10410
\(927\) 135643. 4.80592
\(928\) −1284.38 −0.0454329
\(929\) −5257.86 −0.185689 −0.0928443 0.995681i \(-0.529596\pi\)
−0.0928443 + 0.995681i \(0.529596\pi\)
\(930\) −31452.1 −1.10898
\(931\) −7745.57 −0.272665
\(932\) −8091.68 −0.284390
\(933\) 28780.3 1.00989
\(934\) 23883.5 0.836716
\(935\) −44075.1 −1.54161
\(936\) 0 0
\(937\) −21763.7 −0.758793 −0.379396 0.925234i \(-0.623868\pi\)
−0.379396 + 0.925234i \(0.623868\pi\)
\(938\) −115.999 −0.00403786
\(939\) 57205.0 1.98809
\(940\) 24338.6 0.844508
\(941\) 4630.07 0.160400 0.0801998 0.996779i \(-0.474444\pi\)
0.0801998 + 0.996779i \(0.474444\pi\)
\(942\) 3651.03 0.126281
\(943\) 25961.6 0.896528
\(944\) 3694.53 0.127380
\(945\) 1674.27 0.0576337
\(946\) −22080.8 −0.758888
\(947\) 7631.66 0.261875 0.130937 0.991391i \(-0.458201\pi\)
0.130937 + 0.991391i \(0.458201\pi\)
\(948\) 29756.0 1.01944
\(949\) 0 0
\(950\) −2973.03 −0.101535
\(951\) 73881.9 2.51923
\(952\) −167.309 −0.00569592
\(953\) 26455.3 0.899234 0.449617 0.893221i \(-0.351560\pi\)
0.449617 + 0.893221i \(0.351560\pi\)
\(954\) 90016.6 3.05492
\(955\) −24741.0 −0.838324
\(956\) −5692.47 −0.192581
\(957\) −16074.9 −0.542974
\(958\) −29712.9 −1.00207
\(959\) 105.459 0.00355105
\(960\) 8848.26 0.297475
\(961\) −16852.5 −0.565690
\(962\) 0 0
\(963\) −11262.9 −0.376887
\(964\) 14217.4 0.475011
\(965\) −25927.9 −0.864920
\(966\) 344.041 0.0114589
\(967\) −18687.5 −0.621457 −0.310728 0.950499i \(-0.600573\pi\)
−0.310728 + 0.950499i \(0.600573\pi\)
\(968\) −2162.18 −0.0717923
\(969\) 18024.9 0.597568
\(970\) 9008.67 0.298197
\(971\) −6281.87 −0.207616 −0.103808 0.994597i \(-0.533103\pi\)
−0.103808 + 0.994597i \(0.533103\pi\)
\(972\) 56159.7 1.85321
\(973\) 225.624 0.00743389
\(974\) 28127.2 0.925313
\(975\) 0 0
\(976\) −1752.38 −0.0574715
\(977\) 42266.0 1.38404 0.692021 0.721878i \(-0.256721\pi\)
0.692021 + 0.721878i \(0.256721\pi\)
\(978\) 17759.6 0.580665
\(979\) −50585.7 −1.65141
\(980\) −18948.4 −0.617638
\(981\) −130835. −4.25815
\(982\) 16436.1 0.534112
\(983\) 41111.7 1.33394 0.666968 0.745086i \(-0.267592\pi\)
0.666968 + 0.745086i \(0.267592\pi\)
\(984\) 31721.9 1.02770
\(985\) −21881.3 −0.707813
\(986\) −6400.70 −0.206734
\(987\) 1156.31 0.0372906
\(988\) 0 0
\(989\) 18079.5 0.581288
\(990\) 80892.7 2.59691
\(991\) −40047.0 −1.28369 −0.641845 0.766835i \(-0.721831\pi\)
−0.641845 + 0.766835i \(0.721831\pi\)
\(992\) −3639.92 −0.116500
\(993\) −60597.7 −1.93657
\(994\) −169.019 −0.00539330
\(995\) 68628.3 2.18660
\(996\) −21590.3 −0.686863
\(997\) 23968.8 0.761383 0.380692 0.924702i \(-0.375686\pi\)
0.380692 + 0.924702i \(0.375686\pi\)
\(998\) −12163.8 −0.385811
\(999\) −55952.0 −1.77202
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.a.n.1.6 6
13.2 odd 12 338.4.e.i.147.1 24
13.3 even 3 338.4.c.p.191.1 12
13.4 even 6 338.4.c.o.315.1 12
13.5 odd 4 338.4.b.h.337.12 12
13.6 odd 12 338.4.e.i.23.10 24
13.7 odd 12 338.4.e.i.23.1 24
13.8 odd 4 338.4.b.h.337.6 12
13.9 even 3 338.4.c.p.315.1 12
13.10 even 6 338.4.c.o.191.1 12
13.11 odd 12 338.4.e.i.147.10 24
13.12 even 2 338.4.a.o.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.6 6 1.1 even 1 trivial
338.4.a.o.1.6 yes 6 13.12 even 2
338.4.b.h.337.6 12 13.8 odd 4
338.4.b.h.337.12 12 13.5 odd 4
338.4.c.o.191.1 12 13.10 even 6
338.4.c.o.315.1 12 13.4 even 6
338.4.c.p.191.1 12 13.3 even 3
338.4.c.p.315.1 12 13.9 even 3
338.4.e.i.23.1 24 13.7 odd 12
338.4.e.i.23.10 24 13.6 odd 12
338.4.e.i.147.1 24 13.2 odd 12
338.4.e.i.147.10 24 13.11 odd 12