Properties

Label 338.4.a.n.1.5
Level $338$
Weight $4$
Character 338.1
Self dual yes
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6681389953.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 107x^{4} + 85x^{3} + 3703x^{2} - 1659x - 41951 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.81752\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +8.95458 q^{3} +4.00000 q^{4} -17.3267 q^{5} -17.9092 q^{6} +16.7510 q^{7} -8.00000 q^{8} +53.1845 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} +8.95458 q^{3} +4.00000 q^{4} -17.3267 q^{5} -17.9092 q^{6} +16.7510 q^{7} -8.00000 q^{8} +53.1845 q^{9} +34.6535 q^{10} +12.3000 q^{11} +35.8183 q^{12} -33.5020 q^{14} -155.154 q^{15} +16.0000 q^{16} -67.2070 q^{17} -106.369 q^{18} +112.331 q^{19} -69.3069 q^{20} +149.998 q^{21} -24.5999 q^{22} +173.127 q^{23} -71.6366 q^{24} +175.215 q^{25} +234.471 q^{27} +67.0040 q^{28} -30.9749 q^{29} +310.307 q^{30} +184.682 q^{31} -32.0000 q^{32} +110.141 q^{33} +134.414 q^{34} -290.240 q^{35} +212.738 q^{36} +154.964 q^{37} -224.662 q^{38} +138.614 q^{40} -123.827 q^{41} -299.996 q^{42} -201.562 q^{43} +49.1998 q^{44} -921.514 q^{45} -346.254 q^{46} +382.133 q^{47} +143.273 q^{48} -62.4041 q^{49} -350.431 q^{50} -601.810 q^{51} +394.866 q^{53} -468.943 q^{54} -213.118 q^{55} -134.008 q^{56} +1005.88 q^{57} +61.9498 q^{58} -110.728 q^{59} -620.614 q^{60} +747.271 q^{61} -369.364 q^{62} +890.894 q^{63} +64.0000 q^{64} -220.282 q^{66} +51.7433 q^{67} -268.828 q^{68} +1550.28 q^{69} +580.480 q^{70} -167.600 q^{71} -425.476 q^{72} -15.5647 q^{73} -309.927 q^{74} +1568.98 q^{75} +449.325 q^{76} +206.036 q^{77} -325.323 q^{79} -277.228 q^{80} +663.611 q^{81} +247.653 q^{82} -1158.87 q^{83} +599.993 q^{84} +1164.48 q^{85} +403.124 q^{86} -277.367 q^{87} -98.3996 q^{88} -1338.22 q^{89} +1843.03 q^{90} +692.509 q^{92} +1653.75 q^{93} -764.266 q^{94} -1946.33 q^{95} -286.547 q^{96} +1259.02 q^{97} +124.808 q^{98} +654.167 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9} + 36 q^{10} - 37 q^{11} + 36 q^{12} + 50 q^{14} - 118 q^{15} + 96 q^{16} + 99 q^{17} - 226 q^{18} + 81 q^{19} - 72 q^{20} + 26 q^{21} + 74 q^{22} + 267 q^{23} - 72 q^{24} + 368 q^{25} + 669 q^{27} - 100 q^{28} - 119 q^{29} + 236 q^{30} + 625 q^{31} - 192 q^{32} - 762 q^{33} - 198 q^{34} + 614 q^{35} + 452 q^{36} - 274 q^{37} - 162 q^{38} + 144 q^{40} - 1140 q^{41} - 52 q^{42} + 428 q^{43} - 148 q^{44} + 1215 q^{45} - 534 q^{46} + 986 q^{47} + 144 q^{48} + 899 q^{49} - 736 q^{50} + 289 q^{51} + 89 q^{53} - 1338 q^{54} + 1126 q^{55} + 200 q^{56} + 2553 q^{57} + 238 q^{58} - 1088 q^{59} - 472 q^{60} + 1704 q^{61} - 1250 q^{62} + 3222 q^{63} + 384 q^{64} + 1524 q^{66} + 1692 q^{67} + 396 q^{68} + 1168 q^{69} - 1228 q^{70} + 1221 q^{71} - 904 q^{72} + 1554 q^{73} + 548 q^{74} + 1798 q^{75} + 324 q^{76} + 2790 q^{77} - 875 q^{79} - 288 q^{80} + 3338 q^{81} + 2280 q^{82} + 126 q^{83} + 104 q^{84} + 3721 q^{85} - 856 q^{86} + 1602 q^{87} + 296 q^{88} + 374 q^{89} - 2430 q^{90} + 1068 q^{92} + 1868 q^{93} - 1972 q^{94} - 4093 q^{95} - 288 q^{96} + 330 q^{97} - 1798 q^{98} + 1344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 8.95458 1.72331 0.861655 0.507495i \(-0.169428\pi\)
0.861655 + 0.507495i \(0.169428\pi\)
\(4\) 4.00000 0.500000
\(5\) −17.3267 −1.54975 −0.774875 0.632115i \(-0.782187\pi\)
−0.774875 + 0.632115i \(0.782187\pi\)
\(6\) −17.9092 −1.21856
\(7\) 16.7510 0.904469 0.452234 0.891899i \(-0.350627\pi\)
0.452234 + 0.891899i \(0.350627\pi\)
\(8\) −8.00000 −0.353553
\(9\) 53.1845 1.96980
\(10\) 34.6535 1.09584
\(11\) 12.3000 0.337143 0.168572 0.985689i \(-0.446085\pi\)
0.168572 + 0.985689i \(0.446085\pi\)
\(12\) 35.8183 0.861655
\(13\) 0 0
\(14\) −33.5020 −0.639556
\(15\) −155.154 −2.67070
\(16\) 16.0000 0.250000
\(17\) −67.2070 −0.958829 −0.479414 0.877589i \(-0.659151\pi\)
−0.479414 + 0.877589i \(0.659151\pi\)
\(18\) −106.369 −1.39286
\(19\) 112.331 1.35634 0.678172 0.734903i \(-0.262772\pi\)
0.678172 + 0.734903i \(0.262772\pi\)
\(20\) −69.3069 −0.774875
\(21\) 149.998 1.55868
\(22\) −24.5999 −0.238396
\(23\) 173.127 1.56954 0.784772 0.619784i \(-0.212780\pi\)
0.784772 + 0.619784i \(0.212780\pi\)
\(24\) −71.6366 −0.609282
\(25\) 175.215 1.40172
\(26\) 0 0
\(27\) 234.471 1.67126
\(28\) 67.0040 0.452234
\(29\) −30.9749 −0.198341 −0.0991705 0.995070i \(-0.531619\pi\)
−0.0991705 + 0.995070i \(0.531619\pi\)
\(30\) 310.307 1.88847
\(31\) 184.682 1.07000 0.534999 0.844853i \(-0.320312\pi\)
0.534999 + 0.844853i \(0.320312\pi\)
\(32\) −32.0000 −0.176777
\(33\) 110.141 0.581002
\(34\) 134.414 0.677994
\(35\) −290.240 −1.40170
\(36\) 212.738 0.984898
\(37\) 154.964 0.688537 0.344269 0.938871i \(-0.388127\pi\)
0.344269 + 0.938871i \(0.388127\pi\)
\(38\) −224.662 −0.959080
\(39\) 0 0
\(40\) 138.614 0.547919
\(41\) −123.827 −0.471670 −0.235835 0.971793i \(-0.575782\pi\)
−0.235835 + 0.971793i \(0.575782\pi\)
\(42\) −299.996 −1.10215
\(43\) −201.562 −0.714836 −0.357418 0.933945i \(-0.616343\pi\)
−0.357418 + 0.933945i \(0.616343\pi\)
\(44\) 49.1998 0.168572
\(45\) −921.514 −3.05269
\(46\) −346.254 −1.10984
\(47\) 382.133 1.18595 0.592977 0.805219i \(-0.297953\pi\)
0.592977 + 0.805219i \(0.297953\pi\)
\(48\) 143.273 0.430827
\(49\) −62.4041 −0.181936
\(50\) −350.431 −0.991168
\(51\) −601.810 −1.65236
\(52\) 0 0
\(53\) 394.866 1.02338 0.511689 0.859171i \(-0.329020\pi\)
0.511689 + 0.859171i \(0.329020\pi\)
\(54\) −468.943 −1.18176
\(55\) −213.118 −0.522487
\(56\) −134.008 −0.319778
\(57\) 1005.88 2.33740
\(58\) 61.9498 0.140248
\(59\) −110.728 −0.244332 −0.122166 0.992510i \(-0.538984\pi\)
−0.122166 + 0.992510i \(0.538984\pi\)
\(60\) −620.614 −1.33535
\(61\) 747.271 1.56850 0.784248 0.620448i \(-0.213049\pi\)
0.784248 + 0.620448i \(0.213049\pi\)
\(62\) −369.364 −0.756602
\(63\) 890.894 1.78162
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −220.282 −0.410831
\(67\) 51.7433 0.0943501 0.0471750 0.998887i \(-0.484978\pi\)
0.0471750 + 0.998887i \(0.484978\pi\)
\(68\) −268.828 −0.479414
\(69\) 1550.28 2.70481
\(70\) 580.480 0.991152
\(71\) −167.600 −0.280147 −0.140073 0.990141i \(-0.544734\pi\)
−0.140073 + 0.990141i \(0.544734\pi\)
\(72\) −425.476 −0.696428
\(73\) −15.5647 −0.0249549 −0.0124775 0.999922i \(-0.503972\pi\)
−0.0124775 + 0.999922i \(0.503972\pi\)
\(74\) −309.927 −0.486869
\(75\) 1568.98 2.41560
\(76\) 449.325 0.678172
\(77\) 206.036 0.304935
\(78\) 0 0
\(79\) −325.323 −0.463313 −0.231657 0.972798i \(-0.574415\pi\)
−0.231657 + 0.972798i \(0.574415\pi\)
\(80\) −277.228 −0.387437
\(81\) 663.611 0.910303
\(82\) 247.653 0.333521
\(83\) −1158.87 −1.53257 −0.766283 0.642503i \(-0.777896\pi\)
−0.766283 + 0.642503i \(0.777896\pi\)
\(84\) 599.993 0.779340
\(85\) 1164.48 1.48594
\(86\) 403.124 0.505465
\(87\) −277.367 −0.341803
\(88\) −98.3996 −0.119198
\(89\) −1338.22 −1.59383 −0.796915 0.604091i \(-0.793536\pi\)
−0.796915 + 0.604091i \(0.793536\pi\)
\(90\) 1843.03 2.15858
\(91\) 0 0
\(92\) 692.509 0.784772
\(93\) 1653.75 1.84394
\(94\) −764.266 −0.838596
\(95\) −1946.33 −2.10199
\(96\) −286.547 −0.304641
\(97\) 1259.02 1.31788 0.658940 0.752195i \(-0.271005\pi\)
0.658940 + 0.752195i \(0.271005\pi\)
\(98\) 124.808 0.128648
\(99\) 654.167 0.664104
\(100\) 700.862 0.700862
\(101\) 883.670 0.870579 0.435289 0.900291i \(-0.356646\pi\)
0.435289 + 0.900291i \(0.356646\pi\)
\(102\) 1203.62 1.16839
\(103\) 411.334 0.393495 0.196747 0.980454i \(-0.436962\pi\)
0.196747 + 0.980454i \(0.436962\pi\)
\(104\) 0 0
\(105\) −2598.98 −2.41556
\(106\) −789.732 −0.723638
\(107\) −684.140 −0.618115 −0.309058 0.951043i \(-0.600014\pi\)
−0.309058 + 0.951043i \(0.600014\pi\)
\(108\) 937.885 0.835630
\(109\) 922.489 0.810628 0.405314 0.914178i \(-0.367162\pi\)
0.405314 + 0.914178i \(0.367162\pi\)
\(110\) 426.236 0.369454
\(111\) 1387.64 1.18656
\(112\) 268.016 0.226117
\(113\) 1762.33 1.46713 0.733566 0.679618i \(-0.237854\pi\)
0.733566 + 0.679618i \(0.237854\pi\)
\(114\) −2011.76 −1.65279
\(115\) −2999.73 −2.43240
\(116\) −123.900 −0.0991705
\(117\) 0 0
\(118\) 221.457 0.172769
\(119\) −1125.78 −0.867231
\(120\) 1241.23 0.944235
\(121\) −1179.71 −0.886334
\(122\) −1494.54 −1.10909
\(123\) −1108.82 −0.812834
\(124\) 738.729 0.534999
\(125\) −870.069 −0.622571
\(126\) −1781.79 −1.25980
\(127\) −1127.58 −0.787850 −0.393925 0.919143i \(-0.628883\pi\)
−0.393925 + 0.919143i \(0.628883\pi\)
\(128\) −128.000 −0.0883883
\(129\) −1804.90 −1.23188
\(130\) 0 0
\(131\) 1988.93 1.32651 0.663257 0.748392i \(-0.269174\pi\)
0.663257 + 0.748392i \(0.269174\pi\)
\(132\) 440.564 0.290501
\(133\) 1881.66 1.22677
\(134\) −103.487 −0.0667156
\(135\) −4062.62 −2.59004
\(136\) 537.656 0.338997
\(137\) −1643.36 −1.02483 −0.512416 0.858737i \(-0.671249\pi\)
−0.512416 + 0.858737i \(0.671249\pi\)
\(138\) −3100.56 −1.91259
\(139\) −2305.50 −1.40683 −0.703416 0.710778i \(-0.748343\pi\)
−0.703416 + 0.710778i \(0.748343\pi\)
\(140\) −1160.96 −0.700850
\(141\) 3421.84 2.04377
\(142\) 335.199 0.198094
\(143\) 0 0
\(144\) 850.952 0.492449
\(145\) 536.693 0.307379
\(146\) 31.1294 0.0176458
\(147\) −558.803 −0.313532
\(148\) 619.855 0.344269
\(149\) −810.915 −0.445857 −0.222929 0.974835i \(-0.571562\pi\)
−0.222929 + 0.974835i \(0.571562\pi\)
\(150\) −3137.96 −1.70809
\(151\) 338.882 0.182634 0.0913172 0.995822i \(-0.470892\pi\)
0.0913172 + 0.995822i \(0.470892\pi\)
\(152\) −898.649 −0.479540
\(153\) −3574.37 −1.88870
\(154\) −412.073 −0.215622
\(155\) −3199.94 −1.65823
\(156\) 0 0
\(157\) −3838.59 −1.95129 −0.975647 0.219346i \(-0.929608\pi\)
−0.975647 + 0.219346i \(0.929608\pi\)
\(158\) 650.647 0.327612
\(159\) 3535.86 1.76360
\(160\) 554.455 0.273960
\(161\) 2900.05 1.41960
\(162\) −1327.22 −0.643681
\(163\) −2083.98 −1.00141 −0.500706 0.865617i \(-0.666926\pi\)
−0.500706 + 0.865617i \(0.666926\pi\)
\(164\) −495.307 −0.235835
\(165\) −1908.38 −0.900408
\(166\) 2317.75 1.08369
\(167\) 823.438 0.381554 0.190777 0.981633i \(-0.438899\pi\)
0.190777 + 0.981633i \(0.438899\pi\)
\(168\) −1199.99 −0.551077
\(169\) 0 0
\(170\) −2328.95 −1.05072
\(171\) 5974.28 2.67172
\(172\) −806.248 −0.357418
\(173\) −3111.64 −1.36748 −0.683739 0.729727i \(-0.739647\pi\)
−0.683739 + 0.729727i \(0.739647\pi\)
\(174\) 554.734 0.241691
\(175\) 2935.03 1.26782
\(176\) 196.799 0.0842858
\(177\) −991.527 −0.421061
\(178\) 2676.44 1.12701
\(179\) −3113.71 −1.30017 −0.650083 0.759863i \(-0.725266\pi\)
−0.650083 + 0.759863i \(0.725266\pi\)
\(180\) −3686.05 −1.52635
\(181\) −307.468 −0.126265 −0.0631323 0.998005i \(-0.520109\pi\)
−0.0631323 + 0.998005i \(0.520109\pi\)
\(182\) 0 0
\(183\) 6691.50 2.70300
\(184\) −1385.02 −0.554918
\(185\) −2685.01 −1.06706
\(186\) −3307.50 −1.30386
\(187\) −826.643 −0.323263
\(188\) 1528.53 0.592977
\(189\) 3927.63 1.51160
\(190\) 3892.66 1.48633
\(191\) −1061.40 −0.402094 −0.201047 0.979582i \(-0.564434\pi\)
−0.201047 + 0.979582i \(0.564434\pi\)
\(192\) 573.093 0.215414
\(193\) 762.766 0.284482 0.142241 0.989832i \(-0.454569\pi\)
0.142241 + 0.989832i \(0.454569\pi\)
\(194\) −2518.05 −0.931882
\(195\) 0 0
\(196\) −249.616 −0.0909681
\(197\) −1145.77 −0.414378 −0.207189 0.978301i \(-0.566432\pi\)
−0.207189 + 0.978301i \(0.566432\pi\)
\(198\) −1308.33 −0.469592
\(199\) −1522.31 −0.542279 −0.271140 0.962540i \(-0.587401\pi\)
−0.271140 + 0.962540i \(0.587401\pi\)
\(200\) −1401.72 −0.495584
\(201\) 463.340 0.162594
\(202\) −1767.34 −0.615592
\(203\) −518.860 −0.179393
\(204\) −2407.24 −0.826179
\(205\) 2145.51 0.730970
\(206\) −822.669 −0.278243
\(207\) 9207.69 3.09168
\(208\) 0 0
\(209\) 1381.67 0.457282
\(210\) 5197.95 1.70806
\(211\) 1775.03 0.579138 0.289569 0.957157i \(-0.406488\pi\)
0.289569 + 0.957157i \(0.406488\pi\)
\(212\) 1579.46 0.511689
\(213\) −1500.78 −0.482779
\(214\) 1368.28 0.437073
\(215\) 3492.41 1.10782
\(216\) −1875.77 −0.590880
\(217\) 3093.61 0.967779
\(218\) −1844.98 −0.573200
\(219\) −139.375 −0.0430050
\(220\) −852.472 −0.261244
\(221\) 0 0
\(222\) −2775.27 −0.839027
\(223\) −3650.62 −1.09625 −0.548125 0.836396i \(-0.684658\pi\)
−0.548125 + 0.836396i \(0.684658\pi\)
\(224\) −536.032 −0.159889
\(225\) 9318.75 2.76111
\(226\) −3524.66 −1.03742
\(227\) −2970.87 −0.868650 −0.434325 0.900756i \(-0.643013\pi\)
−0.434325 + 0.900756i \(0.643013\pi\)
\(228\) 4023.51 1.16870
\(229\) −5943.74 −1.71517 −0.857584 0.514343i \(-0.828036\pi\)
−0.857584 + 0.514343i \(0.828036\pi\)
\(230\) 5999.46 1.71997
\(231\) 1844.97 0.525498
\(232\) 247.799 0.0701242
\(233\) 3771.83 1.06052 0.530260 0.847835i \(-0.322094\pi\)
0.530260 + 0.847835i \(0.322094\pi\)
\(234\) 0 0
\(235\) −6621.11 −1.83793
\(236\) −442.914 −0.122166
\(237\) −2913.14 −0.798432
\(238\) 2251.57 0.613225
\(239\) 6057.29 1.63939 0.819694 0.572802i \(-0.194144\pi\)
0.819694 + 0.572802i \(0.194144\pi\)
\(240\) −2482.46 −0.667675
\(241\) 1541.49 0.412016 0.206008 0.978550i \(-0.433953\pi\)
0.206008 + 0.978550i \(0.433953\pi\)
\(242\) 2359.42 0.626733
\(243\) −388.370 −0.102526
\(244\) 2989.08 0.784248
\(245\) 1081.26 0.281955
\(246\) 2217.63 0.574760
\(247\) 0 0
\(248\) −1477.46 −0.378301
\(249\) −10377.2 −2.64109
\(250\) 1740.14 0.440224
\(251\) 2100.31 0.528169 0.264085 0.964499i \(-0.414930\pi\)
0.264085 + 0.964499i \(0.414930\pi\)
\(252\) 3563.57 0.890810
\(253\) 2129.46 0.529161
\(254\) 2255.17 0.557094
\(255\) 10427.4 2.56074
\(256\) 256.000 0.0625000
\(257\) −2120.74 −0.514741 −0.257370 0.966313i \(-0.582856\pi\)
−0.257370 + 0.966313i \(0.582856\pi\)
\(258\) 3609.81 0.871073
\(259\) 2595.80 0.622761
\(260\) 0 0
\(261\) −1647.38 −0.390692
\(262\) −3977.85 −0.937987
\(263\) −3856.54 −0.904199 −0.452100 0.891967i \(-0.649325\pi\)
−0.452100 + 0.891967i \(0.649325\pi\)
\(264\) −881.127 −0.205415
\(265\) −6841.74 −1.58598
\(266\) −3763.32 −0.867458
\(267\) −11983.2 −2.74666
\(268\) 206.973 0.0471750
\(269\) 6243.14 1.41506 0.707529 0.706684i \(-0.249810\pi\)
0.707529 + 0.706684i \(0.249810\pi\)
\(270\) 8125.24 1.83143
\(271\) −2225.82 −0.498926 −0.249463 0.968384i \(-0.580254\pi\)
−0.249463 + 0.968384i \(0.580254\pi\)
\(272\) −1075.31 −0.239707
\(273\) 0 0
\(274\) 3286.73 0.724666
\(275\) 2155.14 0.472581
\(276\) 6201.13 1.35241
\(277\) −4627.44 −1.00374 −0.501870 0.864943i \(-0.667354\pi\)
−0.501870 + 0.864943i \(0.667354\pi\)
\(278\) 4610.99 0.994781
\(279\) 9822.24 2.10768
\(280\) 2321.92 0.495576
\(281\) −5416.18 −1.14983 −0.574915 0.818213i \(-0.694965\pi\)
−0.574915 + 0.818213i \(0.694965\pi\)
\(282\) −6843.68 −1.44516
\(283\) 6379.35 1.33997 0.669987 0.742373i \(-0.266300\pi\)
0.669987 + 0.742373i \(0.266300\pi\)
\(284\) −670.398 −0.140073
\(285\) −17428.6 −3.62239
\(286\) 0 0
\(287\) −2074.22 −0.426611
\(288\) −1701.90 −0.348214
\(289\) −396.222 −0.0806476
\(290\) −1073.39 −0.217350
\(291\) 11274.0 2.27112
\(292\) −62.2587 −0.0124775
\(293\) −525.025 −0.104684 −0.0523418 0.998629i \(-0.516669\pi\)
−0.0523418 + 0.998629i \(0.516669\pi\)
\(294\) 1117.61 0.221701
\(295\) 1918.56 0.378654
\(296\) −1239.71 −0.243435
\(297\) 2883.99 0.563454
\(298\) 1621.83 0.315269
\(299\) 0 0
\(300\) 6275.92 1.20780
\(301\) −3376.37 −0.646547
\(302\) −677.764 −0.129142
\(303\) 7912.90 1.50028
\(304\) 1797.30 0.339086
\(305\) −12947.8 −2.43078
\(306\) 7148.74 1.33551
\(307\) 3597.21 0.668741 0.334370 0.942442i \(-0.391476\pi\)
0.334370 + 0.942442i \(0.391476\pi\)
\(308\) 824.146 0.152468
\(309\) 3683.33 0.678114
\(310\) 6399.88 1.17254
\(311\) 2168.56 0.395395 0.197698 0.980263i \(-0.436654\pi\)
0.197698 + 0.980263i \(0.436654\pi\)
\(312\) 0 0
\(313\) 9414.34 1.70010 0.850048 0.526706i \(-0.176573\pi\)
0.850048 + 0.526706i \(0.176573\pi\)
\(314\) 7677.19 1.37977
\(315\) −15436.3 −2.76106
\(316\) −1301.29 −0.231657
\(317\) 850.476 0.150686 0.0753431 0.997158i \(-0.475995\pi\)
0.0753431 + 0.997158i \(0.475995\pi\)
\(318\) −7071.72 −1.24705
\(319\) −380.990 −0.0668693
\(320\) −1108.91 −0.193719
\(321\) −6126.19 −1.06520
\(322\) −5800.11 −1.00381
\(323\) −7549.44 −1.30050
\(324\) 2654.44 0.455151
\(325\) 0 0
\(326\) 4167.97 0.708105
\(327\) 8260.50 1.39696
\(328\) 990.613 0.166761
\(329\) 6401.11 1.07266
\(330\) 3816.76 0.636684
\(331\) −1736.28 −0.288322 −0.144161 0.989554i \(-0.546048\pi\)
−0.144161 + 0.989554i \(0.546048\pi\)
\(332\) −4635.50 −0.766283
\(333\) 8241.67 1.35628
\(334\) −1646.88 −0.269800
\(335\) −896.543 −0.146219
\(336\) 2399.97 0.389670
\(337\) 11495.0 1.85808 0.929042 0.369973i \(-0.120633\pi\)
0.929042 + 0.369973i \(0.120633\pi\)
\(338\) 0 0
\(339\) 15780.9 2.52832
\(340\) 4657.91 0.742972
\(341\) 2271.58 0.360742
\(342\) −11948.6 −1.88919
\(343\) −6790.92 −1.06902
\(344\) 1612.50 0.252733
\(345\) −26861.3 −4.19178
\(346\) 6223.28 0.966953
\(347\) −8299.19 −1.28393 −0.641965 0.766734i \(-0.721881\pi\)
−0.641965 + 0.766734i \(0.721881\pi\)
\(348\) −1109.47 −0.170902
\(349\) −2539.56 −0.389511 −0.194756 0.980852i \(-0.562391\pi\)
−0.194756 + 0.980852i \(0.562391\pi\)
\(350\) −5870.07 −0.896481
\(351\) 0 0
\(352\) −393.598 −0.0595991
\(353\) −4207.80 −0.634443 −0.317222 0.948351i \(-0.602750\pi\)
−0.317222 + 0.948351i \(0.602750\pi\)
\(354\) 1983.05 0.297735
\(355\) 2903.95 0.434157
\(356\) −5352.88 −0.796915
\(357\) −10080.9 −1.49451
\(358\) 6227.43 0.919357
\(359\) −10588.4 −1.55664 −0.778320 0.627868i \(-0.783928\pi\)
−0.778320 + 0.627868i \(0.783928\pi\)
\(360\) 7372.11 1.07929
\(361\) 5759.29 0.839669
\(362\) 614.936 0.0892826
\(363\) −10563.8 −1.52743
\(364\) 0 0
\(365\) 269.685 0.0386739
\(366\) −13383.0 −1.91131
\(367\) −3941.65 −0.560633 −0.280316 0.959908i \(-0.590439\pi\)
−0.280316 + 0.959908i \(0.590439\pi\)
\(368\) 2770.04 0.392386
\(369\) −6585.66 −0.929094
\(370\) 5370.03 0.754526
\(371\) 6614.40 0.925614
\(372\) 6615.01 0.921968
\(373\) −4999.19 −0.693962 −0.346981 0.937872i \(-0.612793\pi\)
−0.346981 + 0.937872i \(0.612793\pi\)
\(374\) 1653.29 0.228581
\(375\) −7791.10 −1.07288
\(376\) −3057.06 −0.419298
\(377\) 0 0
\(378\) −7855.26 −1.06886
\(379\) −1407.01 −0.190695 −0.0953474 0.995444i \(-0.530396\pi\)
−0.0953474 + 0.995444i \(0.530396\pi\)
\(380\) −7785.32 −1.05100
\(381\) −10097.0 −1.35771
\(382\) 2122.79 0.284323
\(383\) 7504.62 1.00122 0.500611 0.865672i \(-0.333109\pi\)
0.500611 + 0.865672i \(0.333109\pi\)
\(384\) −1146.19 −0.152321
\(385\) −3569.94 −0.472574
\(386\) −1525.53 −0.201159
\(387\) −10720.0 −1.40808
\(388\) 5036.09 0.658940
\(389\) −3780.08 −0.492693 −0.246347 0.969182i \(-0.579230\pi\)
−0.246347 + 0.969182i \(0.579230\pi\)
\(390\) 0 0
\(391\) −11635.4 −1.50492
\(392\) 499.233 0.0643241
\(393\) 17810.0 2.28599
\(394\) 2291.53 0.293009
\(395\) 5636.79 0.718019
\(396\) 2616.67 0.332052
\(397\) 9352.68 1.18236 0.591181 0.806539i \(-0.298662\pi\)
0.591181 + 0.806539i \(0.298662\pi\)
\(398\) 3044.62 0.383449
\(399\) 16849.5 2.11411
\(400\) 2803.45 0.350431
\(401\) 8547.54 1.06445 0.532224 0.846604i \(-0.321356\pi\)
0.532224 + 0.846604i \(0.321356\pi\)
\(402\) −926.680 −0.114972
\(403\) 0 0
\(404\) 3534.68 0.435289
\(405\) −11498.2 −1.41074
\(406\) 1037.72 0.126850
\(407\) 1906.05 0.232136
\(408\) 4814.48 0.584197
\(409\) 13563.2 1.63975 0.819876 0.572542i \(-0.194043\pi\)
0.819876 + 0.572542i \(0.194043\pi\)
\(410\) −4291.02 −0.516874
\(411\) −14715.6 −1.76610
\(412\) 1645.34 0.196747
\(413\) −1854.81 −0.220991
\(414\) −18415.4 −2.18615
\(415\) 20079.5 2.37509
\(416\) 0 0
\(417\) −20644.8 −2.42441
\(418\) −2763.34 −0.323347
\(419\) 6396.55 0.745804 0.372902 0.927871i \(-0.378363\pi\)
0.372902 + 0.927871i \(0.378363\pi\)
\(420\) −10395.9 −1.20778
\(421\) −11234.3 −1.30054 −0.650268 0.759705i \(-0.725343\pi\)
−0.650268 + 0.759705i \(0.725343\pi\)
\(422\) −3550.06 −0.409512
\(423\) 20323.6 2.33609
\(424\) −3158.93 −0.361819
\(425\) −11775.7 −1.34401
\(426\) 3001.57 0.341377
\(427\) 12517.5 1.41866
\(428\) −2736.56 −0.309058
\(429\) 0 0
\(430\) −6984.82 −0.783344
\(431\) 9395.92 1.05008 0.525041 0.851077i \(-0.324050\pi\)
0.525041 + 0.851077i \(0.324050\pi\)
\(432\) 3751.54 0.417815
\(433\) 16110.3 1.78802 0.894011 0.448044i \(-0.147879\pi\)
0.894011 + 0.448044i \(0.147879\pi\)
\(434\) −6187.22 −0.684323
\(435\) 4805.86 0.529709
\(436\) 3689.96 0.405314
\(437\) 19447.6 2.12884
\(438\) 278.750 0.0304092
\(439\) 11954.8 1.29971 0.649854 0.760059i \(-0.274830\pi\)
0.649854 + 0.760059i \(0.274830\pi\)
\(440\) 1704.94 0.184727
\(441\) −3318.93 −0.358377
\(442\) 0 0
\(443\) 8624.03 0.924921 0.462461 0.886640i \(-0.346967\pi\)
0.462461 + 0.886640i \(0.346967\pi\)
\(444\) 5550.54 0.593282
\(445\) 23187.0 2.47004
\(446\) 7301.25 0.775166
\(447\) −7261.40 −0.768350
\(448\) 1072.06 0.113059
\(449\) −10811.0 −1.13631 −0.568157 0.822920i \(-0.692343\pi\)
−0.568157 + 0.822920i \(0.692343\pi\)
\(450\) −18637.5 −1.95240
\(451\) −1523.06 −0.159020
\(452\) 7049.32 0.733566
\(453\) 3034.54 0.314736
\(454\) 5941.74 0.614229
\(455\) 0 0
\(456\) −8047.03 −0.826396
\(457\) −8551.05 −0.875276 −0.437638 0.899151i \(-0.644185\pi\)
−0.437638 + 0.899151i \(0.644185\pi\)
\(458\) 11887.5 1.21281
\(459\) −15758.1 −1.60245
\(460\) −11998.9 −1.21620
\(461\) −2442.47 −0.246761 −0.123381 0.992359i \(-0.539374\pi\)
−0.123381 + 0.992359i \(0.539374\pi\)
\(462\) −3689.94 −0.371583
\(463\) 11308.5 1.13510 0.567551 0.823338i \(-0.307891\pi\)
0.567551 + 0.823338i \(0.307891\pi\)
\(464\) −495.598 −0.0495853
\(465\) −28654.1 −2.85764
\(466\) −7543.67 −0.749901
\(467\) 16223.3 1.60755 0.803776 0.594933i \(-0.202821\pi\)
0.803776 + 0.594933i \(0.202821\pi\)
\(468\) 0 0
\(469\) 866.752 0.0853367
\(470\) 13242.2 1.29961
\(471\) −34373.0 −3.36268
\(472\) 885.828 0.0863846
\(473\) −2479.20 −0.241002
\(474\) 5826.27 0.564577
\(475\) 19682.2 1.90122
\(476\) −4503.14 −0.433615
\(477\) 21000.8 2.01585
\(478\) −12114.6 −1.15922
\(479\) 6820.18 0.650568 0.325284 0.945616i \(-0.394540\pi\)
0.325284 + 0.945616i \(0.394540\pi\)
\(480\) 4964.91 0.472117
\(481\) 0 0
\(482\) −3082.97 −0.291339
\(483\) 25968.8 2.44642
\(484\) −4718.84 −0.443167
\(485\) −21814.7 −2.04238
\(486\) 776.740 0.0724972
\(487\) −4077.04 −0.379360 −0.189680 0.981846i \(-0.560745\pi\)
−0.189680 + 0.981846i \(0.560745\pi\)
\(488\) −5978.17 −0.554547
\(489\) −18661.2 −1.72574
\(490\) −2162.52 −0.199373
\(491\) −16633.6 −1.52884 −0.764422 0.644717i \(-0.776975\pi\)
−0.764422 + 0.644717i \(0.776975\pi\)
\(492\) −4435.26 −0.406417
\(493\) 2081.73 0.190175
\(494\) 0 0
\(495\) −11334.6 −1.02919
\(496\) 2954.92 0.267499
\(497\) −2807.46 −0.253384
\(498\) 20754.5 1.86753
\(499\) 13454.7 1.20704 0.603522 0.797347i \(-0.293764\pi\)
0.603522 + 0.797347i \(0.293764\pi\)
\(500\) −3480.28 −0.311285
\(501\) 7373.54 0.657536
\(502\) −4200.62 −0.373472
\(503\) −13103.9 −1.16158 −0.580791 0.814053i \(-0.697256\pi\)
−0.580791 + 0.814053i \(0.697256\pi\)
\(504\) −7127.15 −0.629898
\(505\) −15311.1 −1.34918
\(506\) −4258.91 −0.374173
\(507\) 0 0
\(508\) −4510.34 −0.393925
\(509\) 9909.43 0.862923 0.431462 0.902131i \(-0.357998\pi\)
0.431462 + 0.902131i \(0.357998\pi\)
\(510\) −20854.8 −1.81072
\(511\) −260.724 −0.0225709
\(512\) −512.000 −0.0441942
\(513\) 26338.4 2.26680
\(514\) 4241.49 0.363977
\(515\) −7127.08 −0.609819
\(516\) −7219.62 −0.615942
\(517\) 4700.22 0.399836
\(518\) −5191.59 −0.440358
\(519\) −27863.4 −2.35659
\(520\) 0 0
\(521\) 20443.7 1.71911 0.859553 0.511046i \(-0.170742\pi\)
0.859553 + 0.511046i \(0.170742\pi\)
\(522\) 3294.77 0.276261
\(523\) −14935.5 −1.24873 −0.624365 0.781133i \(-0.714642\pi\)
−0.624365 + 0.781133i \(0.714642\pi\)
\(524\) 7955.70 0.663257
\(525\) 26282.0 2.18484
\(526\) 7713.08 0.639365
\(527\) −12411.9 −1.02594
\(528\) 1762.25 0.145251
\(529\) 17806.0 1.46347
\(530\) 13683.5 1.12146
\(531\) −5889.04 −0.481285
\(532\) 7526.64 0.613385
\(533\) 0 0
\(534\) 23966.4 1.94218
\(535\) 11853.9 0.957923
\(536\) −413.947 −0.0333578
\(537\) −27882.0 −2.24059
\(538\) −12486.3 −1.00060
\(539\) −767.567 −0.0613385
\(540\) −16250.5 −1.29502
\(541\) −16177.8 −1.28565 −0.642827 0.766011i \(-0.722239\pi\)
−0.642827 + 0.766011i \(0.722239\pi\)
\(542\) 4451.64 0.352794
\(543\) −2753.25 −0.217593
\(544\) 2150.62 0.169499
\(545\) −15983.7 −1.25627
\(546\) 0 0
\(547\) −11055.5 −0.864163 −0.432081 0.901835i \(-0.642221\pi\)
−0.432081 + 0.901835i \(0.642221\pi\)
\(548\) −6573.45 −0.512416
\(549\) 39743.2 3.08962
\(550\) −4310.28 −0.334166
\(551\) −3479.44 −0.269019
\(552\) −12402.3 −0.956295
\(553\) −5449.49 −0.419052
\(554\) 9254.88 0.709751
\(555\) −24043.2 −1.83888
\(556\) −9221.99 −0.703416
\(557\) 5605.62 0.426423 0.213211 0.977006i \(-0.431608\pi\)
0.213211 + 0.977006i \(0.431608\pi\)
\(558\) −19644.5 −1.49035
\(559\) 0 0
\(560\) −4643.84 −0.350425
\(561\) −7402.24 −0.557082
\(562\) 10832.4 0.813052
\(563\) −7419.32 −0.555395 −0.277697 0.960669i \(-0.589571\pi\)
−0.277697 + 0.960669i \(0.589571\pi\)
\(564\) 13687.4 1.02188
\(565\) −30535.4 −2.27369
\(566\) −12758.7 −0.947505
\(567\) 11116.1 0.823341
\(568\) 1340.80 0.0990468
\(569\) −9744.44 −0.717941 −0.358970 0.933349i \(-0.616872\pi\)
−0.358970 + 0.933349i \(0.616872\pi\)
\(570\) 34857.2 2.56141
\(571\) 6351.23 0.465483 0.232741 0.972539i \(-0.425230\pi\)
0.232741 + 0.972539i \(0.425230\pi\)
\(572\) 0 0
\(573\) −9504.35 −0.692932
\(574\) 4148.44 0.301659
\(575\) 30334.6 2.20007
\(576\) 3403.81 0.246225
\(577\) 86.5008 0.00624104 0.00312052 0.999995i \(-0.499007\pi\)
0.00312052 + 0.999995i \(0.499007\pi\)
\(578\) 792.443 0.0570264
\(579\) 6830.25 0.490251
\(580\) 2146.77 0.153689
\(581\) −19412.3 −1.38616
\(582\) −22548.0 −1.60592
\(583\) 4856.83 0.345025
\(584\) 124.517 0.00882289
\(585\) 0 0
\(586\) 1050.05 0.0740225
\(587\) −1367.02 −0.0961209 −0.0480605 0.998844i \(-0.515304\pi\)
−0.0480605 + 0.998844i \(0.515304\pi\)
\(588\) −2235.21 −0.156766
\(589\) 20745.6 1.45128
\(590\) −3837.12 −0.267749
\(591\) −10259.9 −0.714102
\(592\) 2479.42 0.172134
\(593\) 1643.31 0.113799 0.0568995 0.998380i \(-0.481879\pi\)
0.0568995 + 0.998380i \(0.481879\pi\)
\(594\) −5767.97 −0.398422
\(595\) 19506.1 1.34399
\(596\) −3243.66 −0.222929
\(597\) −13631.6 −0.934515
\(598\) 0 0
\(599\) 3295.56 0.224796 0.112398 0.993663i \(-0.464147\pi\)
0.112398 + 0.993663i \(0.464147\pi\)
\(600\) −12551.8 −0.854045
\(601\) −28175.8 −1.91234 −0.956169 0.292815i \(-0.905408\pi\)
−0.956169 + 0.292815i \(0.905408\pi\)
\(602\) 6752.73 0.457177
\(603\) 2751.94 0.185850
\(604\) 1355.53 0.0913172
\(605\) 20440.5 1.37360
\(606\) −15825.8 −1.06086
\(607\) 10696.0 0.715215 0.357608 0.933872i \(-0.383593\pi\)
0.357608 + 0.933872i \(0.383593\pi\)
\(608\) −3594.60 −0.239770
\(609\) −4646.17 −0.309150
\(610\) 25895.5 1.71882
\(611\) 0 0
\(612\) −14297.5 −0.944349
\(613\) 7253.09 0.477895 0.238947 0.971033i \(-0.423198\pi\)
0.238947 + 0.971033i \(0.423198\pi\)
\(614\) −7194.41 −0.472871
\(615\) 19212.1 1.25969
\(616\) −1648.29 −0.107811
\(617\) −18354.9 −1.19763 −0.598817 0.800886i \(-0.704362\pi\)
−0.598817 + 0.800886i \(0.704362\pi\)
\(618\) −7366.65 −0.479499
\(619\) 11835.1 0.768489 0.384244 0.923231i \(-0.374462\pi\)
0.384244 + 0.923231i \(0.374462\pi\)
\(620\) −12799.8 −0.829114
\(621\) 40593.4 2.62312
\(622\) −4337.13 −0.279587
\(623\) −22416.5 −1.44157
\(624\) 0 0
\(625\) −6826.48 −0.436895
\(626\) −18828.7 −1.20215
\(627\) 12372.3 0.788039
\(628\) −15354.4 −0.975647
\(629\) −10414.6 −0.660189
\(630\) 30872.5 1.95237
\(631\) −19152.1 −1.20830 −0.604148 0.796872i \(-0.706486\pi\)
−0.604148 + 0.796872i \(0.706486\pi\)
\(632\) 2602.59 0.163806
\(633\) 15894.6 0.998034
\(634\) −1700.95 −0.106551
\(635\) 19537.4 1.22097
\(636\) 14143.4 0.881799
\(637\) 0 0
\(638\) 761.979 0.0472838
\(639\) −8913.70 −0.551832
\(640\) 2217.82 0.136980
\(641\) 6798.89 0.418939 0.209469 0.977815i \(-0.432826\pi\)
0.209469 + 0.977815i \(0.432826\pi\)
\(642\) 12252.4 0.753213
\(643\) 18792.6 1.15258 0.576288 0.817247i \(-0.304501\pi\)
0.576288 + 0.817247i \(0.304501\pi\)
\(644\) 11600.2 0.709802
\(645\) 31273.1 1.90911
\(646\) 15098.9 0.919593
\(647\) 13142.1 0.798561 0.399280 0.916829i \(-0.369260\pi\)
0.399280 + 0.916829i \(0.369260\pi\)
\(648\) −5308.89 −0.321841
\(649\) −1361.95 −0.0823750
\(650\) 0 0
\(651\) 27702.0 1.66778
\(652\) −8335.94 −0.500706
\(653\) −12250.2 −0.734131 −0.367066 0.930195i \(-0.619638\pi\)
−0.367066 + 0.930195i \(0.619638\pi\)
\(654\) −16521.0 −0.987802
\(655\) −34461.6 −2.05576
\(656\) −1981.23 −0.117918
\(657\) −827.800 −0.0491561
\(658\) −12802.2 −0.758484
\(659\) −552.103 −0.0326356 −0.0163178 0.999867i \(-0.505194\pi\)
−0.0163178 + 0.999867i \(0.505194\pi\)
\(660\) −7633.53 −0.450204
\(661\) −22350.8 −1.31520 −0.657599 0.753368i \(-0.728428\pi\)
−0.657599 + 0.753368i \(0.728428\pi\)
\(662\) 3472.55 0.203874
\(663\) 0 0
\(664\) 9271.00 0.541844
\(665\) −32603.0 −1.90119
\(666\) −16483.3 −0.959034
\(667\) −5362.59 −0.311305
\(668\) 3293.75 0.190777
\(669\) −32689.8 −1.88918
\(670\) 1793.09 0.103392
\(671\) 9191.40 0.528808
\(672\) −4799.94 −0.275538
\(673\) 1877.38 0.107530 0.0537650 0.998554i \(-0.482878\pi\)
0.0537650 + 0.998554i \(0.482878\pi\)
\(674\) −22990.1 −1.31386
\(675\) 41083.0 2.34265
\(676\) 0 0
\(677\) −11266.5 −0.639596 −0.319798 0.947486i \(-0.603615\pi\)
−0.319798 + 0.947486i \(0.603615\pi\)
\(678\) −31561.8 −1.78780
\(679\) 21089.9 1.19198
\(680\) −9315.82 −0.525361
\(681\) −26602.9 −1.49695
\(682\) −4543.16 −0.255083
\(683\) −1255.53 −0.0703389 −0.0351694 0.999381i \(-0.511197\pi\)
−0.0351694 + 0.999381i \(0.511197\pi\)
\(684\) 23897.1 1.33586
\(685\) 28474.1 1.58823
\(686\) 13581.8 0.755914
\(687\) −53223.7 −2.95577
\(688\) −3224.99 −0.178709
\(689\) 0 0
\(690\) 53722.6 2.96404
\(691\) −14442.3 −0.795093 −0.397547 0.917582i \(-0.630138\pi\)
−0.397547 + 0.917582i \(0.630138\pi\)
\(692\) −12446.6 −0.683739
\(693\) 10957.9 0.600661
\(694\) 16598.4 0.907876
\(695\) 39946.7 2.18024
\(696\) 2218.94 0.120846
\(697\) 8322.01 0.452251
\(698\) 5079.12 0.275426
\(699\) 33775.2 1.82760
\(700\) 11740.1 0.633908
\(701\) 18393.2 0.991017 0.495509 0.868603i \(-0.334982\pi\)
0.495509 + 0.868603i \(0.334982\pi\)
\(702\) 0 0
\(703\) 17407.3 0.933893
\(704\) 787.197 0.0421429
\(705\) −59289.3 −3.16733
\(706\) 8415.59 0.448619
\(707\) 14802.4 0.787411
\(708\) −3966.11 −0.210530
\(709\) 25374.4 1.34408 0.672041 0.740514i \(-0.265418\pi\)
0.672041 + 0.740514i \(0.265418\pi\)
\(710\) −5807.90 −0.306995
\(711\) −17302.2 −0.912633
\(712\) 10705.8 0.563504
\(713\) 31973.5 1.67941
\(714\) 20161.8 1.05678
\(715\) 0 0
\(716\) −12454.9 −0.650083
\(717\) 54240.5 2.82517
\(718\) 21176.8 1.10071
\(719\) 4117.65 0.213578 0.106789 0.994282i \(-0.465943\pi\)
0.106789 + 0.994282i \(0.465943\pi\)
\(720\) −14744.2 −0.763173
\(721\) 6890.26 0.355904
\(722\) −11518.6 −0.593735
\(723\) 13803.4 0.710031
\(724\) −1229.87 −0.0631323
\(725\) −5427.28 −0.278019
\(726\) 21127.6 1.08006
\(727\) 1337.37 0.0682262 0.0341131 0.999418i \(-0.489139\pi\)
0.0341131 + 0.999418i \(0.489139\pi\)
\(728\) 0 0
\(729\) −21395.2 −1.08699
\(730\) −539.370 −0.0273466
\(731\) 13546.4 0.685405
\(732\) 26766.0 1.35150
\(733\) 7830.04 0.394555 0.197278 0.980348i \(-0.436790\pi\)
0.197278 + 0.980348i \(0.436790\pi\)
\(734\) 7883.29 0.396427
\(735\) 9682.22 0.485897
\(736\) −5540.07 −0.277459
\(737\) 636.441 0.0318095
\(738\) 13171.3 0.656969
\(739\) −15492.4 −0.771172 −0.385586 0.922672i \(-0.626001\pi\)
−0.385586 + 0.922672i \(0.626001\pi\)
\(740\) −10740.1 −0.533530
\(741\) 0 0
\(742\) −13228.8 −0.654508
\(743\) 20334.4 1.00403 0.502016 0.864858i \(-0.332592\pi\)
0.502016 + 0.864858i \(0.332592\pi\)
\(744\) −13230.0 −0.651930
\(745\) 14050.5 0.690967
\(746\) 9998.37 0.490706
\(747\) −61634.2 −3.01884
\(748\) −3306.57 −0.161631
\(749\) −11460.0 −0.559066
\(750\) 15582.2 0.758642
\(751\) 15433.6 0.749907 0.374954 0.927044i \(-0.377659\pi\)
0.374954 + 0.927044i \(0.377659\pi\)
\(752\) 6114.13 0.296488
\(753\) 18807.4 0.910200
\(754\) 0 0
\(755\) −5871.71 −0.283038
\(756\) 15710.5 0.755802
\(757\) 22768.3 1.09317 0.546583 0.837405i \(-0.315928\pi\)
0.546583 + 0.837405i \(0.315928\pi\)
\(758\) 2814.02 0.134842
\(759\) 19068.4 0.911909
\(760\) 15570.6 0.743167
\(761\) −9284.91 −0.442283 −0.221142 0.975242i \(-0.570978\pi\)
−0.221142 + 0.975242i \(0.570978\pi\)
\(762\) 20194.1 0.960046
\(763\) 15452.6 0.733188
\(764\) −4245.58 −0.201047
\(765\) 61932.1 2.92701
\(766\) −15009.2 −0.707971
\(767\) 0 0
\(768\) 2292.37 0.107707
\(769\) −31496.8 −1.47699 −0.738495 0.674259i \(-0.764463\pi\)
−0.738495 + 0.674259i \(0.764463\pi\)
\(770\) 7139.87 0.334160
\(771\) −18990.4 −0.887058
\(772\) 3051.06 0.142241
\(773\) 18539.5 0.862639 0.431320 0.902199i \(-0.358048\pi\)
0.431320 + 0.902199i \(0.358048\pi\)
\(774\) 21440.0 0.995664
\(775\) 32359.2 1.49984
\(776\) −10072.2 −0.465941
\(777\) 23244.3 1.07321
\(778\) 7560.16 0.348387
\(779\) −13909.6 −0.639747
\(780\) 0 0
\(781\) −2061.47 −0.0944495
\(782\) 23270.7 1.06414
\(783\) −7262.72 −0.331480
\(784\) −998.466 −0.0454840
\(785\) 66510.3 3.02402
\(786\) −35620.0 −1.61644
\(787\) −41447.4 −1.87731 −0.938654 0.344860i \(-0.887926\pi\)
−0.938654 + 0.344860i \(0.887926\pi\)
\(788\) −4583.06 −0.207189
\(789\) −34533.7 −1.55822
\(790\) −11273.6 −0.507716
\(791\) 29520.8 1.32698
\(792\) −5233.34 −0.234796
\(793\) 0 0
\(794\) −18705.4 −0.836056
\(795\) −61264.9 −2.73313
\(796\) −6089.23 −0.271140
\(797\) −6968.76 −0.309719 −0.154860 0.987936i \(-0.549493\pi\)
−0.154860 + 0.987936i \(0.549493\pi\)
\(798\) −33698.9 −1.49490
\(799\) −25682.0 −1.13713
\(800\) −5606.89 −0.247792
\(801\) −71172.5 −3.13952
\(802\) −17095.1 −0.752678
\(803\) −191.445 −0.00841338
\(804\) 1853.36 0.0812972
\(805\) −50248.4 −2.20003
\(806\) 0 0
\(807\) 55904.7 2.43858
\(808\) −7069.36 −0.307796
\(809\) −10070.6 −0.437657 −0.218828 0.975763i \(-0.570224\pi\)
−0.218828 + 0.975763i \(0.570224\pi\)
\(810\) 22996.4 0.997545
\(811\) −3587.33 −0.155324 −0.0776622 0.996980i \(-0.524746\pi\)
−0.0776622 + 0.996980i \(0.524746\pi\)
\(812\) −2075.44 −0.0896967
\(813\) −19931.3 −0.859803
\(814\) −3812.09 −0.164145
\(815\) 36108.6 1.55194
\(816\) −9628.97 −0.413090
\(817\) −22641.7 −0.969563
\(818\) −27126.4 −1.15948
\(819\) 0 0
\(820\) 8582.04 0.365485
\(821\) −8415.43 −0.357735 −0.178868 0.983873i \(-0.557243\pi\)
−0.178868 + 0.983873i \(0.557243\pi\)
\(822\) 29431.3 1.24882
\(823\) −24609.3 −1.04232 −0.521159 0.853460i \(-0.674500\pi\)
−0.521159 + 0.853460i \(0.674500\pi\)
\(824\) −3290.68 −0.139121
\(825\) 19298.4 0.814404
\(826\) 3709.62 0.156264
\(827\) −9627.34 −0.404807 −0.202403 0.979302i \(-0.564875\pi\)
−0.202403 + 0.979302i \(0.564875\pi\)
\(828\) 36830.7 1.54584
\(829\) −35557.0 −1.48968 −0.744840 0.667243i \(-0.767474\pi\)
−0.744840 + 0.667243i \(0.767474\pi\)
\(830\) −40159.0 −1.67944
\(831\) −41436.8 −1.72975
\(832\) 0 0
\(833\) 4193.99 0.174446
\(834\) 41289.5 1.71432
\(835\) −14267.5 −0.591313
\(836\) 5526.67 0.228641
\(837\) 43302.7 1.78824
\(838\) −12793.1 −0.527363
\(839\) −15656.8 −0.644260 −0.322130 0.946695i \(-0.604399\pi\)
−0.322130 + 0.946695i \(0.604399\pi\)
\(840\) 20791.8 0.854031
\(841\) −23429.6 −0.960661
\(842\) 22468.6 0.919617
\(843\) −48499.6 −1.98151
\(844\) 7100.12 0.289569
\(845\) 0 0
\(846\) −40647.1 −1.65186
\(847\) −19761.3 −0.801662
\(848\) 6317.86 0.255845
\(849\) 57124.4 2.30919
\(850\) 23551.4 0.950360
\(851\) 26828.4 1.08069
\(852\) −6003.14 −0.241390
\(853\) −5908.12 −0.237152 −0.118576 0.992945i \(-0.537833\pi\)
−0.118576 + 0.992945i \(0.537833\pi\)
\(854\) −25035.1 −1.00314
\(855\) −103515. −4.14050
\(856\) 5473.12 0.218537
\(857\) 16128.5 0.642867 0.321434 0.946932i \(-0.395835\pi\)
0.321434 + 0.946932i \(0.395835\pi\)
\(858\) 0 0
\(859\) −48567.5 −1.92911 −0.964553 0.263889i \(-0.914995\pi\)
−0.964553 + 0.263889i \(0.914995\pi\)
\(860\) 13969.6 0.553908
\(861\) −18573.8 −0.735183
\(862\) −18791.8 −0.742521
\(863\) 33998.4 1.34104 0.670521 0.741890i \(-0.266071\pi\)
0.670521 + 0.741890i \(0.266071\pi\)
\(864\) −7503.08 −0.295440
\(865\) 53914.6 2.11925
\(866\) −32220.7 −1.26432
\(867\) −3548.00 −0.138981
\(868\) 12374.4 0.483889
\(869\) −4001.46 −0.156203
\(870\) −9611.73 −0.374561
\(871\) 0 0
\(872\) −7379.91 −0.286600
\(873\) 66960.5 2.59596
\(874\) −38895.2 −1.50532
\(875\) −14574.5 −0.563096
\(876\) −557.501 −0.0215025
\(877\) 44774.8 1.72399 0.861995 0.506917i \(-0.169215\pi\)
0.861995 + 0.506917i \(0.169215\pi\)
\(878\) −23909.6 −0.919033
\(879\) −4701.38 −0.180402
\(880\) −3409.89 −0.130622
\(881\) −3101.61 −0.118611 −0.0593053 0.998240i \(-0.518889\pi\)
−0.0593053 + 0.998240i \(0.518889\pi\)
\(882\) 6637.86 0.253411
\(883\) 26016.4 0.991531 0.495765 0.868456i \(-0.334888\pi\)
0.495765 + 0.868456i \(0.334888\pi\)
\(884\) 0 0
\(885\) 17179.9 0.652538
\(886\) −17248.1 −0.654018
\(887\) −23730.5 −0.898299 −0.449150 0.893457i \(-0.648273\pi\)
−0.449150 + 0.893457i \(0.648273\pi\)
\(888\) −11101.1 −0.419513
\(889\) −18888.2 −0.712586
\(890\) −46373.9 −1.74658
\(891\) 8162.38 0.306902
\(892\) −14602.5 −0.548125
\(893\) 42925.4 1.60856
\(894\) 14522.8 0.543306
\(895\) 53950.4 2.01493
\(896\) −2144.13 −0.0799445
\(897\) 0 0
\(898\) 21622.1 0.803495
\(899\) −5720.51 −0.212224
\(900\) 37275.0 1.38056
\(901\) −26537.8 −0.981244
\(902\) 3046.12 0.112444
\(903\) −30233.9 −1.11420
\(904\) −14098.6 −0.518710
\(905\) 5327.41 0.195679
\(906\) −6069.09 −0.222552
\(907\) −51850.6 −1.89820 −0.949102 0.314969i \(-0.898006\pi\)
−0.949102 + 0.314969i \(0.898006\pi\)
\(908\) −11883.5 −0.434325
\(909\) 46997.6 1.71486
\(910\) 0 0
\(911\) 5955.68 0.216598 0.108299 0.994118i \(-0.465460\pi\)
0.108299 + 0.994118i \(0.465460\pi\)
\(912\) 16094.1 0.584350
\(913\) −14254.1 −0.516694
\(914\) 17102.1 0.618914
\(915\) −115942. −4.18898
\(916\) −23775.0 −0.857584
\(917\) 33316.5 1.19979
\(918\) 31516.2 1.13311
\(919\) −30266.8 −1.08641 −0.543204 0.839601i \(-0.682789\pi\)
−0.543204 + 0.839601i \(0.682789\pi\)
\(920\) 23997.8 0.859983
\(921\) 32211.5 1.15245
\(922\) 4884.93 0.174487
\(923\) 0 0
\(924\) 7379.88 0.262749
\(925\) 27152.0 0.965139
\(926\) −22617.1 −0.802639
\(927\) 21876.6 0.775105
\(928\) 991.196 0.0350621
\(929\) 7850.26 0.277243 0.138622 0.990345i \(-0.455733\pi\)
0.138622 + 0.990345i \(0.455733\pi\)
\(930\) 57308.2 2.02066
\(931\) −7009.92 −0.246768
\(932\) 15087.3 0.530260
\(933\) 19418.6 0.681389
\(934\) −32446.7 −1.13671
\(935\) 14323.0 0.500976
\(936\) 0 0
\(937\) 37712.4 1.31485 0.657424 0.753521i \(-0.271646\pi\)
0.657424 + 0.753521i \(0.271646\pi\)
\(938\) −1733.50 −0.0603422
\(939\) 84301.4 2.92979
\(940\) −26484.5 −0.918966
\(941\) −30329.3 −1.05070 −0.525349 0.850887i \(-0.676065\pi\)
−0.525349 + 0.850887i \(0.676065\pi\)
\(942\) 68746.0 2.37778
\(943\) −21437.8 −0.740307
\(944\) −1771.66 −0.0610831
\(945\) −68053.0 −2.34261
\(946\) 4958.41 0.170414
\(947\) −29041.1 −0.996526 −0.498263 0.867026i \(-0.666029\pi\)
−0.498263 + 0.867026i \(0.666029\pi\)
\(948\) −11652.5 −0.399216
\(949\) 0 0
\(950\) −39364.3 −1.34436
\(951\) 7615.66 0.259679
\(952\) 9006.27 0.306612
\(953\) 5133.10 0.174478 0.0872390 0.996187i \(-0.472196\pi\)
0.0872390 + 0.996187i \(0.472196\pi\)
\(954\) −42001.5 −1.42542
\(955\) 18390.5 0.623144
\(956\) 24229.2 0.819694
\(957\) −3411.60 −0.115237
\(958\) −13640.4 −0.460021
\(959\) −27528.0 −0.926929
\(960\) −9929.83 −0.333837
\(961\) 4316.53 0.144894
\(962\) 0 0
\(963\) −36385.7 −1.21756
\(964\) 6165.95 0.206008
\(965\) −13216.2 −0.440876
\(966\) −51937.5 −1.72988
\(967\) 990.387 0.0329356 0.0164678 0.999864i \(-0.494758\pi\)
0.0164678 + 0.999864i \(0.494758\pi\)
\(968\) 9437.69 0.313367
\(969\) −67602.1 −2.24117
\(970\) 43629.5 1.44418
\(971\) −3535.60 −0.116852 −0.0584258 0.998292i \(-0.518608\pi\)
−0.0584258 + 0.998292i \(0.518608\pi\)
\(972\) −1553.48 −0.0512632
\(973\) −38619.4 −1.27244
\(974\) 8154.09 0.268248
\(975\) 0 0
\(976\) 11956.3 0.392124
\(977\) −619.679 −0.0202920 −0.0101460 0.999949i \(-0.503230\pi\)
−0.0101460 + 0.999949i \(0.503230\pi\)
\(978\) 37322.4 1.22029
\(979\) −16460.0 −0.537349
\(980\) 4325.03 0.140978
\(981\) 49062.1 1.59677
\(982\) 33267.1 1.08106
\(983\) 25222.6 0.818387 0.409194 0.912448i \(-0.365810\pi\)
0.409194 + 0.912448i \(0.365810\pi\)
\(984\) 8870.53 0.287380
\(985\) 19852.4 0.642182
\(986\) −4163.46 −0.134474
\(987\) 57319.3 1.84852
\(988\) 0 0
\(989\) −34895.9 −1.12197
\(990\) 22669.1 0.727750
\(991\) −14421.7 −0.462280 −0.231140 0.972920i \(-0.574246\pi\)
−0.231140 + 0.972920i \(0.574246\pi\)
\(992\) −5909.83 −0.189151
\(993\) −15547.6 −0.496867
\(994\) 5614.92 0.179169
\(995\) 26376.6 0.840397
\(996\) −41508.9 −1.32054
\(997\) 34940.1 1.10989 0.554946 0.831886i \(-0.312739\pi\)
0.554946 + 0.831886i \(0.312739\pi\)
\(998\) −26909.4 −0.853509
\(999\) 36334.6 1.15073
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.a.n.1.5 6
13.2 odd 12 338.4.e.i.147.4 24
13.3 even 3 338.4.c.p.191.2 12
13.4 even 6 338.4.c.o.315.2 12
13.5 odd 4 338.4.b.h.337.11 12
13.6 odd 12 338.4.e.i.23.7 24
13.7 odd 12 338.4.e.i.23.4 24
13.8 odd 4 338.4.b.h.337.5 12
13.9 even 3 338.4.c.p.315.2 12
13.10 even 6 338.4.c.o.191.2 12
13.11 odd 12 338.4.e.i.147.7 24
13.12 even 2 338.4.a.o.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.5 6 1.1 even 1 trivial
338.4.a.o.1.5 yes 6 13.12 even 2
338.4.b.h.337.5 12 13.8 odd 4
338.4.b.h.337.11 12 13.5 odd 4
338.4.c.o.191.2 12 13.10 even 6
338.4.c.o.315.2 12 13.4 even 6
338.4.c.p.191.2 12 13.3 even 3
338.4.c.p.315.2 12 13.9 even 3
338.4.e.i.23.4 24 13.7 odd 12
338.4.e.i.23.7 24 13.6 odd 12
338.4.e.i.147.4 24 13.2 odd 12
338.4.e.i.147.7 24 13.11 odd 12