Properties

Label 338.4.a.n.1.3
Level $338$
Weight $4$
Character 338.1
Self dual yes
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6681389953.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 107x^{4} + 85x^{3} + 3703x^{2} - 1659x - 41951 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.40469\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -1.24585 q^{3} +4.00000 q^{4} -20.5002 q^{5} +2.49171 q^{6} -21.2545 q^{7} -8.00000 q^{8} -25.4478 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} -1.24585 q^{3} +4.00000 q^{4} -20.5002 q^{5} +2.49171 q^{6} -21.2545 q^{7} -8.00000 q^{8} -25.4478 q^{9} +41.0004 q^{10} -53.0579 q^{11} -4.98341 q^{12} +42.5090 q^{14} +25.5403 q^{15} +16.0000 q^{16} -69.2150 q^{17} +50.8957 q^{18} +46.0603 q^{19} -82.0009 q^{20} +26.4800 q^{21} +106.116 q^{22} -87.2424 q^{23} +9.96683 q^{24} +295.259 q^{25} +65.3423 q^{27} -85.0181 q^{28} -162.062 q^{29} -51.0805 q^{30} -28.3466 q^{31} -32.0000 q^{32} +66.1024 q^{33} +138.430 q^{34} +435.722 q^{35} -101.791 q^{36} -111.972 q^{37} -92.1206 q^{38} +164.002 q^{40} -84.2751 q^{41} -52.9600 q^{42} -328.359 q^{43} -212.232 q^{44} +521.686 q^{45} +174.485 q^{46} -63.2021 q^{47} -19.9337 q^{48} +108.754 q^{49} -590.518 q^{50} +86.2318 q^{51} +721.631 q^{53} -130.685 q^{54} +1087.70 q^{55} +170.036 q^{56} -57.3844 q^{57} +324.123 q^{58} -819.081 q^{59} +102.161 q^{60} -397.828 q^{61} +56.6933 q^{62} +540.882 q^{63} +64.0000 q^{64} -132.205 q^{66} +77.8816 q^{67} -276.860 q^{68} +108.691 q^{69} -871.444 q^{70} +721.069 q^{71} +203.583 q^{72} -57.1470 q^{73} +223.945 q^{74} -367.849 q^{75} +184.241 q^{76} +1127.72 q^{77} -419.705 q^{79} -328.003 q^{80} +605.685 q^{81} +168.550 q^{82} +917.600 q^{83} +105.920 q^{84} +1418.92 q^{85} +656.717 q^{86} +201.905 q^{87} +424.463 q^{88} -378.804 q^{89} -1043.37 q^{90} -348.970 q^{92} +35.3158 q^{93} +126.404 q^{94} -944.246 q^{95} +39.8673 q^{96} -346.444 q^{97} -217.509 q^{98} +1350.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9} + 36 q^{10} - 37 q^{11} + 36 q^{12} + 50 q^{14} - 118 q^{15} + 96 q^{16} + 99 q^{17} - 226 q^{18} + 81 q^{19} - 72 q^{20} + 26 q^{21} + 74 q^{22} + 267 q^{23} - 72 q^{24} + 368 q^{25} + 669 q^{27} - 100 q^{28} - 119 q^{29} + 236 q^{30} + 625 q^{31} - 192 q^{32} - 762 q^{33} - 198 q^{34} + 614 q^{35} + 452 q^{36} - 274 q^{37} - 162 q^{38} + 144 q^{40} - 1140 q^{41} - 52 q^{42} + 428 q^{43} - 148 q^{44} + 1215 q^{45} - 534 q^{46} + 986 q^{47} + 144 q^{48} + 899 q^{49} - 736 q^{50} + 289 q^{51} + 89 q^{53} - 1338 q^{54} + 1126 q^{55} + 200 q^{56} + 2553 q^{57} + 238 q^{58} - 1088 q^{59} - 472 q^{60} + 1704 q^{61} - 1250 q^{62} + 3222 q^{63} + 384 q^{64} + 1524 q^{66} + 1692 q^{67} + 396 q^{68} + 1168 q^{69} - 1228 q^{70} + 1221 q^{71} - 904 q^{72} + 1554 q^{73} + 548 q^{74} + 1798 q^{75} + 324 q^{76} + 2790 q^{77} - 875 q^{79} - 288 q^{80} + 3338 q^{81} + 2280 q^{82} + 126 q^{83} + 104 q^{84} + 3721 q^{85} - 856 q^{86} + 1602 q^{87} + 296 q^{88} + 374 q^{89} - 2430 q^{90} + 1068 q^{92} + 1868 q^{93} - 1972 q^{94} - 4093 q^{95} - 288 q^{96} + 330 q^{97} - 1798 q^{98} + 1344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −1.24585 −0.239765 −0.119882 0.992788i \(-0.538252\pi\)
−0.119882 + 0.992788i \(0.538252\pi\)
\(4\) 4.00000 0.500000
\(5\) −20.5002 −1.83359 −0.916797 0.399352i \(-0.869235\pi\)
−0.916797 + 0.399352i \(0.869235\pi\)
\(6\) 2.49171 0.169539
\(7\) −21.2545 −1.14764 −0.573818 0.818983i \(-0.694538\pi\)
−0.573818 + 0.818983i \(0.694538\pi\)
\(8\) −8.00000 −0.353553
\(9\) −25.4478 −0.942513
\(10\) 41.0004 1.29655
\(11\) −53.0579 −1.45432 −0.727162 0.686466i \(-0.759161\pi\)
−0.727162 + 0.686466i \(0.759161\pi\)
\(12\) −4.98341 −0.119882
\(13\) 0 0
\(14\) 42.5090 0.811501
\(15\) 25.5403 0.439631
\(16\) 16.0000 0.250000
\(17\) −69.2150 −0.987477 −0.493738 0.869611i \(-0.664370\pi\)
−0.493738 + 0.869611i \(0.664370\pi\)
\(18\) 50.8957 0.666457
\(19\) 46.0603 0.556156 0.278078 0.960559i \(-0.410303\pi\)
0.278078 + 0.960559i \(0.410303\pi\)
\(20\) −82.0009 −0.916797
\(21\) 26.4800 0.275163
\(22\) 106.116 1.02836
\(23\) −87.2424 −0.790926 −0.395463 0.918482i \(-0.629416\pi\)
−0.395463 + 0.918482i \(0.629416\pi\)
\(24\) 9.96683 0.0847696
\(25\) 295.259 2.36207
\(26\) 0 0
\(27\) 65.3423 0.465746
\(28\) −85.0181 −0.573818
\(29\) −162.062 −1.03773 −0.518864 0.854857i \(-0.673645\pi\)
−0.518864 + 0.854857i \(0.673645\pi\)
\(30\) −51.0805 −0.310866
\(31\) −28.3466 −0.164232 −0.0821162 0.996623i \(-0.526168\pi\)
−0.0821162 + 0.996623i \(0.526168\pi\)
\(32\) −32.0000 −0.176777
\(33\) 66.1024 0.348695
\(34\) 138.430 0.698251
\(35\) 435.722 2.10430
\(36\) −101.791 −0.471256
\(37\) −111.972 −0.497517 −0.248759 0.968566i \(-0.580023\pi\)
−0.248759 + 0.968566i \(0.580023\pi\)
\(38\) −92.1206 −0.393261
\(39\) 0 0
\(40\) 164.002 0.648274
\(41\) −84.2751 −0.321014 −0.160507 0.987035i \(-0.551313\pi\)
−0.160507 + 0.987035i \(0.551313\pi\)
\(42\) −52.9600 −0.194569
\(43\) −328.359 −1.16452 −0.582258 0.813004i \(-0.697831\pi\)
−0.582258 + 0.813004i \(0.697831\pi\)
\(44\) −212.232 −0.727162
\(45\) 521.686 1.72819
\(46\) 174.485 0.559269
\(47\) −63.2021 −0.196148 −0.0980742 0.995179i \(-0.531268\pi\)
−0.0980742 + 0.995179i \(0.531268\pi\)
\(48\) −19.9337 −0.0599412
\(49\) 108.754 0.317068
\(50\) −590.518 −1.67024
\(51\) 86.2318 0.236762
\(52\) 0 0
\(53\) 721.631 1.87026 0.935129 0.354308i \(-0.115284\pi\)
0.935129 + 0.354308i \(0.115284\pi\)
\(54\) −130.685 −0.329332
\(55\) 1087.70 2.66664
\(56\) 170.036 0.405751
\(57\) −57.3844 −0.133346
\(58\) 324.123 0.733784
\(59\) −819.081 −1.80738 −0.903689 0.428190i \(-0.859151\pi\)
−0.903689 + 0.428190i \(0.859151\pi\)
\(60\) 102.161 0.219816
\(61\) −397.828 −0.835027 −0.417514 0.908671i \(-0.637098\pi\)
−0.417514 + 0.908671i \(0.637098\pi\)
\(62\) 56.6933 0.116130
\(63\) 540.882 1.08166
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −132.205 −0.246565
\(67\) 77.8816 0.142011 0.0710056 0.997476i \(-0.477379\pi\)
0.0710056 + 0.997476i \(0.477379\pi\)
\(68\) −276.860 −0.493738
\(69\) 108.691 0.189636
\(70\) −871.444 −1.48796
\(71\) 721.069 1.20528 0.602642 0.798011i \(-0.294115\pi\)
0.602642 + 0.798011i \(0.294115\pi\)
\(72\) 203.583 0.333229
\(73\) −57.1470 −0.0916240 −0.0458120 0.998950i \(-0.514588\pi\)
−0.0458120 + 0.998950i \(0.514588\pi\)
\(74\) 223.945 0.351798
\(75\) −367.849 −0.566341
\(76\) 184.241 0.278078
\(77\) 1127.72 1.66903
\(78\) 0 0
\(79\) −419.705 −0.597728 −0.298864 0.954296i \(-0.596608\pi\)
−0.298864 + 0.954296i \(0.596608\pi\)
\(80\) −328.003 −0.458399
\(81\) 605.685 0.830843
\(82\) 168.550 0.226991
\(83\) 917.600 1.21349 0.606745 0.794896i \(-0.292475\pi\)
0.606745 + 0.794896i \(0.292475\pi\)
\(84\) 105.920 0.137581
\(85\) 1418.92 1.81063
\(86\) 656.717 0.823438
\(87\) 201.905 0.248810
\(88\) 424.463 0.514181
\(89\) −378.804 −0.451159 −0.225580 0.974225i \(-0.572428\pi\)
−0.225580 + 0.974225i \(0.572428\pi\)
\(90\) −1043.37 −1.22201
\(91\) 0 0
\(92\) −348.970 −0.395463
\(93\) 35.3158 0.0393771
\(94\) 126.404 0.138698
\(95\) −944.246 −1.01976
\(96\) 39.8673 0.0423848
\(97\) −346.444 −0.362640 −0.181320 0.983424i \(-0.558037\pi\)
−0.181320 + 0.983424i \(0.558037\pi\)
\(98\) −217.509 −0.224201
\(99\) 1350.21 1.37072
\(100\) 1181.04 1.18104
\(101\) −519.293 −0.511600 −0.255800 0.966730i \(-0.582339\pi\)
−0.255800 + 0.966730i \(0.582339\pi\)
\(102\) −172.464 −0.167416
\(103\) −386.911 −0.370130 −0.185065 0.982726i \(-0.559250\pi\)
−0.185065 + 0.982726i \(0.559250\pi\)
\(104\) 0 0
\(105\) −542.846 −0.504537
\(106\) −1443.26 −1.32247
\(107\) −1542.78 −1.39389 −0.696944 0.717125i \(-0.745457\pi\)
−0.696944 + 0.717125i \(0.745457\pi\)
\(108\) 261.369 0.232873
\(109\) 535.630 0.470679 0.235340 0.971913i \(-0.424380\pi\)
0.235340 + 0.971913i \(0.424380\pi\)
\(110\) −2175.40 −1.88560
\(111\) 139.501 0.119287
\(112\) −340.072 −0.286909
\(113\) −997.890 −0.830739 −0.415370 0.909653i \(-0.636348\pi\)
−0.415370 + 0.909653i \(0.636348\pi\)
\(114\) 114.769 0.0942902
\(115\) 1788.49 1.45024
\(116\) −648.247 −0.518864
\(117\) 0 0
\(118\) 1638.16 1.27801
\(119\) 1471.13 1.13326
\(120\) −204.322 −0.155433
\(121\) 1484.14 1.11506
\(122\) 795.656 0.590454
\(123\) 104.994 0.0769678
\(124\) −113.387 −0.0821162
\(125\) −3490.34 −2.49749
\(126\) −1081.76 −0.764850
\(127\) −612.391 −0.427881 −0.213941 0.976847i \(-0.568630\pi\)
−0.213941 + 0.976847i \(0.568630\pi\)
\(128\) −128.000 −0.0883883
\(129\) 409.087 0.279210
\(130\) 0 0
\(131\) −2115.00 −1.41060 −0.705298 0.708911i \(-0.749187\pi\)
−0.705298 + 0.708911i \(0.749187\pi\)
\(132\) 264.409 0.174348
\(133\) −978.990 −0.638264
\(134\) −155.763 −0.100417
\(135\) −1339.53 −0.853989
\(136\) 553.720 0.349126
\(137\) −2925.55 −1.82443 −0.912214 0.409713i \(-0.865629\pi\)
−0.912214 + 0.409713i \(0.865629\pi\)
\(138\) −217.382 −0.134093
\(139\) −2162.95 −1.31985 −0.659923 0.751333i \(-0.729411\pi\)
−0.659923 + 0.751333i \(0.729411\pi\)
\(140\) 1742.89 1.05215
\(141\) 78.7406 0.0470294
\(142\) −1442.14 −0.852265
\(143\) 0 0
\(144\) −407.166 −0.235628
\(145\) 3322.30 1.90277
\(146\) 114.294 0.0647879
\(147\) −135.492 −0.0760218
\(148\) −447.889 −0.248759
\(149\) −1185.39 −0.651751 −0.325876 0.945413i \(-0.605659\pi\)
−0.325876 + 0.945413i \(0.605659\pi\)
\(150\) 735.699 0.400464
\(151\) −1757.32 −0.947077 −0.473538 0.880773i \(-0.657024\pi\)
−0.473538 + 0.880773i \(0.657024\pi\)
\(152\) −368.482 −0.196631
\(153\) 1761.37 0.930710
\(154\) −2255.44 −1.18019
\(155\) 581.112 0.301136
\(156\) 0 0
\(157\) 509.980 0.259241 0.129620 0.991564i \(-0.458624\pi\)
0.129620 + 0.991564i \(0.458624\pi\)
\(158\) 839.411 0.422658
\(159\) −899.047 −0.448422
\(160\) 656.007 0.324137
\(161\) 1854.29 0.907695
\(162\) −1211.37 −0.587495
\(163\) 1763.88 0.847591 0.423796 0.905758i \(-0.360697\pi\)
0.423796 + 0.905758i \(0.360697\pi\)
\(164\) −337.101 −0.160507
\(165\) −1355.11 −0.639366
\(166\) −1835.20 −0.858067
\(167\) −397.025 −0.183968 −0.0919842 0.995760i \(-0.529321\pi\)
−0.0919842 + 0.995760i \(0.529321\pi\)
\(168\) −211.840 −0.0972847
\(169\) 0 0
\(170\) −2837.84 −1.28031
\(171\) −1172.14 −0.524184
\(172\) −1313.43 −0.582258
\(173\) −12.3237 −0.00541593 −0.00270796 0.999996i \(-0.500862\pi\)
−0.00270796 + 0.999996i \(0.500862\pi\)
\(174\) −403.810 −0.175936
\(175\) −6275.58 −2.71080
\(176\) −848.926 −0.363581
\(177\) 1020.46 0.433345
\(178\) 757.609 0.319018
\(179\) −278.459 −0.116274 −0.0581368 0.998309i \(-0.518516\pi\)
−0.0581368 + 0.998309i \(0.518516\pi\)
\(180\) 2086.75 0.864093
\(181\) −3482.28 −1.43003 −0.715017 0.699107i \(-0.753581\pi\)
−0.715017 + 0.699107i \(0.753581\pi\)
\(182\) 0 0
\(183\) 495.636 0.200210
\(184\) 697.939 0.279635
\(185\) 2295.46 0.912245
\(186\) −70.6315 −0.0278438
\(187\) 3672.40 1.43611
\(188\) −252.808 −0.0980742
\(189\) −1388.82 −0.534507
\(190\) 1888.49 0.721082
\(191\) 3784.38 1.43366 0.716828 0.697250i \(-0.245593\pi\)
0.716828 + 0.697250i \(0.245593\pi\)
\(192\) −79.7346 −0.0299706
\(193\) 1990.44 0.742356 0.371178 0.928562i \(-0.378954\pi\)
0.371178 + 0.928562i \(0.378954\pi\)
\(194\) 692.888 0.256425
\(195\) 0 0
\(196\) 435.018 0.158534
\(197\) −4088.79 −1.47875 −0.739377 0.673292i \(-0.764880\pi\)
−0.739377 + 0.673292i \(0.764880\pi\)
\(198\) −2700.42 −0.969244
\(199\) 3461.38 1.23302 0.616510 0.787347i \(-0.288546\pi\)
0.616510 + 0.787347i \(0.288546\pi\)
\(200\) −2362.07 −0.835118
\(201\) −97.0291 −0.0340493
\(202\) 1038.59 0.361756
\(203\) 3444.54 1.19093
\(204\) 344.927 0.118381
\(205\) 1727.66 0.588609
\(206\) 773.821 0.261722
\(207\) 2220.13 0.745458
\(208\) 0 0
\(209\) −2443.86 −0.808830
\(210\) 1085.69 0.356761
\(211\) −197.608 −0.0644736 −0.0322368 0.999480i \(-0.510263\pi\)
−0.0322368 + 0.999480i \(0.510263\pi\)
\(212\) 2886.52 0.935129
\(213\) −898.347 −0.288985
\(214\) 3085.56 0.985628
\(215\) 6731.42 2.13525
\(216\) −522.739 −0.164666
\(217\) 602.494 0.188479
\(218\) −1071.26 −0.332821
\(219\) 71.1968 0.0219682
\(220\) 4350.79 1.33332
\(221\) 0 0
\(222\) −279.002 −0.0843487
\(223\) 3622.66 1.08785 0.543927 0.839132i \(-0.316937\pi\)
0.543927 + 0.839132i \(0.316937\pi\)
\(224\) 680.145 0.202875
\(225\) −7513.70 −2.22628
\(226\) 1995.78 0.587421
\(227\) 5788.77 1.69257 0.846287 0.532727i \(-0.178833\pi\)
0.846287 + 0.532727i \(0.178833\pi\)
\(228\) −229.538 −0.0666732
\(229\) −988.340 −0.285203 −0.142601 0.989780i \(-0.545547\pi\)
−0.142601 + 0.989780i \(0.545547\pi\)
\(230\) −3576.98 −1.02547
\(231\) −1404.97 −0.400175
\(232\) 1296.49 0.366892
\(233\) −6121.48 −1.72116 −0.860582 0.509312i \(-0.829900\pi\)
−0.860582 + 0.509312i \(0.829900\pi\)
\(234\) 0 0
\(235\) 1295.66 0.359657
\(236\) −3276.32 −0.903689
\(237\) 522.891 0.143314
\(238\) −2942.26 −0.801338
\(239\) −224.263 −0.0606961 −0.0303480 0.999539i \(-0.509662\pi\)
−0.0303480 + 0.999539i \(0.509662\pi\)
\(240\) 408.644 0.109908
\(241\) −5636.03 −1.50642 −0.753212 0.657777i \(-0.771497\pi\)
−0.753212 + 0.657777i \(0.771497\pi\)
\(242\) −2968.28 −0.788464
\(243\) −2518.84 −0.664953
\(244\) −1591.31 −0.417514
\(245\) −2229.49 −0.581375
\(246\) −209.989 −0.0544244
\(247\) 0 0
\(248\) 226.773 0.0580649
\(249\) −1143.20 −0.290952
\(250\) 6980.68 1.76599
\(251\) 2416.44 0.607666 0.303833 0.952725i \(-0.401734\pi\)
0.303833 + 0.952725i \(0.401734\pi\)
\(252\) 2163.53 0.540831
\(253\) 4628.90 1.15026
\(254\) 1224.78 0.302558
\(255\) −1767.77 −0.434126
\(256\) 256.000 0.0625000
\(257\) −907.064 −0.220160 −0.110080 0.993923i \(-0.535111\pi\)
−0.110080 + 0.993923i \(0.535111\pi\)
\(258\) −818.174 −0.197431
\(259\) 2379.92 0.570969
\(260\) 0 0
\(261\) 4124.12 0.978072
\(262\) 4229.99 0.997442
\(263\) 3034.33 0.711425 0.355712 0.934596i \(-0.384238\pi\)
0.355712 + 0.934596i \(0.384238\pi\)
\(264\) −528.819 −0.123282
\(265\) −14793.6 −3.42929
\(266\) 1957.98 0.451321
\(267\) 471.935 0.108172
\(268\) 311.526 0.0710056
\(269\) −4047.61 −0.917424 −0.458712 0.888585i \(-0.651689\pi\)
−0.458712 + 0.888585i \(0.651689\pi\)
\(270\) 2679.06 0.603862
\(271\) −3613.26 −0.809926 −0.404963 0.914333i \(-0.632716\pi\)
−0.404963 + 0.914333i \(0.632716\pi\)
\(272\) −1107.44 −0.246869
\(273\) 0 0
\(274\) 5851.10 1.29007
\(275\) −15665.8 −3.43521
\(276\) 434.765 0.0948180
\(277\) 4858.36 1.05383 0.526914 0.849918i \(-0.323349\pi\)
0.526914 + 0.849918i \(0.323349\pi\)
\(278\) 4325.89 0.933272
\(279\) 721.361 0.154791
\(280\) −3485.78 −0.743982
\(281\) 4570.79 0.970358 0.485179 0.874415i \(-0.338754\pi\)
0.485179 + 0.874415i \(0.338754\pi\)
\(282\) −157.481 −0.0332548
\(283\) 867.036 0.182120 0.0910600 0.995845i \(-0.470974\pi\)
0.0910600 + 0.995845i \(0.470974\pi\)
\(284\) 2884.28 0.602642
\(285\) 1176.39 0.244503
\(286\) 0 0
\(287\) 1791.23 0.368407
\(288\) 814.331 0.166614
\(289\) −122.284 −0.0248898
\(290\) −6644.60 −1.34546
\(291\) 431.619 0.0869482
\(292\) −228.588 −0.0458120
\(293\) −1149.40 −0.229176 −0.114588 0.993413i \(-0.536555\pi\)
−0.114588 + 0.993413i \(0.536555\pi\)
\(294\) 270.984 0.0537555
\(295\) 16791.3 3.31400
\(296\) 895.779 0.175899
\(297\) −3466.93 −0.677345
\(298\) 2370.78 0.460858
\(299\) 0 0
\(300\) −1471.40 −0.283171
\(301\) 6979.10 1.33644
\(302\) 3514.64 0.669685
\(303\) 646.963 0.122664
\(304\) 736.965 0.139039
\(305\) 8155.56 1.53110
\(306\) −3522.75 −0.658111
\(307\) 6457.99 1.20058 0.600288 0.799784i \(-0.295053\pi\)
0.600288 + 0.799784i \(0.295053\pi\)
\(308\) 4510.88 0.834517
\(309\) 482.034 0.0887442
\(310\) −1162.22 −0.212935
\(311\) 4856.58 0.885504 0.442752 0.896644i \(-0.354002\pi\)
0.442752 + 0.896644i \(0.354002\pi\)
\(312\) 0 0
\(313\) 2594.40 0.468511 0.234255 0.972175i \(-0.424735\pi\)
0.234255 + 0.972175i \(0.424735\pi\)
\(314\) −1019.96 −0.183311
\(315\) −11088.2 −1.98333
\(316\) −1678.82 −0.298864
\(317\) −2690.19 −0.476643 −0.238322 0.971186i \(-0.576597\pi\)
−0.238322 + 0.971186i \(0.576597\pi\)
\(318\) 1798.09 0.317082
\(319\) 8598.65 1.50919
\(320\) −1312.01 −0.229199
\(321\) 1922.08 0.334205
\(322\) −3708.59 −0.641837
\(323\) −3188.06 −0.549191
\(324\) 2422.74 0.415422
\(325\) 0 0
\(326\) −3527.75 −0.599338
\(327\) −667.317 −0.112852
\(328\) 674.201 0.113496
\(329\) 1343.33 0.225107
\(330\) 2710.23 0.452100
\(331\) −10641.6 −1.76711 −0.883556 0.468326i \(-0.844857\pi\)
−0.883556 + 0.468326i \(0.844857\pi\)
\(332\) 3670.40 0.606745
\(333\) 2849.46 0.468916
\(334\) 794.050 0.130085
\(335\) −1596.59 −0.260391
\(336\) 423.680 0.0687906
\(337\) 670.259 0.108342 0.0541711 0.998532i \(-0.482748\pi\)
0.0541711 + 0.998532i \(0.482748\pi\)
\(338\) 0 0
\(339\) 1243.22 0.199182
\(340\) 5675.69 0.905316
\(341\) 1504.01 0.238847
\(342\) 2344.27 0.370654
\(343\) 4978.78 0.783757
\(344\) 2626.87 0.411719
\(345\) −2228.19 −0.347716
\(346\) 24.6474 0.00382964
\(347\) 1047.94 0.162122 0.0810609 0.996709i \(-0.474169\pi\)
0.0810609 + 0.996709i \(0.474169\pi\)
\(348\) 807.621 0.124405
\(349\) −8329.53 −1.27756 −0.638782 0.769388i \(-0.720561\pi\)
−0.638782 + 0.769388i \(0.720561\pi\)
\(350\) 12551.2 1.91682
\(351\) 0 0
\(352\) 1697.85 0.257090
\(353\) 2824.64 0.425893 0.212947 0.977064i \(-0.431694\pi\)
0.212947 + 0.977064i \(0.431694\pi\)
\(354\) −2040.91 −0.306421
\(355\) −14782.1 −2.21000
\(356\) −1515.22 −0.225580
\(357\) −1832.81 −0.271717
\(358\) 556.918 0.0822179
\(359\) 8753.05 1.28682 0.643410 0.765522i \(-0.277519\pi\)
0.643410 + 0.765522i \(0.277519\pi\)
\(360\) −4173.49 −0.611006
\(361\) −4737.45 −0.690691
\(362\) 6964.57 1.01119
\(363\) −1849.02 −0.267351
\(364\) 0 0
\(365\) 1171.53 0.168001
\(366\) −991.271 −0.141570
\(367\) 7378.20 1.04942 0.524712 0.851280i \(-0.324173\pi\)
0.524712 + 0.851280i \(0.324173\pi\)
\(368\) −1395.88 −0.197731
\(369\) 2144.62 0.302560
\(370\) −4590.91 −0.645055
\(371\) −15337.9 −2.14637
\(372\) 141.263 0.0196886
\(373\) 2626.42 0.364587 0.182293 0.983244i \(-0.441648\pi\)
0.182293 + 0.983244i \(0.441648\pi\)
\(374\) −7344.80 −1.01548
\(375\) 4348.46 0.598809
\(376\) 505.617 0.0693489
\(377\) 0 0
\(378\) 2777.64 0.377953
\(379\) −503.491 −0.0682391 −0.0341195 0.999418i \(-0.510863\pi\)
−0.0341195 + 0.999418i \(0.510863\pi\)
\(380\) −3776.98 −0.509882
\(381\) 762.949 0.102591
\(382\) −7568.76 −1.01375
\(383\) −264.479 −0.0352852 −0.0176426 0.999844i \(-0.505616\pi\)
−0.0176426 + 0.999844i \(0.505616\pi\)
\(384\) 159.469 0.0211924
\(385\) −23118.5 −3.06033
\(386\) −3980.87 −0.524925
\(387\) 8356.02 1.09757
\(388\) −1385.78 −0.181320
\(389\) −5074.42 −0.661397 −0.330698 0.943736i \(-0.607284\pi\)
−0.330698 + 0.943736i \(0.607284\pi\)
\(390\) 0 0
\(391\) 6038.48 0.781021
\(392\) −870.036 −0.112101
\(393\) 2634.98 0.338211
\(394\) 8177.59 1.04564
\(395\) 8604.05 1.09599
\(396\) 5400.84 0.685359
\(397\) 1633.19 0.206467 0.103234 0.994657i \(-0.467081\pi\)
0.103234 + 0.994657i \(0.467081\pi\)
\(398\) −6922.77 −0.871877
\(399\) 1219.68 0.153033
\(400\) 4724.14 0.590518
\(401\) −3512.59 −0.437432 −0.218716 0.975789i \(-0.570187\pi\)
−0.218716 + 0.975789i \(0.570187\pi\)
\(402\) 194.058 0.0240765
\(403\) 0 0
\(404\) −2077.17 −0.255800
\(405\) −12416.7 −1.52343
\(406\) −6889.09 −0.842117
\(407\) 5941.02 0.723551
\(408\) −689.854 −0.0837080
\(409\) 1502.01 0.181589 0.0907944 0.995870i \(-0.471059\pi\)
0.0907944 + 0.995870i \(0.471059\pi\)
\(410\) −3455.32 −0.416210
\(411\) 3644.81 0.437434
\(412\) −1547.64 −0.185065
\(413\) 17409.2 2.07421
\(414\) −4440.26 −0.527118
\(415\) −18811.0 −2.22505
\(416\) 0 0
\(417\) 2694.71 0.316452
\(418\) 4887.73 0.571929
\(419\) −13040.3 −1.52043 −0.760214 0.649673i \(-0.774906\pi\)
−0.760214 + 0.649673i \(0.774906\pi\)
\(420\) −2171.38 −0.252268
\(421\) −13790.6 −1.59647 −0.798234 0.602348i \(-0.794232\pi\)
−0.798234 + 0.602348i \(0.794232\pi\)
\(422\) 395.217 0.0455897
\(423\) 1608.36 0.184872
\(424\) −5773.05 −0.661236
\(425\) −20436.3 −2.33249
\(426\) 1796.69 0.204343
\(427\) 8455.64 0.958308
\(428\) −6171.12 −0.696944
\(429\) 0 0
\(430\) −13462.8 −1.50985
\(431\) 13366.5 1.49383 0.746915 0.664920i \(-0.231534\pi\)
0.746915 + 0.664920i \(0.231534\pi\)
\(432\) 1045.48 0.116436
\(433\) 12375.5 1.37351 0.686753 0.726891i \(-0.259036\pi\)
0.686753 + 0.726891i \(0.259036\pi\)
\(434\) −1204.99 −0.133275
\(435\) −4139.10 −0.456218
\(436\) 2142.52 0.235340
\(437\) −4018.41 −0.439878
\(438\) −142.394 −0.0155339
\(439\) −12339.8 −1.34156 −0.670782 0.741655i \(-0.734041\pi\)
−0.670782 + 0.741655i \(0.734041\pi\)
\(440\) −8701.59 −0.942800
\(441\) −2767.57 −0.298841
\(442\) 0 0
\(443\) −15065.3 −1.61575 −0.807873 0.589356i \(-0.799381\pi\)
−0.807873 + 0.589356i \(0.799381\pi\)
\(444\) 558.005 0.0596435
\(445\) 7765.57 0.827244
\(446\) −7245.33 −0.769229
\(447\) 1476.82 0.156267
\(448\) −1360.29 −0.143454
\(449\) 4223.62 0.443931 0.221966 0.975055i \(-0.428753\pi\)
0.221966 + 0.975055i \(0.428753\pi\)
\(450\) 15027.4 1.57422
\(451\) 4471.46 0.466858
\(452\) −3991.56 −0.415370
\(453\) 2189.36 0.227076
\(454\) −11577.5 −1.19683
\(455\) 0 0
\(456\) 459.075 0.0471451
\(457\) −5141.66 −0.526295 −0.263148 0.964756i \(-0.584761\pi\)
−0.263148 + 0.964756i \(0.584761\pi\)
\(458\) 1976.68 0.201669
\(459\) −4522.67 −0.459913
\(460\) 7153.95 0.725119
\(461\) −11630.3 −1.17500 −0.587501 0.809223i \(-0.699888\pi\)
−0.587501 + 0.809223i \(0.699888\pi\)
\(462\) 2809.95 0.282967
\(463\) 1028.85 0.103272 0.0516359 0.998666i \(-0.483556\pi\)
0.0516359 + 0.998666i \(0.483556\pi\)
\(464\) −2592.99 −0.259432
\(465\) −723.981 −0.0722017
\(466\) 12243.0 1.21705
\(467\) 14089.0 1.39606 0.698030 0.716068i \(-0.254060\pi\)
0.698030 + 0.716068i \(0.254060\pi\)
\(468\) 0 0
\(469\) −1655.34 −0.162977
\(470\) −2591.31 −0.254316
\(471\) −635.360 −0.0621568
\(472\) 6552.65 0.639004
\(473\) 17422.0 1.69358
\(474\) −1045.78 −0.101338
\(475\) 13599.7 1.31368
\(476\) 5884.53 0.566632
\(477\) −18364.0 −1.76274
\(478\) 448.526 0.0429186
\(479\) 14176.7 1.35230 0.676149 0.736765i \(-0.263648\pi\)
0.676149 + 0.736765i \(0.263648\pi\)
\(480\) −817.289 −0.0777166
\(481\) 0 0
\(482\) 11272.1 1.06520
\(483\) −2310.18 −0.217633
\(484\) 5936.56 0.557528
\(485\) 7102.18 0.664934
\(486\) 5037.68 0.470193
\(487\) −5713.18 −0.531600 −0.265800 0.964028i \(-0.585636\pi\)
−0.265800 + 0.964028i \(0.585636\pi\)
\(488\) 3182.63 0.295227
\(489\) −2197.53 −0.203222
\(490\) 4458.98 0.411094
\(491\) −14868.4 −1.36660 −0.683301 0.730137i \(-0.739456\pi\)
−0.683301 + 0.730137i \(0.739456\pi\)
\(492\) 419.978 0.0384839
\(493\) 11217.1 1.02473
\(494\) 0 0
\(495\) −27679.6 −2.51334
\(496\) −453.546 −0.0410581
\(497\) −15326.0 −1.38323
\(498\) 2286.39 0.205734
\(499\) −6429.79 −0.576828 −0.288414 0.957506i \(-0.593128\pi\)
−0.288414 + 0.957506i \(0.593128\pi\)
\(500\) −13961.4 −1.24874
\(501\) 494.635 0.0441091
\(502\) −4832.87 −0.429685
\(503\) 11799.0 1.04590 0.522952 0.852362i \(-0.324831\pi\)
0.522952 + 0.852362i \(0.324831\pi\)
\(504\) −4327.05 −0.382425
\(505\) 10645.6 0.938067
\(506\) −9257.79 −0.813358
\(507\) 0 0
\(508\) −2449.56 −0.213941
\(509\) 9183.02 0.799667 0.399833 0.916588i \(-0.369068\pi\)
0.399833 + 0.916588i \(0.369068\pi\)
\(510\) 3535.54 0.306973
\(511\) 1214.63 0.105151
\(512\) −512.000 −0.0441942
\(513\) 3009.69 0.259027
\(514\) 1814.13 0.155677
\(515\) 7931.75 0.678669
\(516\) 1636.35 0.139605
\(517\) 3353.37 0.285263
\(518\) −4759.84 −0.403736
\(519\) 15.3536 0.00129855
\(520\) 0 0
\(521\) −2688.15 −0.226046 −0.113023 0.993592i \(-0.536053\pi\)
−0.113023 + 0.993592i \(0.536053\pi\)
\(522\) −8248.24 −0.691601
\(523\) 15920.5 1.33108 0.665538 0.746364i \(-0.268202\pi\)
0.665538 + 0.746364i \(0.268202\pi\)
\(524\) −8459.98 −0.705298
\(525\) 7818.46 0.649953
\(526\) −6068.66 −0.503053
\(527\) 1962.01 0.162176
\(528\) 1057.64 0.0871738
\(529\) −4555.77 −0.374436
\(530\) 29587.2 2.42488
\(531\) 20843.9 1.70348
\(532\) −3915.96 −0.319132
\(533\) 0 0
\(534\) −943.870 −0.0764892
\(535\) 31627.3 2.55583
\(536\) −623.053 −0.0502086
\(537\) 346.919 0.0278783
\(538\) 8095.22 0.648717
\(539\) −5770.28 −0.461120
\(540\) −5358.13 −0.426995
\(541\) 1967.63 0.156368 0.0781838 0.996939i \(-0.475088\pi\)
0.0781838 + 0.996939i \(0.475088\pi\)
\(542\) 7226.52 0.572704
\(543\) 4338.42 0.342871
\(544\) 2214.88 0.174563
\(545\) −10980.5 −0.863035
\(546\) 0 0
\(547\) −6075.05 −0.474863 −0.237432 0.971404i \(-0.576306\pi\)
−0.237432 + 0.971404i \(0.576306\pi\)
\(548\) −11702.2 −0.912214
\(549\) 10123.9 0.787024
\(550\) 31331.6 2.42906
\(551\) −7464.61 −0.577138
\(552\) −869.530 −0.0670465
\(553\) 8920.63 0.685974
\(554\) −9716.72 −0.745169
\(555\) −2859.80 −0.218724
\(556\) −8651.78 −0.659923
\(557\) −9690.09 −0.737132 −0.368566 0.929602i \(-0.620151\pi\)
−0.368566 + 0.929602i \(0.620151\pi\)
\(558\) −1442.72 −0.109454
\(559\) 0 0
\(560\) 6971.55 0.526075
\(561\) −4575.28 −0.344329
\(562\) −9141.58 −0.686147
\(563\) −6132.79 −0.459088 −0.229544 0.973298i \(-0.573723\pi\)
−0.229544 + 0.973298i \(0.573723\pi\)
\(564\) 314.962 0.0235147
\(565\) 20457.0 1.52324
\(566\) −1734.07 −0.128778
\(567\) −12873.5 −0.953506
\(568\) −5768.56 −0.426132
\(569\) 12081.1 0.890098 0.445049 0.895506i \(-0.353186\pi\)
0.445049 + 0.895506i \(0.353186\pi\)
\(570\) −2352.79 −0.172890
\(571\) 712.570 0.0522244 0.0261122 0.999659i \(-0.491687\pi\)
0.0261122 + 0.999659i \(0.491687\pi\)
\(572\) 0 0
\(573\) −4714.79 −0.343740
\(574\) −3582.45 −0.260503
\(575\) −25759.1 −1.86822
\(576\) −1628.66 −0.117814
\(577\) −1413.94 −0.102016 −0.0510078 0.998698i \(-0.516243\pi\)
−0.0510078 + 0.998698i \(0.516243\pi\)
\(578\) 244.568 0.0175998
\(579\) −2479.79 −0.177991
\(580\) 13289.2 0.951386
\(581\) −19503.1 −1.39265
\(582\) −863.237 −0.0614817
\(583\) −38288.2 −2.71996
\(584\) 457.176 0.0323940
\(585\) 0 0
\(586\) 2298.79 0.162052
\(587\) −7352.50 −0.516985 −0.258492 0.966013i \(-0.583226\pi\)
−0.258492 + 0.966013i \(0.583226\pi\)
\(588\) −541.968 −0.0380109
\(589\) −1305.65 −0.0913388
\(590\) −33582.7 −2.34335
\(591\) 5094.04 0.354553
\(592\) −1791.56 −0.124379
\(593\) −15534.1 −1.07573 −0.537866 0.843031i \(-0.680769\pi\)
−0.537866 + 0.843031i \(0.680769\pi\)
\(594\) 6933.85 0.478955
\(595\) −30158.5 −2.07795
\(596\) −4741.56 −0.325876
\(597\) −4312.38 −0.295635
\(598\) 0 0
\(599\) 20257.5 1.38180 0.690901 0.722949i \(-0.257214\pi\)
0.690901 + 0.722949i \(0.257214\pi\)
\(600\) 2942.79 0.200232
\(601\) 25021.6 1.69826 0.849128 0.528187i \(-0.177128\pi\)
0.849128 + 0.528187i \(0.177128\pi\)
\(602\) −13958.2 −0.945007
\(603\) −1981.92 −0.133847
\(604\) −7029.28 −0.473538
\(605\) −30425.2 −2.04456
\(606\) −1293.93 −0.0867363
\(607\) −4754.85 −0.317946 −0.158973 0.987283i \(-0.550818\pi\)
−0.158973 + 0.987283i \(0.550818\pi\)
\(608\) −1473.93 −0.0983154
\(609\) −4291.40 −0.285544
\(610\) −16311.1 −1.08265
\(611\) 0 0
\(612\) 7045.49 0.465355
\(613\) 11141.9 0.734125 0.367063 0.930196i \(-0.380363\pi\)
0.367063 + 0.930196i \(0.380363\pi\)
\(614\) −12916.0 −0.848936
\(615\) −2152.41 −0.141128
\(616\) −9021.76 −0.590093
\(617\) −8032.61 −0.524118 −0.262059 0.965052i \(-0.584401\pi\)
−0.262059 + 0.965052i \(0.584401\pi\)
\(618\) −964.068 −0.0627516
\(619\) −5142.70 −0.333930 −0.166965 0.985963i \(-0.553397\pi\)
−0.166965 + 0.985963i \(0.553397\pi\)
\(620\) 2324.45 0.150568
\(621\) −5700.62 −0.368371
\(622\) −9713.17 −0.626146
\(623\) 8051.30 0.517767
\(624\) 0 0
\(625\) 34645.4 2.21731
\(626\) −5188.79 −0.331287
\(627\) 3044.70 0.193929
\(628\) 2039.92 0.129620
\(629\) 7750.17 0.491287
\(630\) 22176.4 1.40243
\(631\) −9537.79 −0.601733 −0.300866 0.953666i \(-0.597276\pi\)
−0.300866 + 0.953666i \(0.597276\pi\)
\(632\) 3357.64 0.211329
\(633\) 246.191 0.0154585
\(634\) 5380.37 0.337038
\(635\) 12554.1 0.784561
\(636\) −3596.19 −0.224211
\(637\) 0 0
\(638\) −17197.3 −1.06716
\(639\) −18349.7 −1.13600
\(640\) 2624.03 0.162068
\(641\) −25332.4 −1.56095 −0.780476 0.625186i \(-0.785023\pi\)
−0.780476 + 0.625186i \(0.785023\pi\)
\(642\) −3844.15 −0.236319
\(643\) −813.455 −0.0498904 −0.0249452 0.999689i \(-0.507941\pi\)
−0.0249452 + 0.999689i \(0.507941\pi\)
\(644\) 7417.18 0.453847
\(645\) −8386.37 −0.511958
\(646\) 6376.13 0.388337
\(647\) 18110.9 1.10048 0.550241 0.835006i \(-0.314536\pi\)
0.550241 + 0.835006i \(0.314536\pi\)
\(648\) −4845.48 −0.293748
\(649\) 43458.7 2.62851
\(650\) 0 0
\(651\) −750.619 −0.0451906
\(652\) 7055.50 0.423796
\(653\) −11793.7 −0.706773 −0.353387 0.935477i \(-0.614970\pi\)
−0.353387 + 0.935477i \(0.614970\pi\)
\(654\) 1334.63 0.0797986
\(655\) 43357.9 2.58646
\(656\) −1348.40 −0.0802534
\(657\) 1454.27 0.0863568
\(658\) −2686.66 −0.159175
\(659\) 8729.73 0.516027 0.258014 0.966141i \(-0.416932\pi\)
0.258014 + 0.966141i \(0.416932\pi\)
\(660\) −5420.45 −0.319683
\(661\) 28673.9 1.68727 0.843636 0.536916i \(-0.180411\pi\)
0.843636 + 0.536916i \(0.180411\pi\)
\(662\) 21283.2 1.24954
\(663\) 0 0
\(664\) −7340.80 −0.429034
\(665\) 20069.5 1.17032
\(666\) −5698.91 −0.331574
\(667\) 14138.7 0.820766
\(668\) −1588.10 −0.0919842
\(669\) −4513.31 −0.260829
\(670\) 3193.18 0.184124
\(671\) 21107.9 1.21440
\(672\) −847.361 −0.0486423
\(673\) 13868.6 0.794346 0.397173 0.917744i \(-0.369991\pi\)
0.397173 + 0.917744i \(0.369991\pi\)
\(674\) −1340.52 −0.0766095
\(675\) 19292.9 1.10012
\(676\) 0 0
\(677\) 15320.7 0.869753 0.434876 0.900490i \(-0.356792\pi\)
0.434876 + 0.900490i \(0.356792\pi\)
\(678\) −2486.45 −0.140843
\(679\) 7363.50 0.416178
\(680\) −11351.4 −0.640155
\(681\) −7211.96 −0.405819
\(682\) −3008.03 −0.168890
\(683\) 7588.13 0.425112 0.212556 0.977149i \(-0.431821\pi\)
0.212556 + 0.977149i \(0.431821\pi\)
\(684\) −4688.54 −0.262092
\(685\) 59974.4 3.34526
\(686\) −9957.55 −0.554200
\(687\) 1231.33 0.0683815
\(688\) −5253.74 −0.291129
\(689\) 0 0
\(690\) 4456.39 0.245872
\(691\) −18737.6 −1.03156 −0.515782 0.856720i \(-0.672498\pi\)
−0.515782 + 0.856720i \(0.672498\pi\)
\(692\) −49.2949 −0.00270796
\(693\) −28698.0 −1.57309
\(694\) −2095.88 −0.114637
\(695\) 44340.8 2.42006
\(696\) −1615.24 −0.0879678
\(697\) 5833.10 0.316994
\(698\) 16659.1 0.903374
\(699\) 7626.47 0.412674
\(700\) −25102.3 −1.35540
\(701\) −20758.4 −1.11845 −0.559226 0.829015i \(-0.688902\pi\)
−0.559226 + 0.829015i \(0.688902\pi\)
\(702\) 0 0
\(703\) −5157.48 −0.276697
\(704\) −3395.71 −0.181790
\(705\) −1614.20 −0.0862330
\(706\) −5649.27 −0.301152
\(707\) 11037.3 0.587131
\(708\) 4081.82 0.216673
\(709\) −11658.7 −0.617564 −0.308782 0.951133i \(-0.599921\pi\)
−0.308782 + 0.951133i \(0.599921\pi\)
\(710\) 29564.2 1.56271
\(711\) 10680.6 0.563367
\(712\) 3030.43 0.159509
\(713\) 2473.03 0.129896
\(714\) 3665.63 0.192133
\(715\) 0 0
\(716\) −1113.84 −0.0581368
\(717\) 279.399 0.0145528
\(718\) −17506.1 −0.909919
\(719\) −11213.2 −0.581614 −0.290807 0.956782i \(-0.593924\pi\)
−0.290807 + 0.956782i \(0.593924\pi\)
\(720\) 8346.98 0.432047
\(721\) 8223.60 0.424775
\(722\) 9474.90 0.488392
\(723\) 7021.66 0.361187
\(724\) −13929.1 −0.715017
\(725\) −47850.1 −2.45119
\(726\) 3698.04 0.189046
\(727\) 31125.2 1.58785 0.793927 0.608014i \(-0.208033\pi\)
0.793927 + 0.608014i \(0.208033\pi\)
\(728\) 0 0
\(729\) −13215.4 −0.671411
\(730\) −2343.05 −0.118795
\(731\) 22727.3 1.14993
\(732\) 1982.54 0.100105
\(733\) −38636.1 −1.94687 −0.973437 0.228955i \(-0.926469\pi\)
−0.973437 + 0.228955i \(0.926469\pi\)
\(734\) −14756.4 −0.742055
\(735\) 2777.62 0.139393
\(736\) 2791.76 0.139817
\(737\) −4132.23 −0.206530
\(738\) −4289.24 −0.213942
\(739\) −23806.6 −1.18503 −0.592517 0.805558i \(-0.701866\pi\)
−0.592517 + 0.805558i \(0.701866\pi\)
\(740\) 9181.83 0.456123
\(741\) 0 0
\(742\) 30675.8 1.51772
\(743\) −12575.0 −0.620903 −0.310451 0.950589i \(-0.600480\pi\)
−0.310451 + 0.950589i \(0.600480\pi\)
\(744\) −282.526 −0.0139219
\(745\) 24300.8 1.19505
\(746\) −5252.84 −0.257802
\(747\) −23351.0 −1.14373
\(748\) 14689.6 0.718055
\(749\) 32791.0 1.59968
\(750\) −8696.91 −0.423422
\(751\) 17709.8 0.860506 0.430253 0.902708i \(-0.358424\pi\)
0.430253 + 0.902708i \(0.358424\pi\)
\(752\) −1011.23 −0.0490371
\(753\) −3010.53 −0.145697
\(754\) 0 0
\(755\) 36025.4 1.73656
\(756\) −5555.28 −0.267253
\(757\) −5976.41 −0.286943 −0.143472 0.989654i \(-0.545827\pi\)
−0.143472 + 0.989654i \(0.545827\pi\)
\(758\) 1006.98 0.0482523
\(759\) −5766.93 −0.275792
\(760\) 7553.97 0.360541
\(761\) −14868.4 −0.708249 −0.354125 0.935198i \(-0.615221\pi\)
−0.354125 + 0.935198i \(0.615221\pi\)
\(762\) −1525.90 −0.0725426
\(763\) −11384.6 −0.540168
\(764\) 15137.5 0.716828
\(765\) −36108.5 −1.70654
\(766\) 528.957 0.0249504
\(767\) 0 0
\(768\) −318.939 −0.0149853
\(769\) −6592.53 −0.309145 −0.154573 0.987981i \(-0.549400\pi\)
−0.154573 + 0.987981i \(0.549400\pi\)
\(770\) 46237.0 2.16398
\(771\) 1130.07 0.0527866
\(772\) 7961.74 0.371178
\(773\) 33862.6 1.57562 0.787810 0.615918i \(-0.211215\pi\)
0.787810 + 0.615918i \(0.211215\pi\)
\(774\) −16712.0 −0.776101
\(775\) −8369.59 −0.387929
\(776\) 2771.55 0.128213
\(777\) −2965.03 −0.136898
\(778\) 10148.8 0.467678
\(779\) −3881.74 −0.178534
\(780\) 0 0
\(781\) −38258.4 −1.75287
\(782\) −12077.0 −0.552265
\(783\) −10589.5 −0.483317
\(784\) 1740.07 0.0792671
\(785\) −10454.7 −0.475343
\(786\) −5269.95 −0.239151
\(787\) 15674.1 0.709939 0.354970 0.934878i \(-0.384491\pi\)
0.354970 + 0.934878i \(0.384491\pi\)
\(788\) −16355.2 −0.739377
\(789\) −3780.33 −0.170574
\(790\) −17208.1 −0.774983
\(791\) 21209.7 0.953386
\(792\) −10801.7 −0.484622
\(793\) 0 0
\(794\) −3266.38 −0.145994
\(795\) 18430.7 0.822224
\(796\) 13845.5 0.616510
\(797\) 18387.2 0.817200 0.408600 0.912714i \(-0.366017\pi\)
0.408600 + 0.912714i \(0.366017\pi\)
\(798\) −2439.36 −0.108211
\(799\) 4374.53 0.193692
\(800\) −9448.28 −0.417559
\(801\) 9639.76 0.425224
\(802\) 7025.18 0.309311
\(803\) 3032.10 0.133251
\(804\) −388.116 −0.0170246
\(805\) −38013.4 −1.66434
\(806\) 0 0
\(807\) 5042.73 0.219966
\(808\) 4154.35 0.180878
\(809\) 17954.5 0.780280 0.390140 0.920756i \(-0.372427\pi\)
0.390140 + 0.920756i \(0.372427\pi\)
\(810\) 24833.3 1.07723
\(811\) −42308.9 −1.83189 −0.915947 0.401300i \(-0.868559\pi\)
−0.915947 + 0.401300i \(0.868559\pi\)
\(812\) 13778.2 0.595467
\(813\) 4501.59 0.194192
\(814\) −11882.0 −0.511628
\(815\) −36159.8 −1.55414
\(816\) 1379.71 0.0591905
\(817\) −15124.3 −0.647653
\(818\) −3004.03 −0.128403
\(819\) 0 0
\(820\) 6910.63 0.294305
\(821\) 6656.89 0.282981 0.141490 0.989940i \(-0.454811\pi\)
0.141490 + 0.989940i \(0.454811\pi\)
\(822\) −7289.62 −0.309312
\(823\) −31429.9 −1.33120 −0.665600 0.746308i \(-0.731824\pi\)
−0.665600 + 0.746308i \(0.731824\pi\)
\(824\) 3095.28 0.130861
\(825\) 19517.3 0.823643
\(826\) −34818.3 −1.46669
\(827\) −31475.2 −1.32346 −0.661730 0.749742i \(-0.730178\pi\)
−0.661730 + 0.749742i \(0.730178\pi\)
\(828\) 8880.52 0.372729
\(829\) 17919.1 0.750732 0.375366 0.926877i \(-0.377517\pi\)
0.375366 + 0.926877i \(0.377517\pi\)
\(830\) 37622.0 1.57335
\(831\) −6052.81 −0.252671
\(832\) 0 0
\(833\) −7527.44 −0.313098
\(834\) −5389.43 −0.223766
\(835\) 8139.10 0.337324
\(836\) −9775.45 −0.404415
\(837\) −1852.24 −0.0764906
\(838\) 26080.6 1.07510
\(839\) 48376.2 1.99062 0.995310 0.0967360i \(-0.0308403\pi\)
0.995310 + 0.0967360i \(0.0308403\pi\)
\(840\) 4342.77 0.178381
\(841\) 1875.00 0.0768788
\(842\) 27581.2 1.12887
\(843\) −5694.54 −0.232657
\(844\) −790.434 −0.0322368
\(845\) 0 0
\(846\) −3216.71 −0.130725
\(847\) −31544.7 −1.27968
\(848\) 11546.1 0.467564
\(849\) −1080.20 −0.0436659
\(850\) 40872.7 1.64932
\(851\) 9768.73 0.393499
\(852\) −3593.39 −0.144492
\(853\) −36926.5 −1.48222 −0.741112 0.671381i \(-0.765701\pi\)
−0.741112 + 0.671381i \(0.765701\pi\)
\(854\) −16911.3 −0.677626
\(855\) 24029.0 0.961141
\(856\) 12342.2 0.492814
\(857\) 17315.0 0.690161 0.345080 0.938573i \(-0.387852\pi\)
0.345080 + 0.938573i \(0.387852\pi\)
\(858\) 0 0
\(859\) 37342.8 1.48326 0.741630 0.670809i \(-0.234053\pi\)
0.741630 + 0.670809i \(0.234053\pi\)
\(860\) 26925.7 1.06763
\(861\) −2231.61 −0.0883310
\(862\) −26733.0 −1.05630
\(863\) 13285.9 0.524053 0.262026 0.965061i \(-0.415609\pi\)
0.262026 + 0.965061i \(0.415609\pi\)
\(864\) −2090.96 −0.0823330
\(865\) 252.639 0.00993062
\(866\) −24751.0 −0.971215
\(867\) 152.348 0.00596770
\(868\) 2409.98 0.0942395
\(869\) 22268.7 0.869290
\(870\) 8278.20 0.322595
\(871\) 0 0
\(872\) −4285.04 −0.166410
\(873\) 8816.25 0.341793
\(874\) 8036.82 0.311041
\(875\) 74185.5 2.86620
\(876\) 284.787 0.0109841
\(877\) −44228.8 −1.70296 −0.851482 0.524384i \(-0.824296\pi\)
−0.851482 + 0.524384i \(0.824296\pi\)
\(878\) 24679.6 0.948628
\(879\) 1431.98 0.0549482
\(880\) 17403.2 0.666660
\(881\) −49187.9 −1.88102 −0.940511 0.339762i \(-0.889653\pi\)
−0.940511 + 0.339762i \(0.889653\pi\)
\(882\) 5535.13 0.211312
\(883\) −19458.9 −0.741612 −0.370806 0.928710i \(-0.620918\pi\)
−0.370806 + 0.928710i \(0.620918\pi\)
\(884\) 0 0
\(885\) −20919.6 −0.794580
\(886\) 30130.7 1.14251
\(887\) 13529.3 0.512141 0.256071 0.966658i \(-0.417572\pi\)
0.256071 + 0.966658i \(0.417572\pi\)
\(888\) −1116.01 −0.0421743
\(889\) 13016.1 0.491052
\(890\) −15531.1 −0.584950
\(891\) −32136.4 −1.20832
\(892\) 14490.7 0.543927
\(893\) −2911.11 −0.109089
\(894\) −2953.65 −0.110497
\(895\) 5708.47 0.213199
\(896\) 2720.58 0.101438
\(897\) 0 0
\(898\) −8447.24 −0.313907
\(899\) 4593.90 0.170429
\(900\) −30054.8 −1.11314
\(901\) −49947.7 −1.84684
\(902\) −8942.92 −0.330118
\(903\) −8694.94 −0.320431
\(904\) 7983.12 0.293711
\(905\) 71387.6 2.62210
\(906\) −4378.73 −0.160567
\(907\) −49365.3 −1.80722 −0.903609 0.428357i \(-0.859092\pi\)
−0.903609 + 0.428357i \(0.859092\pi\)
\(908\) 23155.1 0.846287
\(909\) 13214.9 0.482190
\(910\) 0 0
\(911\) −38465.7 −1.39893 −0.699465 0.714667i \(-0.746578\pi\)
−0.699465 + 0.714667i \(0.746578\pi\)
\(912\) −918.150 −0.0333366
\(913\) −48685.9 −1.76481
\(914\) 10283.3 0.372147
\(915\) −10160.6 −0.367104
\(916\) −3953.36 −0.142601
\(917\) 44953.2 1.61885
\(918\) 9045.34 0.325208
\(919\) −14358.4 −0.515386 −0.257693 0.966227i \(-0.582962\pi\)
−0.257693 + 0.966227i \(0.582962\pi\)
\(920\) −14307.9 −0.512736
\(921\) −8045.71 −0.287856
\(922\) 23260.6 0.830852
\(923\) 0 0
\(924\) −5619.90 −0.200088
\(925\) −33060.8 −1.17517
\(926\) −2057.71 −0.0730243
\(927\) 9846.04 0.348853
\(928\) 5185.97 0.183446
\(929\) −48022.5 −1.69598 −0.847992 0.530009i \(-0.822188\pi\)
−0.847992 + 0.530009i \(0.822188\pi\)
\(930\) 1447.96 0.0510543
\(931\) 5009.26 0.176339
\(932\) −24485.9 −0.860582
\(933\) −6050.59 −0.212312
\(934\) −28178.0 −0.987164
\(935\) −75285.0 −2.63324
\(936\) 0 0
\(937\) −38908.9 −1.35656 −0.678281 0.734803i \(-0.737275\pi\)
−0.678281 + 0.734803i \(0.737275\pi\)
\(938\) 3310.67 0.115242
\(939\) −3232.24 −0.112332
\(940\) 5182.63 0.179828
\(941\) 19540.6 0.676946 0.338473 0.940976i \(-0.390090\pi\)
0.338473 + 0.940976i \(0.390090\pi\)
\(942\) 1270.72 0.0439515
\(943\) 7352.36 0.253898
\(944\) −13105.3 −0.451844
\(945\) 28471.1 0.980069
\(946\) −34844.0 −1.19754
\(947\) −8232.59 −0.282496 −0.141248 0.989974i \(-0.545111\pi\)
−0.141248 + 0.989974i \(0.545111\pi\)
\(948\) 2091.57 0.0716571
\(949\) 0 0
\(950\) −27199.4 −0.928911
\(951\) 3351.58 0.114282
\(952\) −11769.1 −0.400669
\(953\) 16636.2 0.565478 0.282739 0.959197i \(-0.408757\pi\)
0.282739 + 0.959197i \(0.408757\pi\)
\(954\) 36727.9 1.24645
\(955\) −77580.7 −2.62874
\(956\) −897.052 −0.0303480
\(957\) −10712.7 −0.361851
\(958\) −28353.4 −0.956219
\(959\) 62181.2 2.09378
\(960\) 1634.58 0.0549539
\(961\) −28987.5 −0.973028
\(962\) 0 0
\(963\) 39260.4 1.31376
\(964\) −22544.1 −0.753212
\(965\) −40804.4 −1.36118
\(966\) 4620.36 0.153890
\(967\) 9036.53 0.300512 0.150256 0.988647i \(-0.451990\pi\)
0.150256 + 0.988647i \(0.451990\pi\)
\(968\) −11873.1 −0.394232
\(969\) 3971.86 0.131677
\(970\) −14204.4 −0.470180
\(971\) 42397.3 1.40123 0.700614 0.713540i \(-0.252909\pi\)
0.700614 + 0.713540i \(0.252909\pi\)
\(972\) −10075.4 −0.332476
\(973\) 45972.3 1.51470
\(974\) 11426.4 0.375898
\(975\) 0 0
\(976\) −6365.25 −0.208757
\(977\) −33074.7 −1.08307 −0.541533 0.840680i \(-0.682156\pi\)
−0.541533 + 0.840680i \(0.682156\pi\)
\(978\) 4395.06 0.143700
\(979\) 20098.6 0.656132
\(980\) −8917.96 −0.290687
\(981\) −13630.6 −0.443621
\(982\) 29736.8 0.966334
\(983\) 17120.9 0.555517 0.277759 0.960651i \(-0.410408\pi\)
0.277759 + 0.960651i \(0.410408\pi\)
\(984\) −839.956 −0.0272122
\(985\) 83821.2 2.71144
\(986\) −22434.2 −0.724595
\(987\) −1673.59 −0.0539727
\(988\) 0 0
\(989\) 28646.8 0.921046
\(990\) 55359.2 1.77720
\(991\) −43698.5 −1.40074 −0.700368 0.713782i \(-0.746981\pi\)
−0.700368 + 0.713782i \(0.746981\pi\)
\(992\) 907.092 0.0290325
\(993\) 13257.8 0.423691
\(994\) 30652.0 0.978090
\(995\) −70959.1 −2.26086
\(996\) −4572.78 −0.145476
\(997\) −2611.53 −0.0829570 −0.0414785 0.999139i \(-0.513207\pi\)
−0.0414785 + 0.999139i \(0.513207\pi\)
\(998\) 12859.6 0.407879
\(999\) −7316.54 −0.231717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.a.n.1.3 6
13.2 odd 12 338.4.e.i.147.2 24
13.3 even 3 338.4.c.p.191.4 12
13.4 even 6 338.4.c.o.315.4 12
13.5 odd 4 338.4.b.h.337.9 12
13.6 odd 12 338.4.e.i.23.8 24
13.7 odd 12 338.4.e.i.23.2 24
13.8 odd 4 338.4.b.h.337.3 12
13.9 even 3 338.4.c.p.315.4 12
13.10 even 6 338.4.c.o.191.4 12
13.11 odd 12 338.4.e.i.147.8 24
13.12 even 2 338.4.a.o.1.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.3 6 1.1 even 1 trivial
338.4.a.o.1.3 yes 6 13.12 even 2
338.4.b.h.337.3 12 13.8 odd 4
338.4.b.h.337.9 12 13.5 odd 4
338.4.c.o.191.4 12 13.10 even 6
338.4.c.o.315.4 12 13.4 even 6
338.4.c.p.191.4 12 13.3 even 3
338.4.c.p.315.4 12 13.9 even 3
338.4.e.i.23.2 24 13.7 odd 12
338.4.e.i.23.8 24 13.6 odd 12
338.4.e.i.147.2 24 13.2 odd 12
338.4.e.i.147.8 24 13.11 odd 12