Properties

Label 338.4.a.n.1.2
Level $338$
Weight $4$
Character 338.1
Self dual yes
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6681389953.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 107x^{4} + 85x^{3} + 3703x^{2} - 1659x - 41951 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.06450\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.92743 q^{3} +4.00000 q^{4} +0.152827 q^{5} +7.85487 q^{6} -33.9913 q^{7} -8.00000 q^{8} -11.5753 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} -3.92743 q^{3} +4.00000 q^{4} +0.152827 q^{5} +7.85487 q^{6} -33.9913 q^{7} -8.00000 q^{8} -11.5753 q^{9} -0.305653 q^{10} +10.5343 q^{11} -15.7097 q^{12} +67.9825 q^{14} -0.600216 q^{15} +16.0000 q^{16} -41.3181 q^{17} +23.1505 q^{18} -131.416 q^{19} +0.611306 q^{20} +133.498 q^{21} -21.0686 q^{22} +161.225 q^{23} +31.4195 q^{24} -124.977 q^{25} +151.502 q^{27} -135.965 q^{28} -35.6032 q^{29} +1.20043 q^{30} -12.7094 q^{31} -32.0000 q^{32} -41.3728 q^{33} +82.6363 q^{34} -5.19477 q^{35} -46.3011 q^{36} -183.992 q^{37} +262.833 q^{38} -1.22261 q^{40} -443.350 q^{41} -266.997 q^{42} +466.950 q^{43} +42.1372 q^{44} -1.76901 q^{45} -322.450 q^{46} +282.293 q^{47} -62.8389 q^{48} +812.407 q^{49} +249.953 q^{50} +162.274 q^{51} +114.112 q^{53} -303.004 q^{54} +1.60992 q^{55} +271.930 q^{56} +516.129 q^{57} +71.2065 q^{58} +703.260 q^{59} -2.40086 q^{60} +600.068 q^{61} +25.4189 q^{62} +393.458 q^{63} +64.0000 q^{64} +82.7455 q^{66} +542.943 q^{67} -165.273 q^{68} -633.201 q^{69} +10.3895 q^{70} -907.027 q^{71} +92.6021 q^{72} +498.548 q^{73} +367.983 q^{74} +490.837 q^{75} -525.666 q^{76} -358.074 q^{77} -356.469 q^{79} +2.44522 q^{80} -282.481 q^{81} +886.701 q^{82} +934.114 q^{83} +533.994 q^{84} -6.31451 q^{85} -933.900 q^{86} +139.829 q^{87} -84.2744 q^{88} +581.759 q^{89} +3.53802 q^{90} +644.900 q^{92} +49.9155 q^{93} -564.585 q^{94} -20.0839 q^{95} +125.678 q^{96} -334.700 q^{97} -1624.81 q^{98} -121.937 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9} + 36 q^{10} - 37 q^{11} + 36 q^{12} + 50 q^{14} - 118 q^{15} + 96 q^{16} + 99 q^{17} - 226 q^{18} + 81 q^{19} - 72 q^{20} + 26 q^{21} + 74 q^{22} + 267 q^{23} - 72 q^{24} + 368 q^{25} + 669 q^{27} - 100 q^{28} - 119 q^{29} + 236 q^{30} + 625 q^{31} - 192 q^{32} - 762 q^{33} - 198 q^{34} + 614 q^{35} + 452 q^{36} - 274 q^{37} - 162 q^{38} + 144 q^{40} - 1140 q^{41} - 52 q^{42} + 428 q^{43} - 148 q^{44} + 1215 q^{45} - 534 q^{46} + 986 q^{47} + 144 q^{48} + 899 q^{49} - 736 q^{50} + 289 q^{51} + 89 q^{53} - 1338 q^{54} + 1126 q^{55} + 200 q^{56} + 2553 q^{57} + 238 q^{58} - 1088 q^{59} - 472 q^{60} + 1704 q^{61} - 1250 q^{62} + 3222 q^{63} + 384 q^{64} + 1524 q^{66} + 1692 q^{67} + 396 q^{68} + 1168 q^{69} - 1228 q^{70} + 1221 q^{71} - 904 q^{72} + 1554 q^{73} + 548 q^{74} + 1798 q^{75} + 324 q^{76} + 2790 q^{77} - 875 q^{79} - 288 q^{80} + 3338 q^{81} + 2280 q^{82} + 126 q^{83} + 104 q^{84} + 3721 q^{85} - 856 q^{86} + 1602 q^{87} + 296 q^{88} + 374 q^{89} - 2430 q^{90} + 1068 q^{92} + 1868 q^{93} - 1972 q^{94} - 4093 q^{95} - 288 q^{96} + 330 q^{97} - 1798 q^{98} + 1344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.92743 −0.755835 −0.377917 0.925839i \(-0.623360\pi\)
−0.377917 + 0.925839i \(0.623360\pi\)
\(4\) 4.00000 0.500000
\(5\) 0.152827 0.0136692 0.00683461 0.999977i \(-0.497824\pi\)
0.00683461 + 0.999977i \(0.497824\pi\)
\(6\) 7.85487 0.534456
\(7\) −33.9913 −1.83536 −0.917678 0.397325i \(-0.869939\pi\)
−0.917678 + 0.397325i \(0.869939\pi\)
\(8\) −8.00000 −0.353553
\(9\) −11.5753 −0.428714
\(10\) −0.305653 −0.00966560
\(11\) 10.5343 0.288746 0.144373 0.989523i \(-0.453883\pi\)
0.144373 + 0.989523i \(0.453883\pi\)
\(12\) −15.7097 −0.377917
\(13\) 0 0
\(14\) 67.9825 1.29779
\(15\) −0.600216 −0.0103317
\(16\) 16.0000 0.250000
\(17\) −41.3181 −0.589478 −0.294739 0.955578i \(-0.595233\pi\)
−0.294739 + 0.955578i \(0.595233\pi\)
\(18\) 23.1505 0.303146
\(19\) −131.416 −1.58679 −0.793395 0.608708i \(-0.791688\pi\)
−0.793395 + 0.608708i \(0.791688\pi\)
\(20\) 0.611306 0.00683461
\(21\) 133.498 1.38723
\(22\) −21.0686 −0.204175
\(23\) 161.225 1.46164 0.730821 0.682570i \(-0.239138\pi\)
0.730821 + 0.682570i \(0.239138\pi\)
\(24\) 31.4195 0.267228
\(25\) −124.977 −0.999813
\(26\) 0 0
\(27\) 151.502 1.07987
\(28\) −135.965 −0.917678
\(29\) −35.6032 −0.227978 −0.113989 0.993482i \(-0.536363\pi\)
−0.113989 + 0.993482i \(0.536363\pi\)
\(30\) 1.20043 0.00730560
\(31\) −12.7094 −0.0736349 −0.0368175 0.999322i \(-0.511722\pi\)
−0.0368175 + 0.999322i \(0.511722\pi\)
\(32\) −32.0000 −0.176777
\(33\) −41.3728 −0.218245
\(34\) 82.6363 0.416824
\(35\) −5.19477 −0.0250879
\(36\) −46.3011 −0.214357
\(37\) −183.992 −0.817514 −0.408757 0.912643i \(-0.634038\pi\)
−0.408757 + 0.912643i \(0.634038\pi\)
\(38\) 262.833 1.12203
\(39\) 0 0
\(40\) −1.22261 −0.00483280
\(41\) −443.350 −1.68877 −0.844386 0.535735i \(-0.820035\pi\)
−0.844386 + 0.535735i \(0.820035\pi\)
\(42\) −266.997 −0.980917
\(43\) 466.950 1.65603 0.828014 0.560708i \(-0.189471\pi\)
0.828014 + 0.560708i \(0.189471\pi\)
\(44\) 42.1372 0.144373
\(45\) −1.76901 −0.00586018
\(46\) −322.450 −1.03354
\(47\) 282.293 0.876098 0.438049 0.898951i \(-0.355670\pi\)
0.438049 + 0.898951i \(0.355670\pi\)
\(48\) −62.8389 −0.188959
\(49\) 812.407 2.36853
\(50\) 249.953 0.706975
\(51\) 162.274 0.445548
\(52\) 0 0
\(53\) 114.112 0.295745 0.147872 0.989006i \(-0.452758\pi\)
0.147872 + 0.989006i \(0.452758\pi\)
\(54\) −303.004 −0.763585
\(55\) 1.60992 0.00394694
\(56\) 271.930 0.648896
\(57\) 516.129 1.19935
\(58\) 71.2065 0.161205
\(59\) 703.260 1.55181 0.775904 0.630851i \(-0.217294\pi\)
0.775904 + 0.630851i \(0.217294\pi\)
\(60\) −2.40086 −0.00516584
\(61\) 600.068 1.25952 0.629761 0.776789i \(-0.283153\pi\)
0.629761 + 0.776789i \(0.283153\pi\)
\(62\) 25.4189 0.0520678
\(63\) 393.458 0.786842
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 82.7455 0.154322
\(67\) 542.943 0.990015 0.495007 0.868889i \(-0.335165\pi\)
0.495007 + 0.868889i \(0.335165\pi\)
\(68\) −165.273 −0.294739
\(69\) −633.201 −1.10476
\(70\) 10.3895 0.0177398
\(71\) −907.027 −1.51612 −0.758058 0.652187i \(-0.773852\pi\)
−0.758058 + 0.652187i \(0.773852\pi\)
\(72\) 92.6021 0.151573
\(73\) 498.548 0.799323 0.399662 0.916663i \(-0.369128\pi\)
0.399662 + 0.916663i \(0.369128\pi\)
\(74\) 367.983 0.578070
\(75\) 490.837 0.755694
\(76\) −525.666 −0.793395
\(77\) −358.074 −0.529953
\(78\) 0 0
\(79\) −356.469 −0.507670 −0.253835 0.967248i \(-0.581692\pi\)
−0.253835 + 0.967248i \(0.581692\pi\)
\(80\) 2.44522 0.00341731
\(81\) −282.481 −0.387491
\(82\) 886.701 1.19414
\(83\) 934.114 1.23533 0.617665 0.786442i \(-0.288079\pi\)
0.617665 + 0.786442i \(0.288079\pi\)
\(84\) 533.994 0.693613
\(85\) −6.31451 −0.00805770
\(86\) −933.900 −1.17099
\(87\) 139.829 0.172314
\(88\) −84.2744 −0.102087
\(89\) 581.759 0.692880 0.346440 0.938072i \(-0.387390\pi\)
0.346440 + 0.938072i \(0.387390\pi\)
\(90\) 3.53802 0.00414377
\(91\) 0 0
\(92\) 644.900 0.730821
\(93\) 49.9155 0.0556559
\(94\) −564.585 −0.619495
\(95\) −20.0839 −0.0216902
\(96\) 125.678 0.133614
\(97\) −334.700 −0.350347 −0.175173 0.984538i \(-0.556049\pi\)
−0.175173 + 0.984538i \(0.556049\pi\)
\(98\) −1624.81 −1.67481
\(99\) −121.937 −0.123789
\(100\) −499.907 −0.499907
\(101\) −1359.43 −1.33929 −0.669643 0.742683i \(-0.733553\pi\)
−0.669643 + 0.742683i \(0.733553\pi\)
\(102\) −324.549 −0.315050
\(103\) 105.794 0.101206 0.0506028 0.998719i \(-0.483886\pi\)
0.0506028 + 0.998719i \(0.483886\pi\)
\(104\) 0 0
\(105\) 20.4021 0.0189623
\(106\) −228.224 −0.209123
\(107\) 78.6185 0.0710312 0.0355156 0.999369i \(-0.488693\pi\)
0.0355156 + 0.999369i \(0.488693\pi\)
\(108\) 606.007 0.539936
\(109\) −650.118 −0.571285 −0.285642 0.958336i \(-0.592207\pi\)
−0.285642 + 0.958336i \(0.592207\pi\)
\(110\) −3.21984 −0.00279091
\(111\) 722.615 0.617906
\(112\) −543.860 −0.458839
\(113\) −1277.56 −1.06356 −0.531780 0.846882i \(-0.678477\pi\)
−0.531780 + 0.846882i \(0.678477\pi\)
\(114\) −1032.26 −0.848069
\(115\) 24.6395 0.0199795
\(116\) −142.413 −0.113989
\(117\) 0 0
\(118\) −1406.52 −1.09729
\(119\) 1404.46 1.08190
\(120\) 4.80173 0.00365280
\(121\) −1220.03 −0.916625
\(122\) −1200.14 −0.890617
\(123\) 1741.23 1.27643
\(124\) −50.8378 −0.0368175
\(125\) −38.2031 −0.0273359
\(126\) −786.916 −0.556381
\(127\) −305.991 −0.213798 −0.106899 0.994270i \(-0.534092\pi\)
−0.106899 + 0.994270i \(0.534092\pi\)
\(128\) −128.000 −0.0883883
\(129\) −1833.91 −1.25168
\(130\) 0 0
\(131\) 95.0876 0.0634186 0.0317093 0.999497i \(-0.489905\pi\)
0.0317093 + 0.999497i \(0.489905\pi\)
\(132\) −165.491 −0.109122
\(133\) 4467.01 2.91232
\(134\) −1085.89 −0.700046
\(135\) 23.1535 0.0147610
\(136\) 330.545 0.208412
\(137\) 2155.03 1.34392 0.671960 0.740588i \(-0.265453\pi\)
0.671960 + 0.740588i \(0.265453\pi\)
\(138\) 1266.40 0.781183
\(139\) 184.637 0.112667 0.0563336 0.998412i \(-0.482059\pi\)
0.0563336 + 0.998412i \(0.482059\pi\)
\(140\) −20.7791 −0.0125439
\(141\) −1108.69 −0.662186
\(142\) 1814.05 1.07206
\(143\) 0 0
\(144\) −185.204 −0.107178
\(145\) −5.44112 −0.00311628
\(146\) −997.095 −0.565207
\(147\) −3190.67 −1.79022
\(148\) −735.966 −0.408757
\(149\) −1449.34 −0.796877 −0.398439 0.917195i \(-0.630448\pi\)
−0.398439 + 0.917195i \(0.630448\pi\)
\(150\) −981.675 −0.534356
\(151\) −188.202 −0.101428 −0.0507141 0.998713i \(-0.516150\pi\)
−0.0507141 + 0.998713i \(0.516150\pi\)
\(152\) 1051.33 0.561015
\(153\) 478.268 0.252717
\(154\) 716.148 0.374733
\(155\) −1.94234 −0.00100653
\(156\) 0 0
\(157\) −435.114 −0.221184 −0.110592 0.993866i \(-0.535275\pi\)
−0.110592 + 0.993866i \(0.535275\pi\)
\(158\) 712.939 0.358977
\(159\) −448.167 −0.223534
\(160\) −4.89045 −0.00241640
\(161\) −5480.24 −2.68263
\(162\) 564.962 0.273998
\(163\) 711.146 0.341725 0.170863 0.985295i \(-0.445345\pi\)
0.170863 + 0.985295i \(0.445345\pi\)
\(164\) −1773.40 −0.844386
\(165\) −6.32286 −0.00298323
\(166\) −1868.23 −0.873510
\(167\) −2570.16 −1.19093 −0.595463 0.803383i \(-0.703031\pi\)
−0.595463 + 0.803383i \(0.703031\pi\)
\(168\) −1067.99 −0.490459
\(169\) 0 0
\(170\) 12.6290 0.00569766
\(171\) 1521.18 0.680278
\(172\) 1867.80 0.828014
\(173\) 1094.69 0.481087 0.240543 0.970638i \(-0.422674\pi\)
0.240543 + 0.970638i \(0.422674\pi\)
\(174\) −279.659 −0.121844
\(175\) 4248.12 1.83501
\(176\) 168.549 0.0721866
\(177\) −2762.01 −1.17291
\(178\) −1163.52 −0.489940
\(179\) −2488.54 −1.03912 −0.519558 0.854435i \(-0.673903\pi\)
−0.519558 + 0.854435i \(0.673903\pi\)
\(180\) −7.07603 −0.00293009
\(181\) 3327.76 1.36658 0.683288 0.730149i \(-0.260549\pi\)
0.683288 + 0.730149i \(0.260549\pi\)
\(182\) 0 0
\(183\) −2356.73 −0.951991
\(184\) −1289.80 −0.516768
\(185\) −28.1188 −0.0111748
\(186\) −99.8310 −0.0393546
\(187\) −435.258 −0.170210
\(188\) 1129.17 0.438049
\(189\) −5149.74 −1.98195
\(190\) 40.1678 0.0153373
\(191\) 348.076 0.131863 0.0659317 0.997824i \(-0.478998\pi\)
0.0659317 + 0.997824i \(0.478998\pi\)
\(192\) −251.356 −0.0944794
\(193\) 3860.41 1.43978 0.719892 0.694086i \(-0.244191\pi\)
0.719892 + 0.694086i \(0.244191\pi\)
\(194\) 669.400 0.247732
\(195\) 0 0
\(196\) 3249.63 1.18427
\(197\) 297.824 0.107711 0.0538555 0.998549i \(-0.482849\pi\)
0.0538555 + 0.998549i \(0.482849\pi\)
\(198\) 243.875 0.0875324
\(199\) 59.7631 0.0212889 0.0106445 0.999943i \(-0.496612\pi\)
0.0106445 + 0.999943i \(0.496612\pi\)
\(200\) 999.813 0.353487
\(201\) −2132.37 −0.748288
\(202\) 2718.85 0.947019
\(203\) 1210.20 0.418420
\(204\) 649.097 0.222774
\(205\) −67.7557 −0.0230842
\(206\) −211.588 −0.0715632
\(207\) −1866.22 −0.626625
\(208\) 0 0
\(209\) −1384.38 −0.458180
\(210\) −40.8042 −0.0134084
\(211\) −3456.10 −1.12762 −0.563809 0.825905i \(-0.690665\pi\)
−0.563809 + 0.825905i \(0.690665\pi\)
\(212\) 456.448 0.147872
\(213\) 3562.29 1.14593
\(214\) −157.237 −0.0502266
\(215\) 71.3623 0.0226366
\(216\) −1212.01 −0.381792
\(217\) 432.010 0.135146
\(218\) 1300.24 0.403959
\(219\) −1958.01 −0.604156
\(220\) 6.43968 0.00197347
\(221\) 0 0
\(222\) −1445.23 −0.436925
\(223\) 2181.50 0.655087 0.327543 0.944836i \(-0.393779\pi\)
0.327543 + 0.944836i \(0.393779\pi\)
\(224\) 1087.72 0.324448
\(225\) 1446.64 0.428633
\(226\) 2555.11 0.752051
\(227\) −3155.79 −0.922720 −0.461360 0.887213i \(-0.652638\pi\)
−0.461360 + 0.887213i \(0.652638\pi\)
\(228\) 2064.52 0.599675
\(229\) 1366.34 0.394279 0.197140 0.980375i \(-0.436835\pi\)
0.197140 + 0.980375i \(0.436835\pi\)
\(230\) −49.2789 −0.0141276
\(231\) 1406.31 0.400557
\(232\) 284.826 0.0806023
\(233\) −5030.38 −1.41438 −0.707192 0.707022i \(-0.750038\pi\)
−0.707192 + 0.707022i \(0.750038\pi\)
\(234\) 0 0
\(235\) 43.1418 0.0119756
\(236\) 2813.04 0.775904
\(237\) 1400.01 0.383715
\(238\) −2808.91 −0.765020
\(239\) 4694.83 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(240\) −9.60346 −0.00258292
\(241\) 2885.24 0.771181 0.385591 0.922670i \(-0.373998\pi\)
0.385591 + 0.922670i \(0.373998\pi\)
\(242\) 2440.06 0.648152
\(243\) −2981.12 −0.786992
\(244\) 2400.27 0.629761
\(245\) 124.157 0.0323760
\(246\) −3482.46 −0.902575
\(247\) 0 0
\(248\) 101.676 0.0260339
\(249\) −3668.67 −0.933705
\(250\) 76.4061 0.0193294
\(251\) 3398.02 0.854507 0.427254 0.904132i \(-0.359481\pi\)
0.427254 + 0.904132i \(0.359481\pi\)
\(252\) 1573.83 0.393421
\(253\) 1698.39 0.422044
\(254\) 611.982 0.151178
\(255\) 24.7998 0.00609029
\(256\) 256.000 0.0625000
\(257\) −1784.27 −0.433073 −0.216536 0.976275i \(-0.569476\pi\)
−0.216536 + 0.976275i \(0.569476\pi\)
\(258\) 3667.83 0.885074
\(259\) 6254.11 1.50043
\(260\) 0 0
\(261\) 412.117 0.0977372
\(262\) −190.175 −0.0448437
\(263\) −6813.66 −1.59752 −0.798761 0.601648i \(-0.794511\pi\)
−0.798761 + 0.601648i \(0.794511\pi\)
\(264\) 330.982 0.0771611
\(265\) 17.4393 0.00404260
\(266\) −8934.02 −2.05932
\(267\) −2284.82 −0.523703
\(268\) 2171.77 0.495007
\(269\) 4777.13 1.08278 0.541388 0.840773i \(-0.317899\pi\)
0.541388 + 0.840773i \(0.317899\pi\)
\(270\) −46.3070 −0.0104376
\(271\) −903.040 −0.202420 −0.101210 0.994865i \(-0.532271\pi\)
−0.101210 + 0.994865i \(0.532271\pi\)
\(272\) −661.090 −0.147369
\(273\) 0 0
\(274\) −4310.07 −0.950294
\(275\) −1316.54 −0.288692
\(276\) −2532.80 −0.552380
\(277\) 8576.76 1.86039 0.930195 0.367067i \(-0.119638\pi\)
0.930195 + 0.367067i \(0.119638\pi\)
\(278\) −369.275 −0.0796678
\(279\) 147.115 0.0315683
\(280\) 41.5582 0.00886991
\(281\) −5614.95 −1.19203 −0.596013 0.802974i \(-0.703250\pi\)
−0.596013 + 0.802974i \(0.703250\pi\)
\(282\) 2217.37 0.468236
\(283\) 5818.89 1.22225 0.611125 0.791534i \(-0.290717\pi\)
0.611125 + 0.791534i \(0.290717\pi\)
\(284\) −3628.11 −0.758058
\(285\) 78.8783 0.0163942
\(286\) 0 0
\(287\) 15070.0 3.09950
\(288\) 370.408 0.0757866
\(289\) −3205.81 −0.652516
\(290\) 10.8822 0.00220354
\(291\) 1314.51 0.264804
\(292\) 1994.19 0.399662
\(293\) −6537.80 −1.30356 −0.651779 0.758409i \(-0.725977\pi\)
−0.651779 + 0.758409i \(0.725977\pi\)
\(294\) 6381.35 1.26588
\(295\) 107.477 0.0212120
\(296\) 1471.93 0.289035
\(297\) 1595.97 0.311809
\(298\) 2898.68 0.563477
\(299\) 0 0
\(300\) 1963.35 0.377847
\(301\) −15872.2 −3.03940
\(302\) 376.404 0.0717206
\(303\) 5339.06 1.01228
\(304\) −2102.66 −0.396697
\(305\) 91.7064 0.0172167
\(306\) −956.537 −0.178698
\(307\) 2674.74 0.497248 0.248624 0.968600i \(-0.420022\pi\)
0.248624 + 0.968600i \(0.420022\pi\)
\(308\) −1432.30 −0.264976
\(309\) −415.498 −0.0764948
\(310\) 3.88468 0.000711726 0
\(311\) 8322.18 1.51739 0.758694 0.651447i \(-0.225838\pi\)
0.758694 + 0.651447i \(0.225838\pi\)
\(312\) 0 0
\(313\) −6029.12 −1.08877 −0.544387 0.838834i \(-0.683238\pi\)
−0.544387 + 0.838834i \(0.683238\pi\)
\(314\) 870.228 0.156401
\(315\) 60.1308 0.0107555
\(316\) −1425.88 −0.253835
\(317\) 6393.40 1.13277 0.566387 0.824140i \(-0.308341\pi\)
0.566387 + 0.824140i \(0.308341\pi\)
\(318\) 896.334 0.158063
\(319\) −375.055 −0.0658278
\(320\) 9.78090 0.00170865
\(321\) −308.769 −0.0536879
\(322\) 10960.5 1.89691
\(323\) 5429.88 0.935377
\(324\) −1129.92 −0.193746
\(325\) 0 0
\(326\) −1422.29 −0.241636
\(327\) 2553.30 0.431797
\(328\) 3546.80 0.597071
\(329\) −9595.49 −1.60795
\(330\) 12.6457 0.00210947
\(331\) 5445.60 0.904281 0.452141 0.891947i \(-0.350660\pi\)
0.452141 + 0.891947i \(0.350660\pi\)
\(332\) 3736.46 0.617665
\(333\) 2129.75 0.350479
\(334\) 5140.31 0.842112
\(335\) 82.9760 0.0135327
\(336\) 2135.98 0.346807
\(337\) −1819.65 −0.294132 −0.147066 0.989127i \(-0.546983\pi\)
−0.147066 + 0.989127i \(0.546983\pi\)
\(338\) 0 0
\(339\) 5017.52 0.803876
\(340\) −25.2580 −0.00402885
\(341\) −133.885 −0.0212618
\(342\) −3042.36 −0.481029
\(343\) −15955.7 −2.51174
\(344\) −3735.60 −0.585494
\(345\) −96.7699 −0.0151012
\(346\) −2189.39 −0.340180
\(347\) −4445.06 −0.687675 −0.343838 0.939029i \(-0.611727\pi\)
−0.343838 + 0.939029i \(0.611727\pi\)
\(348\) 559.317 0.0861568
\(349\) −2354.42 −0.361116 −0.180558 0.983564i \(-0.557790\pi\)
−0.180558 + 0.983564i \(0.557790\pi\)
\(350\) −8496.23 −1.29755
\(351\) 0 0
\(352\) −337.098 −0.0510436
\(353\) −4320.46 −0.651430 −0.325715 0.945468i \(-0.605605\pi\)
−0.325715 + 0.945468i \(0.605605\pi\)
\(354\) 5524.02 0.829374
\(355\) −138.618 −0.0207241
\(356\) 2327.04 0.346440
\(357\) −5515.91 −0.817739
\(358\) 4977.07 0.734766
\(359\) 11936.7 1.75486 0.877429 0.479706i \(-0.159257\pi\)
0.877429 + 0.479706i \(0.159257\pi\)
\(360\) 14.1521 0.00207189
\(361\) 10411.3 1.51790
\(362\) −6655.52 −0.966316
\(363\) 4791.58 0.692818
\(364\) 0 0
\(365\) 76.1913 0.0109261
\(366\) 4713.46 0.673159
\(367\) 2134.96 0.303663 0.151831 0.988406i \(-0.451483\pi\)
0.151831 + 0.988406i \(0.451483\pi\)
\(368\) 2579.60 0.365410
\(369\) 5131.90 0.724000
\(370\) 56.2376 0.00790177
\(371\) −3878.81 −0.542797
\(372\) 199.662 0.0278279
\(373\) 9818.91 1.36301 0.681507 0.731812i \(-0.261325\pi\)
0.681507 + 0.731812i \(0.261325\pi\)
\(374\) 870.515 0.120356
\(375\) 150.040 0.0206614
\(376\) −2258.34 −0.309748
\(377\) 0 0
\(378\) 10299.5 1.40145
\(379\) 2120.13 0.287345 0.143672 0.989625i \(-0.454109\pi\)
0.143672 + 0.989625i \(0.454109\pi\)
\(380\) −80.3357 −0.0108451
\(381\) 1201.76 0.161596
\(382\) −696.152 −0.0932414
\(383\) −1662.83 −0.221846 −0.110923 0.993829i \(-0.535381\pi\)
−0.110923 + 0.993829i \(0.535381\pi\)
\(384\) 502.712 0.0668070
\(385\) −54.7233 −0.00724404
\(386\) −7720.82 −1.01808
\(387\) −5405.07 −0.709961
\(388\) −1338.80 −0.175173
\(389\) −3332.26 −0.434324 −0.217162 0.976136i \(-0.569680\pi\)
−0.217162 + 0.976136i \(0.569680\pi\)
\(390\) 0 0
\(391\) −6661.52 −0.861605
\(392\) −6499.25 −0.837403
\(393\) −373.450 −0.0479340
\(394\) −595.648 −0.0761632
\(395\) −54.4780 −0.00693945
\(396\) −487.749 −0.0618947
\(397\) −3948.49 −0.499166 −0.249583 0.968353i \(-0.580294\pi\)
−0.249583 + 0.968353i \(0.580294\pi\)
\(398\) −119.526 −0.0150535
\(399\) −17543.9 −2.20124
\(400\) −1999.63 −0.249953
\(401\) 8141.53 1.01389 0.506944 0.861979i \(-0.330775\pi\)
0.506944 + 0.861979i \(0.330775\pi\)
\(402\) 4264.74 0.529119
\(403\) 0 0
\(404\) −5437.71 −0.669643
\(405\) −43.1706 −0.00529670
\(406\) −2420.40 −0.295868
\(407\) −1938.22 −0.236054
\(408\) −1298.19 −0.157525
\(409\) 1558.79 0.188452 0.0942262 0.995551i \(-0.469962\pi\)
0.0942262 + 0.995551i \(0.469962\pi\)
\(410\) 135.511 0.0163230
\(411\) −8463.75 −1.01578
\(412\) 423.176 0.0506028
\(413\) −23904.7 −2.84812
\(414\) 3732.45 0.443091
\(415\) 142.757 0.0168860
\(416\) 0 0
\(417\) −725.151 −0.0851578
\(418\) 2768.76 0.323982
\(419\) −4323.92 −0.504146 −0.252073 0.967708i \(-0.581112\pi\)
−0.252073 + 0.967708i \(0.581112\pi\)
\(420\) 81.6084 0.00948115
\(421\) −8525.91 −0.987001 −0.493501 0.869746i \(-0.664283\pi\)
−0.493501 + 0.869746i \(0.664283\pi\)
\(422\) 6912.19 0.797347
\(423\) −3267.61 −0.375595
\(424\) −912.895 −0.104562
\(425\) 5163.80 0.589368
\(426\) −7124.57 −0.810298
\(427\) −20397.1 −2.31167
\(428\) 314.474 0.0355156
\(429\) 0 0
\(430\) −142.725 −0.0160065
\(431\) 7444.09 0.831947 0.415974 0.909377i \(-0.363441\pi\)
0.415974 + 0.909377i \(0.363441\pi\)
\(432\) 2424.03 0.269968
\(433\) 5893.14 0.654056 0.327028 0.945015i \(-0.393953\pi\)
0.327028 + 0.945015i \(0.393953\pi\)
\(434\) −864.020 −0.0955629
\(435\) 21.3696 0.00235539
\(436\) −2600.47 −0.285642
\(437\) −21187.6 −2.31932
\(438\) 3916.03 0.427203
\(439\) −2862.37 −0.311193 −0.155596 0.987821i \(-0.549730\pi\)
−0.155596 + 0.987821i \(0.549730\pi\)
\(440\) −12.8794 −0.00139545
\(441\) −9403.82 −1.01542
\(442\) 0 0
\(443\) 7709.34 0.826822 0.413411 0.910545i \(-0.364337\pi\)
0.413411 + 0.910545i \(0.364337\pi\)
\(444\) 2890.46 0.308953
\(445\) 88.9082 0.00947113
\(446\) −4363.01 −0.463216
\(447\) 5692.19 0.602308
\(448\) −2175.44 −0.229420
\(449\) 2174.88 0.228594 0.114297 0.993447i \(-0.463538\pi\)
0.114297 + 0.993447i \(0.463538\pi\)
\(450\) −2893.28 −0.303090
\(451\) −4670.38 −0.487627
\(452\) −5110.22 −0.531780
\(453\) 739.151 0.0766630
\(454\) 6311.59 0.652462
\(455\) 0 0
\(456\) −4129.03 −0.424035
\(457\) 4112.61 0.420963 0.210481 0.977598i \(-0.432497\pi\)
0.210481 + 0.977598i \(0.432497\pi\)
\(458\) −2732.67 −0.278798
\(459\) −6259.77 −0.636560
\(460\) 98.5579 0.00998975
\(461\) 5639.11 0.569717 0.284859 0.958570i \(-0.408053\pi\)
0.284859 + 0.958570i \(0.408053\pi\)
\(462\) −2812.63 −0.283236
\(463\) 5028.22 0.504711 0.252355 0.967635i \(-0.418795\pi\)
0.252355 + 0.967635i \(0.418795\pi\)
\(464\) −569.652 −0.0569944
\(465\) 7.62841 0.000760772 0
\(466\) 10060.8 1.00012
\(467\) −7351.52 −0.728453 −0.364227 0.931310i \(-0.618667\pi\)
−0.364227 + 0.931310i \(0.618667\pi\)
\(468\) 0 0
\(469\) −18455.3 −1.81703
\(470\) −86.2837 −0.00846802
\(471\) 1708.88 0.167178
\(472\) −5626.08 −0.548647
\(473\) 4918.99 0.478172
\(474\) −2800.02 −0.271327
\(475\) 16424.0 1.58649
\(476\) 5617.83 0.540951
\(477\) −1320.88 −0.126790
\(478\) −9389.66 −0.898479
\(479\) 3496.15 0.333493 0.166746 0.986000i \(-0.446674\pi\)
0.166746 + 0.986000i \(0.446674\pi\)
\(480\) 19.2069 0.00182640
\(481\) 0 0
\(482\) −5770.48 −0.545308
\(483\) 21523.3 2.02763
\(484\) −4880.11 −0.458313
\(485\) −51.1510 −0.00478896
\(486\) 5962.25 0.556488
\(487\) 18326.0 1.70520 0.852598 0.522568i \(-0.175026\pi\)
0.852598 + 0.522568i \(0.175026\pi\)
\(488\) −4800.55 −0.445308
\(489\) −2792.98 −0.258288
\(490\) −248.315 −0.0228933
\(491\) 14270.1 1.31161 0.655807 0.754929i \(-0.272329\pi\)
0.655807 + 0.754929i \(0.272329\pi\)
\(492\) 6964.92 0.638217
\(493\) 1471.06 0.134388
\(494\) 0 0
\(495\) −18.6353 −0.00169211
\(496\) −203.351 −0.0184087
\(497\) 30831.0 2.78261
\(498\) 7337.34 0.660229
\(499\) −1424.52 −0.127796 −0.0638980 0.997956i \(-0.520353\pi\)
−0.0638980 + 0.997956i \(0.520353\pi\)
\(500\) −152.812 −0.0136679
\(501\) 10094.1 0.900144
\(502\) −6796.05 −0.604228
\(503\) 14269.1 1.26487 0.632435 0.774614i \(-0.282056\pi\)
0.632435 + 0.774614i \(0.282056\pi\)
\(504\) −3147.66 −0.278191
\(505\) −207.756 −0.0183070
\(506\) −3396.79 −0.298430
\(507\) 0 0
\(508\) −1223.96 −0.106899
\(509\) 12595.8 1.09685 0.548426 0.836199i \(-0.315227\pi\)
0.548426 + 0.836199i \(0.315227\pi\)
\(510\) −49.5996 −0.00430649
\(511\) −16946.3 −1.46704
\(512\) −512.000 −0.0441942
\(513\) −19909.8 −1.71353
\(514\) 3568.54 0.306229
\(515\) 16.1681 0.00138340
\(516\) −7335.66 −0.625842
\(517\) 2973.76 0.252970
\(518\) −12508.2 −1.06096
\(519\) −4299.34 −0.363622
\(520\) 0 0
\(521\) −14217.5 −1.19555 −0.597773 0.801665i \(-0.703948\pi\)
−0.597773 + 0.801665i \(0.703948\pi\)
\(522\) −824.234 −0.0691106
\(523\) 1118.21 0.0934916 0.0467458 0.998907i \(-0.485115\pi\)
0.0467458 + 0.998907i \(0.485115\pi\)
\(524\) 380.350 0.0317093
\(525\) −16684.2 −1.38697
\(526\) 13627.3 1.12962
\(527\) 525.131 0.0434062
\(528\) −661.964 −0.0545612
\(529\) 13826.5 1.13639
\(530\) −34.8787 −0.00285855
\(531\) −8140.43 −0.665281
\(532\) 17868.0 1.45616
\(533\) 0 0
\(534\) 4569.64 0.370314
\(535\) 12.0150 0.000970941 0
\(536\) −4343.54 −0.350023
\(537\) 9773.56 0.785401
\(538\) −9554.27 −0.765639
\(539\) 8558.13 0.683905
\(540\) 92.6140 0.00738050
\(541\) −12016.8 −0.954973 −0.477487 0.878639i \(-0.658452\pi\)
−0.477487 + 0.878639i \(0.658452\pi\)
\(542\) 1806.08 0.143132
\(543\) −13069.6 −1.03291
\(544\) 1322.18 0.104206
\(545\) −99.3553 −0.00780902
\(546\) 0 0
\(547\) −4885.51 −0.381882 −0.190941 0.981602i \(-0.561154\pi\)
−0.190941 + 0.981602i \(0.561154\pi\)
\(548\) 8620.13 0.671960
\(549\) −6945.95 −0.539974
\(550\) 2633.08 0.204136
\(551\) 4678.85 0.361753
\(552\) 5065.61 0.390591
\(553\) 12116.8 0.931755
\(554\) −17153.5 −1.31549
\(555\) 110.435 0.00844629
\(556\) 738.550 0.0563336
\(557\) 12515.0 0.952026 0.476013 0.879438i \(-0.342082\pi\)
0.476013 + 0.879438i \(0.342082\pi\)
\(558\) −294.230 −0.0223222
\(559\) 0 0
\(560\) −83.1163 −0.00627197
\(561\) 1709.45 0.128650
\(562\) 11229.9 0.842890
\(563\) −14533.7 −1.08796 −0.543982 0.839097i \(-0.683084\pi\)
−0.543982 + 0.839097i \(0.683084\pi\)
\(564\) −4434.74 −0.331093
\(565\) −195.244 −0.0145380
\(566\) −11637.8 −0.864262
\(567\) 9601.89 0.711184
\(568\) 7256.21 0.536028
\(569\) −6413.41 −0.472520 −0.236260 0.971690i \(-0.575922\pi\)
−0.236260 + 0.971690i \(0.575922\pi\)
\(570\) −157.757 −0.0115924
\(571\) 21173.5 1.55181 0.775905 0.630850i \(-0.217294\pi\)
0.775905 + 0.630850i \(0.217294\pi\)
\(572\) 0 0
\(573\) −1367.05 −0.0996669
\(574\) −30140.1 −2.19168
\(575\) −20149.4 −1.46137
\(576\) −740.817 −0.0535892
\(577\) 1040.31 0.0750584 0.0375292 0.999296i \(-0.488051\pi\)
0.0375292 + 0.999296i \(0.488051\pi\)
\(578\) 6411.62 0.461398
\(579\) −15161.5 −1.08824
\(580\) −21.7645 −0.00155814
\(581\) −31751.7 −2.26727
\(582\) −2629.02 −0.187245
\(583\) 1202.09 0.0853952
\(584\) −3988.38 −0.282603
\(585\) 0 0
\(586\) 13075.6 0.921755
\(587\) −11575.4 −0.813916 −0.406958 0.913447i \(-0.633411\pi\)
−0.406958 + 0.913447i \(0.633411\pi\)
\(588\) −12762.7 −0.895110
\(589\) 1670.23 0.116843
\(590\) −214.954 −0.0149992
\(591\) −1169.68 −0.0814118
\(592\) −2943.87 −0.204379
\(593\) 27162.8 1.88101 0.940507 0.339774i \(-0.110351\pi\)
0.940507 + 0.339774i \(0.110351\pi\)
\(594\) −3191.93 −0.220482
\(595\) 214.638 0.0147888
\(596\) −5797.37 −0.398439
\(597\) −234.716 −0.0160909
\(598\) 0 0
\(599\) 4086.72 0.278762 0.139381 0.990239i \(-0.455489\pi\)
0.139381 + 0.990239i \(0.455489\pi\)
\(600\) −3926.70 −0.267178
\(601\) 15180.0 1.03029 0.515144 0.857104i \(-0.327738\pi\)
0.515144 + 0.857104i \(0.327738\pi\)
\(602\) 31744.4 2.14918
\(603\) −6284.70 −0.424433
\(604\) −752.808 −0.0507141
\(605\) −186.453 −0.0125296
\(606\) −10678.1 −0.715790
\(607\) 16314.2 1.09089 0.545447 0.838146i \(-0.316360\pi\)
0.545447 + 0.838146i \(0.316360\pi\)
\(608\) 4205.33 0.280507
\(609\) −4752.98 −0.316257
\(610\) −183.413 −0.0121740
\(611\) 0 0
\(612\) 1913.07 0.126359
\(613\) −22822.6 −1.50374 −0.751872 0.659309i \(-0.770849\pi\)
−0.751872 + 0.659309i \(0.770849\pi\)
\(614\) −5349.47 −0.351608
\(615\) 266.106 0.0174479
\(616\) 2864.59 0.187367
\(617\) −14065.9 −0.917782 −0.458891 0.888493i \(-0.651753\pi\)
−0.458891 + 0.888493i \(0.651753\pi\)
\(618\) 830.997 0.0540900
\(619\) 11387.0 0.739387 0.369694 0.929154i \(-0.379463\pi\)
0.369694 + 0.929154i \(0.379463\pi\)
\(620\) −7.76936 −0.000503266 0
\(621\) 24425.9 1.57838
\(622\) −16644.4 −1.07296
\(623\) −19774.7 −1.27168
\(624\) 0 0
\(625\) 15616.2 0.999439
\(626\) 12058.2 0.769879
\(627\) 5437.06 0.346308
\(628\) −1740.46 −0.110592
\(629\) 7602.19 0.481906
\(630\) −120.262 −0.00760530
\(631\) 22572.1 1.42406 0.712028 0.702151i \(-0.247777\pi\)
0.712028 + 0.702151i \(0.247777\pi\)
\(632\) 2851.75 0.179488
\(633\) 13573.6 0.852294
\(634\) −12786.8 −0.800992
\(635\) −46.7636 −0.00292245
\(636\) −1792.67 −0.111767
\(637\) 0 0
\(638\) 750.110 0.0465473
\(639\) 10499.1 0.649980
\(640\) −19.5618 −0.00120820
\(641\) −21290.0 −1.31186 −0.655932 0.754820i \(-0.727724\pi\)
−0.655932 + 0.754820i \(0.727724\pi\)
\(642\) 617.538 0.0379630
\(643\) −17817.6 −1.09278 −0.546390 0.837531i \(-0.683998\pi\)
−0.546390 + 0.837531i \(0.683998\pi\)
\(644\) −21921.0 −1.34132
\(645\) −280.271 −0.0171095
\(646\) −10859.8 −0.661411
\(647\) 6318.10 0.383910 0.191955 0.981404i \(-0.438517\pi\)
0.191955 + 0.981404i \(0.438517\pi\)
\(648\) 2259.85 0.136999
\(649\) 7408.36 0.448079
\(650\) 0 0
\(651\) −1696.69 −0.102148
\(652\) 2844.58 0.170863
\(653\) 5953.96 0.356809 0.178405 0.983957i \(-0.442906\pi\)
0.178405 + 0.983957i \(0.442906\pi\)
\(654\) −5106.59 −0.305327
\(655\) 14.5319 0.000866883 0
\(656\) −7093.60 −0.422193
\(657\) −5770.82 −0.342681
\(658\) 19191.0 1.13699
\(659\) −31915.6 −1.88658 −0.943290 0.331969i \(-0.892287\pi\)
−0.943290 + 0.331969i \(0.892287\pi\)
\(660\) −25.2914 −0.00149162
\(661\) 22796.0 1.34139 0.670697 0.741731i \(-0.265995\pi\)
0.670697 + 0.741731i \(0.265995\pi\)
\(662\) −10891.2 −0.639423
\(663\) 0 0
\(664\) −7472.91 −0.436755
\(665\) 682.678 0.0398092
\(666\) −4259.50 −0.247826
\(667\) −5740.13 −0.333222
\(668\) −10280.6 −0.595463
\(669\) −8567.71 −0.495137
\(670\) −165.952 −0.00956909
\(671\) 6321.30 0.363683
\(672\) −4271.95 −0.245229
\(673\) 13804.6 0.790681 0.395341 0.918535i \(-0.370627\pi\)
0.395341 + 0.918535i \(0.370627\pi\)
\(674\) 3639.29 0.207983
\(675\) −18934.2 −1.07967
\(676\) 0 0
\(677\) 21662.7 1.22978 0.614892 0.788611i \(-0.289199\pi\)
0.614892 + 0.788611i \(0.289199\pi\)
\(678\) −10035.0 −0.568426
\(679\) 11376.9 0.643011
\(680\) 50.5161 0.00284883
\(681\) 12394.2 0.697424
\(682\) 267.770 0.0150344
\(683\) 13883.3 0.777788 0.388894 0.921282i \(-0.372857\pi\)
0.388894 + 0.921282i \(0.372857\pi\)
\(684\) 6084.72 0.340139
\(685\) 329.346 0.0183703
\(686\) 31911.5 1.77607
\(687\) −5366.19 −0.298010
\(688\) 7471.20 0.414007
\(689\) 0 0
\(690\) 193.540 0.0106782
\(691\) −864.998 −0.0476209 −0.0238105 0.999716i \(-0.507580\pi\)
−0.0238105 + 0.999716i \(0.507580\pi\)
\(692\) 4378.77 0.240543
\(693\) 4144.80 0.227198
\(694\) 8890.12 0.486260
\(695\) 28.2175 0.00154007
\(696\) −1118.63 −0.0609221
\(697\) 18318.4 0.995494
\(698\) 4708.85 0.255347
\(699\) 19756.5 1.06904
\(700\) 16992.5 0.917507
\(701\) −25377.5 −1.36732 −0.683661 0.729799i \(-0.739613\pi\)
−0.683661 + 0.729799i \(0.739613\pi\)
\(702\) 0 0
\(703\) 24179.5 1.29722
\(704\) 674.195 0.0360933
\(705\) −169.437 −0.00905157
\(706\) 8640.92 0.460631
\(707\) 46208.6 2.45807
\(708\) −11048.0 −0.586456
\(709\) −18630.0 −0.986834 −0.493417 0.869793i \(-0.664252\pi\)
−0.493417 + 0.869793i \(0.664252\pi\)
\(710\) 277.236 0.0146542
\(711\) 4126.23 0.217645
\(712\) −4654.07 −0.244970
\(713\) −2049.08 −0.107628
\(714\) 11031.8 0.578229
\(715\) 0 0
\(716\) −9954.14 −0.519558
\(717\) −18438.6 −0.960395
\(718\) −23873.4 −1.24087
\(719\) 37966.4 1.96927 0.984637 0.174615i \(-0.0558682\pi\)
0.984637 + 0.174615i \(0.0558682\pi\)
\(720\) −28.3041 −0.00146505
\(721\) −3596.07 −0.185748
\(722\) −20822.6 −1.07332
\(723\) −11331.6 −0.582886
\(724\) 13311.0 0.683288
\(725\) 4449.57 0.227935
\(726\) −9583.16 −0.489896
\(727\) 22117.8 1.12834 0.564169 0.825659i \(-0.309197\pi\)
0.564169 + 0.825659i \(0.309197\pi\)
\(728\) 0 0
\(729\) 19335.2 0.982327
\(730\) −152.383 −0.00772594
\(731\) −19293.5 −0.976191
\(732\) −9426.91 −0.475995
\(733\) −8619.47 −0.434335 −0.217167 0.976134i \(-0.569682\pi\)
−0.217167 + 0.976134i \(0.569682\pi\)
\(734\) −4269.93 −0.214722
\(735\) −487.620 −0.0244709
\(736\) −5159.20 −0.258384
\(737\) 5719.52 0.285863
\(738\) −10263.8 −0.511945
\(739\) −6659.12 −0.331474 −0.165737 0.986170i \(-0.553000\pi\)
−0.165737 + 0.986170i \(0.553000\pi\)
\(740\) −112.475 −0.00558739
\(741\) 0 0
\(742\) 7757.62 0.383815
\(743\) −16754.8 −0.827286 −0.413643 0.910439i \(-0.635744\pi\)
−0.413643 + 0.910439i \(0.635744\pi\)
\(744\) −399.324 −0.0196773
\(745\) −221.498 −0.0108927
\(746\) −19637.8 −0.963796
\(747\) −10812.6 −0.529602
\(748\) −1741.03 −0.0851048
\(749\) −2672.34 −0.130368
\(750\) −300.080 −0.0146098
\(751\) 8114.13 0.394259 0.197130 0.980377i \(-0.436838\pi\)
0.197130 + 0.980377i \(0.436838\pi\)
\(752\) 4516.68 0.219025
\(753\) −13345.5 −0.645867
\(754\) 0 0
\(755\) −28.7623 −0.00138645
\(756\) −20599.0 −0.990975
\(757\) −30442.5 −1.46163 −0.730814 0.682576i \(-0.760859\pi\)
−0.730814 + 0.682576i \(0.760859\pi\)
\(758\) −4240.26 −0.203184
\(759\) −6670.33 −0.318995
\(760\) 160.671 0.00766864
\(761\) −4266.18 −0.203218 −0.101609 0.994824i \(-0.532399\pi\)
−0.101609 + 0.994824i \(0.532399\pi\)
\(762\) −2403.52 −0.114265
\(763\) 22098.3 1.04851
\(764\) 1392.30 0.0659317
\(765\) 73.0921 0.00345445
\(766\) 3325.67 0.156869
\(767\) 0 0
\(768\) −1005.42 −0.0472397
\(769\) 7718.91 0.361965 0.180982 0.983486i \(-0.442072\pi\)
0.180982 + 0.983486i \(0.442072\pi\)
\(770\) 109.447 0.00512231
\(771\) 7007.60 0.327331
\(772\) 15441.6 0.719892
\(773\) 36026.8 1.67632 0.838159 0.545426i \(-0.183632\pi\)
0.838159 + 0.545426i \(0.183632\pi\)
\(774\) 10810.1 0.502019
\(775\) 1588.38 0.0736212
\(776\) 2677.60 0.123866
\(777\) −24562.6 −1.13408
\(778\) 6664.52 0.307114
\(779\) 58263.5 2.67973
\(780\) 0 0
\(781\) −9554.89 −0.437773
\(782\) 13323.0 0.609247
\(783\) −5393.96 −0.246187
\(784\) 12998.5 0.592133
\(785\) −66.4969 −0.00302341
\(786\) 746.900 0.0338945
\(787\) −15831.3 −0.717060 −0.358530 0.933518i \(-0.616722\pi\)
−0.358530 + 0.933518i \(0.616722\pi\)
\(788\) 1191.30 0.0538555
\(789\) 26760.2 1.20746
\(790\) 108.956 0.00490693
\(791\) 43425.8 1.95201
\(792\) 975.498 0.0437662
\(793\) 0 0
\(794\) 7896.98 0.352964
\(795\) −68.4918 −0.00305554
\(796\) 239.052 0.0106445
\(797\) −3142.78 −0.139678 −0.0698388 0.997558i \(-0.522248\pi\)
−0.0698388 + 0.997558i \(0.522248\pi\)
\(798\) 35087.8 1.55651
\(799\) −11663.8 −0.516441
\(800\) 3999.25 0.176744
\(801\) −6734.01 −0.297047
\(802\) −16283.1 −0.716926
\(803\) 5251.85 0.230802
\(804\) −8529.48 −0.374144
\(805\) −837.527 −0.0366695
\(806\) 0 0
\(807\) −18761.9 −0.818401
\(808\) 10875.4 0.473509
\(809\) 19323.3 0.839767 0.419884 0.907578i \(-0.362071\pi\)
0.419884 + 0.907578i \(0.362071\pi\)
\(810\) 86.3412 0.00374534
\(811\) −16218.2 −0.702218 −0.351109 0.936335i \(-0.614195\pi\)
−0.351109 + 0.936335i \(0.614195\pi\)
\(812\) 4840.80 0.209210
\(813\) 3546.63 0.152996
\(814\) 3876.44 0.166916
\(815\) 108.682 0.00467112
\(816\) 2596.39 0.111387
\(817\) −61364.9 −2.62777
\(818\) −3117.57 −0.133256
\(819\) 0 0
\(820\) −271.023 −0.0115421
\(821\) −22452.4 −0.954437 −0.477218 0.878785i \(-0.658355\pi\)
−0.477218 + 0.878785i \(0.658355\pi\)
\(822\) 16927.5 0.718266
\(823\) 40384.9 1.71049 0.855243 0.518227i \(-0.173408\pi\)
0.855243 + 0.518227i \(0.173408\pi\)
\(824\) −846.351 −0.0357816
\(825\) 5170.63 0.218204
\(826\) 47809.4 2.01393
\(827\) −10768.9 −0.452807 −0.226404 0.974034i \(-0.572697\pi\)
−0.226404 + 0.974034i \(0.572697\pi\)
\(828\) −7464.89 −0.313313
\(829\) 26899.9 1.12699 0.563494 0.826120i \(-0.309457\pi\)
0.563494 + 0.826120i \(0.309457\pi\)
\(830\) −285.515 −0.0119402
\(831\) −33684.7 −1.40615
\(832\) 0 0
\(833\) −33567.1 −1.39620
\(834\) 1450.30 0.0602157
\(835\) −392.788 −0.0162790
\(836\) −5537.52 −0.229090
\(837\) −1925.50 −0.0795163
\(838\) 8647.83 0.356485
\(839\) 23526.4 0.968082 0.484041 0.875045i \(-0.339169\pi\)
0.484041 + 0.875045i \(0.339169\pi\)
\(840\) −163.217 −0.00670419
\(841\) −23121.4 −0.948026
\(842\) 17051.8 0.697915
\(843\) 22052.3 0.900976
\(844\) −13824.4 −0.563809
\(845\) 0 0
\(846\) 6535.23 0.265586
\(847\) 41470.3 1.68233
\(848\) 1825.79 0.0739362
\(849\) −22853.3 −0.923820
\(850\) −10327.6 −0.416746
\(851\) −29664.0 −1.19491
\(852\) 14249.1 0.572967
\(853\) 10246.9 0.411310 0.205655 0.978625i \(-0.434067\pi\)
0.205655 + 0.978625i \(0.434067\pi\)
\(854\) 40794.2 1.63460
\(855\) 232.477 0.00929887
\(856\) −628.948 −0.0251133
\(857\) 44057.2 1.75609 0.878043 0.478581i \(-0.158849\pi\)
0.878043 + 0.478581i \(0.158849\pi\)
\(858\) 0 0
\(859\) −38844.4 −1.54290 −0.771452 0.636288i \(-0.780469\pi\)
−0.771452 + 0.636288i \(0.780469\pi\)
\(860\) 285.449 0.0113183
\(861\) −59186.6 −2.34271
\(862\) −14888.2 −0.588276
\(863\) 3538.63 0.139578 0.0697892 0.997562i \(-0.477767\pi\)
0.0697892 + 0.997562i \(0.477767\pi\)
\(864\) −4848.06 −0.190896
\(865\) 167.298 0.00657608
\(866\) −11786.3 −0.462488
\(867\) 12590.6 0.493194
\(868\) 1728.04 0.0675732
\(869\) −3755.15 −0.146588
\(870\) −42.7393 −0.00166551
\(871\) 0 0
\(872\) 5200.95 0.201980
\(873\) 3874.24 0.150198
\(874\) 42375.2 1.64000
\(875\) 1298.57 0.0501711
\(876\) −7832.05 −0.302078
\(877\) −13821.9 −0.532192 −0.266096 0.963947i \(-0.585734\pi\)
−0.266096 + 0.963947i \(0.585734\pi\)
\(878\) 5724.75 0.220047
\(879\) 25676.8 0.985275
\(880\) 25.7587 0.000986735 0
\(881\) −17424.0 −0.666323 −0.333161 0.942870i \(-0.608115\pi\)
−0.333161 + 0.942870i \(0.608115\pi\)
\(882\) 18807.6 0.718012
\(883\) −28891.7 −1.10111 −0.550557 0.834797i \(-0.685585\pi\)
−0.550557 + 0.834797i \(0.685585\pi\)
\(884\) 0 0
\(885\) −422.108 −0.0160328
\(886\) −15418.7 −0.584651
\(887\) 32638.5 1.23551 0.617753 0.786372i \(-0.288043\pi\)
0.617753 + 0.786372i \(0.288043\pi\)
\(888\) −5780.92 −0.218463
\(889\) 10401.0 0.392395
\(890\) −177.816 −0.00669710
\(891\) −2975.74 −0.111887
\(892\) 8726.02 0.327543
\(893\) −37097.9 −1.39018
\(894\) −11384.4 −0.425896
\(895\) −380.314 −0.0142039
\(896\) 4350.88 0.162224
\(897\) 0 0
\(898\) −4349.76 −0.161641
\(899\) 452.497 0.0167871
\(900\) 5786.55 0.214317
\(901\) −4714.89 −0.174335
\(902\) 9340.77 0.344804
\(903\) 62337.1 2.29729
\(904\) 10220.4 0.376026
\(905\) 508.570 0.0186800
\(906\) −1478.30 −0.0542089
\(907\) −26009.1 −0.952169 −0.476085 0.879400i \(-0.657944\pi\)
−0.476085 + 0.879400i \(0.657944\pi\)
\(908\) −12623.2 −0.461360
\(909\) 15735.7 0.574170
\(910\) 0 0
\(911\) −4030.56 −0.146584 −0.0732922 0.997311i \(-0.523351\pi\)
−0.0732922 + 0.997311i \(0.523351\pi\)
\(912\) 8258.07 0.299838
\(913\) 9840.24 0.356697
\(914\) −8225.23 −0.297666
\(915\) −360.171 −0.0130130
\(916\) 5465.34 0.197140
\(917\) −3232.15 −0.116396
\(918\) 12519.5 0.450116
\(919\) 1967.32 0.0706157 0.0353079 0.999376i \(-0.488759\pi\)
0.0353079 + 0.999376i \(0.488759\pi\)
\(920\) −197.116 −0.00706382
\(921\) −10504.8 −0.375838
\(922\) −11278.2 −0.402851
\(923\) 0 0
\(924\) 5625.25 0.200278
\(925\) 22994.6 0.817362
\(926\) −10056.4 −0.356884
\(927\) −1224.59 −0.0433882
\(928\) 1139.30 0.0403012
\(929\) 36288.5 1.28158 0.640789 0.767717i \(-0.278607\pi\)
0.640789 + 0.767717i \(0.278607\pi\)
\(930\) −15.2568 −0.000537947 0
\(931\) −106764. −3.75836
\(932\) −20121.5 −0.707192
\(933\) −32684.8 −1.14690
\(934\) 14703.0 0.515094
\(935\) −66.5189 −0.00232663
\(936\) 0 0
\(937\) 3899.73 0.135964 0.0679821 0.997687i \(-0.478344\pi\)
0.0679821 + 0.997687i \(0.478344\pi\)
\(938\) 36910.6 1.28483
\(939\) 23679.0 0.822933
\(940\) 172.567 0.00598779
\(941\) −32961.6 −1.14189 −0.570944 0.820989i \(-0.693423\pi\)
−0.570944 + 0.820989i \(0.693423\pi\)
\(942\) −3417.76 −0.118213
\(943\) −71479.2 −2.46838
\(944\) 11252.2 0.387952
\(945\) −787.017 −0.0270917
\(946\) −9837.98 −0.338119
\(947\) −17974.7 −0.616788 −0.308394 0.951259i \(-0.599791\pi\)
−0.308394 + 0.951259i \(0.599791\pi\)
\(948\) 5600.04 0.191857
\(949\) 0 0
\(950\) −32848.0 −1.12182
\(951\) −25109.7 −0.856190
\(952\) −11235.7 −0.382510
\(953\) 7627.67 0.259270 0.129635 0.991562i \(-0.458619\pi\)
0.129635 + 0.991562i \(0.458619\pi\)
\(954\) 2641.75 0.0896539
\(955\) 53.1952 0.00180247
\(956\) 18779.3 0.635321
\(957\) 1473.00 0.0497549
\(958\) −6992.29 −0.235815
\(959\) −73252.3 −2.46657
\(960\) −38.4138 −0.00129146
\(961\) −29629.5 −0.994578
\(962\) 0 0
\(963\) −910.030 −0.0304520
\(964\) 11541.0 0.385591
\(965\) 589.973 0.0196807
\(966\) −43046.6 −1.43375
\(967\) −48536.0 −1.61408 −0.807038 0.590499i \(-0.798931\pi\)
−0.807038 + 0.590499i \(0.798931\pi\)
\(968\) 9760.23 0.324076
\(969\) −21325.5 −0.706991
\(970\) 102.302 0.00338631
\(971\) −19301.5 −0.637915 −0.318957 0.947769i \(-0.603333\pi\)
−0.318957 + 0.947769i \(0.603333\pi\)
\(972\) −11924.5 −0.393496
\(973\) −6276.06 −0.206784
\(974\) −36652.0 −1.20576
\(975\) 0 0
\(976\) 9601.09 0.314881
\(977\) −4620.95 −0.151318 −0.0756588 0.997134i \(-0.524106\pi\)
−0.0756588 + 0.997134i \(0.524106\pi\)
\(978\) 5585.96 0.182637
\(979\) 6128.42 0.200067
\(980\) 496.629 0.0161880
\(981\) 7525.29 0.244917
\(982\) −28540.3 −0.927451
\(983\) −17936.8 −0.581990 −0.290995 0.956725i \(-0.593986\pi\)
−0.290995 + 0.956725i \(0.593986\pi\)
\(984\) −13929.8 −0.451287
\(985\) 45.5154 0.00147233
\(986\) −2942.12 −0.0950266
\(987\) 37685.6 1.21535
\(988\) 0 0
\(989\) 75284.0 2.42052
\(990\) 37.2705 0.00119650
\(991\) −45697.1 −1.46480 −0.732400 0.680875i \(-0.761600\pi\)
−0.732400 + 0.680875i \(0.761600\pi\)
\(992\) 406.702 0.0130169
\(993\) −21387.2 −0.683487
\(994\) −61662.0 −1.96760
\(995\) 9.13339 0.000291003 0
\(996\) −14674.7 −0.466853
\(997\) 7979.45 0.253472 0.126736 0.991936i \(-0.459550\pi\)
0.126736 + 0.991936i \(0.459550\pi\)
\(998\) 2849.03 0.0903654
\(999\) −27875.1 −0.882810
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.a.n.1.2 6
13.2 odd 12 338.4.e.i.147.3 24
13.3 even 3 338.4.c.p.191.5 12
13.4 even 6 338.4.c.o.315.5 12
13.5 odd 4 338.4.b.h.337.8 12
13.6 odd 12 338.4.e.i.23.11 24
13.7 odd 12 338.4.e.i.23.3 24
13.8 odd 4 338.4.b.h.337.2 12
13.9 even 3 338.4.c.p.315.5 12
13.10 even 6 338.4.c.o.191.5 12
13.11 odd 12 338.4.e.i.147.11 24
13.12 even 2 338.4.a.o.1.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.2 6 1.1 even 1 trivial
338.4.a.o.1.2 yes 6 13.12 even 2
338.4.b.h.337.2 12 13.8 odd 4
338.4.b.h.337.8 12 13.5 odd 4
338.4.c.o.191.5 12 13.10 even 6
338.4.c.o.315.5 12 13.4 even 6
338.4.c.p.191.5 12 13.3 even 3
338.4.c.p.315.5 12 13.9 even 3
338.4.e.i.23.3 24 13.7 odd 12
338.4.e.i.23.11 24 13.6 odd 12
338.4.e.i.147.3 24 13.2 odd 12
338.4.e.i.147.11 24 13.11 odd 12