Properties

Label 338.4.a.n
Level $338$
Weight $4$
Character orbit 338.a
Self dual yes
Analytic conductor $19.943$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6681389953.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 107x^{4} + 85x^{3} + 3703x^{2} - 1659x - 41951 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta_1 + 1) q^{3} + 4 q^{4} + ( - \beta_{5} - \beta_{3} + \beta_1 - 3) q^{5} + (2 \beta_1 - 2) q^{6} + ( - \beta_{5} + 2 \beta_{4} + \beta_1 - 4) q^{7} - 8 q^{8} + ( - 2 \beta_{5} + 2 \beta_{4} + \cdots + 17) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + ( - \beta_1 + 1) q^{3} + 4 q^{4} + ( - \beta_{5} - \beta_{3} + \beta_1 - 3) q^{5} + (2 \beta_1 - 2) q^{6} + ( - \beta_{5} + 2 \beta_{4} + \beta_1 - 4) q^{7} - 8 q^{8} + ( - 2 \beta_{5} + 2 \beta_{4} + \cdots + 17) q^{9}+ \cdots + (50 \beta_{5} + 80 \beta_{4} + \cdots + 345) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 12 q^{2} + 9 q^{3} + 24 q^{4} - 18 q^{5} - 18 q^{6} - 25 q^{7} - 48 q^{8} + 113 q^{9} + 36 q^{10} - 37 q^{11} + 36 q^{12} + 50 q^{14} - 118 q^{15} + 96 q^{16} + 99 q^{17} - 226 q^{18} + 81 q^{19} - 72 q^{20} + 26 q^{21} + 74 q^{22} + 267 q^{23} - 72 q^{24} + 368 q^{25} + 669 q^{27} - 100 q^{28} - 119 q^{29} + 236 q^{30} + 625 q^{31} - 192 q^{32} - 762 q^{33} - 198 q^{34} + 614 q^{35} + 452 q^{36} - 274 q^{37} - 162 q^{38} + 144 q^{40} - 1140 q^{41} - 52 q^{42} + 428 q^{43} - 148 q^{44} + 1215 q^{45} - 534 q^{46} + 986 q^{47} + 144 q^{48} + 899 q^{49} - 736 q^{50} + 289 q^{51} + 89 q^{53} - 1338 q^{54} + 1126 q^{55} + 200 q^{56} + 2553 q^{57} + 238 q^{58} - 1088 q^{59} - 472 q^{60} + 1704 q^{61} - 1250 q^{62} + 3222 q^{63} + 384 q^{64} + 1524 q^{66} + 1692 q^{67} + 396 q^{68} + 1168 q^{69} - 1228 q^{70} + 1221 q^{71} - 904 q^{72} + 1554 q^{73} + 548 q^{74} + 1798 q^{75} + 324 q^{76} + 2790 q^{77} - 875 q^{79} - 288 q^{80} + 3338 q^{81} + 2280 q^{82} + 126 q^{83} + 104 q^{84} + 3721 q^{85} - 856 q^{86} + 1602 q^{87} + 296 q^{88} + 374 q^{89} - 2430 q^{90} + 1068 q^{92} + 1868 q^{93} - 1972 q^{94} - 4093 q^{95} - 288 q^{96} + 330 q^{97} - 1798 q^{98} + 1344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 107x^{4} + 85x^{3} + 3703x^{2} - 1659x - 41951 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 7\nu^{4} - 77\nu^{3} - 531\nu^{2} + 1431\nu + 9815 ) / 39 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -22\nu^{5} - 102\nu^{4} + 1655\nu^{3} + 7574\nu^{2} - 30520\nu - 139594 ) / 273 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 50\nu^{5} + 207\nu^{4} - 3902\nu^{3} - 16163\nu^{2} + 73955\nu + 314496 ) / 273 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 131\nu^{5} + 657\nu^{4} - 10347\nu^{3} - 51114\nu^{2} + 200123\nu + 982345 ) / 273 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 172\nu^{5} + 814\nu^{4} - 13543\nu^{3} - 62888\nu^{2} + 260211\nu + 1204567 ) / 273 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + 2\beta_{4} - 2\beta_{3} - 3\beta_{2} - 8\beta _1 - 1 ) / 13 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 6\beta_{5} - 5\beta_{4} - 8\beta_{3} - 2\beta_{2} - 3\beta _1 + 466 ) / 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -66\beta_{5} + 92\beta_{4} - 40\beta_{3} - 145\beta_{2} - 270\beta _1 + 54 ) / 13 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 443\beta_{5} - 363\beta_{4} - 625\beta_{3} - 143\beta_{2} - 77\beta _1 + 17789 ) / 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -3566\beta_{5} + 4108\beta_{4} - 91\beta_{3} - 6933\beta_{2} - 9889\beta _1 + 917 ) / 13 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.85211
−7.06450
−5.40469
6.65405
5.81752
5.84973
−2.00000 −8.14801 4.00000 12.6646 16.2960 28.7705 −8.00000 39.3901 −25.3292
1.2 −2.00000 −3.92743 4.00000 0.152827 7.85487 −33.9913 −8.00000 −11.5753 −0.305653
1.3 −2.00000 −1.24585 4.00000 −20.5002 2.49171 −21.2545 −8.00000 −25.4478 41.0004
1.4 −2.00000 3.35815 4.00000 −6.80407 −6.71631 −15.5380 −8.00000 −15.7228 13.6081
1.5 −2.00000 8.95458 4.00000 −17.3267 −17.9092 16.7510 −8.00000 53.1845 34.6535
1.6 −2.00000 10.0086 4.00000 13.8136 −20.0171 0.262285 −8.00000 73.1713 −27.6271
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.a.n 6
13.b even 2 1 338.4.a.o yes 6
13.c even 3 2 338.4.c.p 12
13.d odd 4 2 338.4.b.h 12
13.e even 6 2 338.4.c.o 12
13.f odd 12 4 338.4.e.i 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.4.a.n 6 1.a even 1 1 trivial
338.4.a.o yes 6 13.b even 2 1
338.4.b.h 12 13.d odd 4 2
338.4.c.o 12 13.e even 6 2
338.4.c.p 12 13.c even 3 2
338.4.e.i 24 13.f odd 12 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{6} - 9T_{3}^{5} - 97T_{3}^{4} + 731T_{3}^{3} + 2313T_{3}^{2} - 8047T_{3} - 11999 \) Copy content Toggle raw display
\( T_{5}^{6} + 18T_{5}^{5} - 397T_{5}^{4} - 5935T_{5}^{3} + 44090T_{5}^{2} + 416208T_{5} - 64616 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 9 T^{5} + \cdots - 11999 \) Copy content Toggle raw display
$5$ \( T^{6} + 18 T^{5} + \cdots - 64616 \) Copy content Toggle raw display
$7$ \( T^{6} + 25 T^{5} + \cdots - 1418984 \) Copy content Toggle raw display
$11$ \( T^{6} + 37 T^{5} + \cdots - 284930113 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 137132126111 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 98183802067 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 920633860328 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 83240818856 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 254759240632 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 19945258052936 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 6202922352809 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 12\!\cdots\!89 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 549423790361944 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 14\!\cdots\!88 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 35\!\cdots\!77 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 833240079095872 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 2729196191063 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 52281997669273 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 79\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 99\!\cdots\!91 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 95\!\cdots\!09 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 15227749501399 \) Copy content Toggle raw display
show more
show less