Properties

Label 338.4.a.k
Level $338$
Weight $4$
Character orbit 338.a
Self dual yes
Analytic conductor $19.943$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - 3 \beta_{2} - 5) q^{3} + 4 q^{4} + (\beta_{2} - 8 \beta_1 - 1) q^{5} + ( - 6 \beta_{2} - 10) q^{6} + (5 \beta_{2} + 8 \beta_1 + 8) q^{7} + 8 q^{8} + (21 \beta_{2} + 9 \beta_1 + 7) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + ( - 3 \beta_{2} - 5) q^{3} + 4 q^{4} + (\beta_{2} - 8 \beta_1 - 1) q^{5} + ( - 6 \beta_{2} - 10) q^{6} + (5 \beta_{2} + 8 \beta_1 + 8) q^{7} + 8 q^{8} + (21 \beta_{2} + 9 \beta_1 + 7) q^{9} + (2 \beta_{2} - 16 \beta_1 - 2) q^{10} + (\beta_{2} + 24 \beta_1 - 35) q^{11} + ( - 12 \beta_{2} - 20) q^{12} + (10 \beta_{2} + 16 \beta_1 + 16) q^{14} + (25 \beta_{2} + 37 \beta_1 + 26) q^{15} + 16 q^{16} + (43 \beta_{2} - 5 \beta_1 - 14) q^{17} + (42 \beta_{2} + 18 \beta_1 + 14) q^{18} + ( - 56 \beta_{2} - 15 \beta_1 - 57) q^{19} + (4 \beta_{2} - 32 \beta_1 - 4) q^{20} + ( - 58 \beta_{2} - 55 \beta_1 - 79) q^{21} + (2 \beta_{2} + 48 \beta_1 - 70) q^{22} + (68 \beta_{2} - 102 \beta_1 + 63) q^{23} + ( - 24 \beta_{2} - 40) q^{24} + (45 \beta_{2} + 17 \beta_1 - 11) q^{25} + ( - 9 \beta_{2} - 108 \beta_1 + 10) q^{27} + (20 \beta_{2} + 32 \beta_1 + 32) q^{28} + ( - 179 \beta_{2} + 182 \beta_1 - 154) q^{29} + (50 \beta_{2} + 74 \beta_1 + 52) q^{30} + (67 \beta_{2} - 68 \beta_1 - 128) q^{31} + 32 q^{32} + (31 \beta_{2} - 123 \beta_1 + 100) q^{33} + (86 \beta_{2} - 10 \beta_1 - 28) q^{34} + ( - 98 \beta_{2} - 67 \beta_1 - 163) q^{35} + (84 \beta_{2} + 36 \beta_1 + 28) q^{36} + ( - 22 \beta_{2} + 59 \beta_1 - 55) q^{37} + ( - 112 \beta_{2} - 30 \beta_1 - 114) q^{38} + (8 \beta_{2} - 64 \beta_1 - 8) q^{40} + ( - 276 \beta_{2} + 254 \beta_1 - 239) q^{41} + ( - 116 \beta_{2} - 110 \beta_1 - 158) q^{42} + (6 \beta_{2} - 29 \beta_1 - 390) q^{43} + (4 \beta_{2} + 96 \beta_1 - 140) q^{44} + ( - 266 \beta_{2} - 44 \beta_1 - 289) q^{45} + (136 \beta_{2} - 204 \beta_1 + 126) q^{46} + (263 \beta_{2} - 278 \beta_1 + 359) q^{47} + ( - 48 \beta_{2} - 80) q^{48} + (199 \beta_{2} + 153 \beta_1 - 46) q^{49} + (90 \beta_{2} + 34 \beta_1 - 22) q^{50} + ( - 29 \beta_{2} - 104 \beta_1 - 44) q^{51} + (36 \beta_{2} - 63 \beta_1 - 332) q^{53} + ( - 18 \beta_{2} - 216 \beta_1 + 20) q^{54} + ( - 213 \beta_{2} + 257 \beta_1 - 332) q^{55} + (40 \beta_{2} + 64 \beta_1 + 64) q^{56} + (328 \beta_{2} + 243 \beta_1 + 498) q^{57} + ( - 358 \beta_{2} + 364 \beta_1 - 308) q^{58} + ( - 194 \beta_{2} + 166 \beta_1 + 351) q^{59} + (100 \beta_{2} + 148 \beta_1 + 104) q^{60} + ( - 166 \beta_{2} + 19 \beta_1 - 431) q^{61} + (134 \beta_{2} - 136 \beta_1 - 256) q^{62} + (383 \beta_{2} + 233 \beta_1 + 518) q^{63} + 64 q^{64} + (62 \beta_{2} - 246 \beta_1 + 200) q^{66} + ( - 230 \beta_{2} + 79 \beta_1 + 432) q^{67} + (172 \beta_{2} - 20 \beta_1 - 56) q^{68} + ( - 19 \beta_{2} + 306 \beta_1 - 213) q^{69} + ( - 196 \beta_{2} - 134 \beta_1 - 326) q^{70} + (297 \beta_{2} + 129 \beta_1 + 359) q^{71} + (168 \beta_{2} + 72 \beta_1 + 56) q^{72} + (30 \beta_{2} - 623 \beta_1 + 122) q^{73} + ( - 44 \beta_{2} + 118 \beta_1 - 110) q^{74} + ( - 108 \beta_{2} - 220 \beta_1 - 131) q^{75} + ( - 224 \beta_{2} - 60 \beta_1 - 228) q^{76} + (148 \beta_{2} - 83 \beta_1 + 237) q^{77} + ( - 95 \beta_{2} - 163 \beta_1 - 631) q^{79} + (16 \beta_{2} - 128 \beta_1 - 16) q^{80} + ( - 255 \beta_{2} + 324 \beta_1 + 112) q^{81} + ( - 552 \beta_{2} + 508 \beta_1 - 478) q^{82} + ( - 289 \beta_{2} + 141 \beta_1 - 207) q^{83} + ( - 232 \beta_{2} - 220 \beta_1 - 316) q^{84} + ( - 409 \beta_{2} + 160 \beta_1 - 212) q^{85} + (12 \beta_{2} - 58 \beta_1 - 780) q^{86} + (274 \beta_{2} - 373 \beta_1 + 761) q^{87} + (8 \beta_{2} + 192 \beta_1 - 280) q^{88} + ( - 217 \beta_{2} + 21 \beta_1 - 443) q^{89} + ( - 532 \beta_{2} - 88 \beta_1 - 578) q^{90} + (272 \beta_{2} - 408 \beta_1 + 252) q^{92} + (454 \beta_{2} + 139 \beta_1 + 643) q^{93} + (526 \beta_{2} - 556 \beta_1 + 718) q^{94} + (608 \beta_{2} + 415 \beta_1 + 674) q^{95} + ( - 96 \beta_{2} - 160) q^{96} + (599 \beta_{2} - 674 \beta_1 + 740) q^{97} + (398 \beta_{2} + 306 \beta_1 - 92) q^{98} + ( - 20 \beta_{2} - 126 \beta_1 + 721) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 12 q^{3} + 12 q^{4} - 12 q^{5} - 24 q^{6} + 27 q^{7} + 24 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 6 q^{2} - 12 q^{3} + 12 q^{4} - 12 q^{5} - 24 q^{6} + 27 q^{7} + 24 q^{8} + 9 q^{9} - 24 q^{10} - 82 q^{11} - 48 q^{12} + 54 q^{14} + 90 q^{15} + 48 q^{16} - 90 q^{17} + 18 q^{18} - 130 q^{19} - 48 q^{20} - 234 q^{21} - 164 q^{22} + 19 q^{23} - 96 q^{24} - 61 q^{25} - 69 q^{27} + 108 q^{28} - 101 q^{29} + 180 q^{30} - 519 q^{31} + 96 q^{32} + 146 q^{33} - 180 q^{34} - 458 q^{35} + 36 q^{36} - 84 q^{37} - 260 q^{38} - 96 q^{40} - 187 q^{41} - 468 q^{42} - 1205 q^{43} - 328 q^{44} - 645 q^{45} + 38 q^{46} + 536 q^{47} - 192 q^{48} - 184 q^{49} - 122 q^{50} - 207 q^{51} - 1095 q^{53} - 138 q^{54} - 526 q^{55} + 216 q^{56} + 1409 q^{57} - 202 q^{58} + 1413 q^{59} + 360 q^{60} - 1108 q^{61} - 1038 q^{62} + 1404 q^{63} + 192 q^{64} + 292 q^{66} + 1605 q^{67} - 360 q^{68} - 314 q^{69} - 916 q^{70} + 909 q^{71} + 72 q^{72} - 287 q^{73} - 168 q^{74} - 505 q^{75} - 520 q^{76} + 480 q^{77} - 1961 q^{79} - 192 q^{80} + 915 q^{81} - 374 q^{82} - 191 q^{83} - 936 q^{84} - 67 q^{85} - 2410 q^{86} + 1636 q^{87} - 656 q^{88} - 1091 q^{89} - 1290 q^{90} + 76 q^{92} + 1614 q^{93} + 1072 q^{94} + 1829 q^{95} - 384 q^{96} + 947 q^{97} - 368 q^{98} + 2057 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
2.00000 −8.74094 4.00000 −14.1685 −17.4819 28.6504 8.00000 49.4040 −28.3370
1.2 2.00000 −3.66487 4.00000 8.53079 −7.32975 −4.20105 8.00000 −13.5687 17.0616
1.3 2.00000 0.405813 4.00000 −6.36227 0.811626 2.55065 8.00000 −26.8353 −12.7245
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.a.k yes 3
13.b even 2 1 338.4.a.j 3
13.c even 3 2 338.4.c.k 6
13.d odd 4 2 338.4.b.f 6
13.e even 6 2 338.4.c.l 6
13.f odd 12 4 338.4.e.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.4.a.j 3 13.b even 2 1
338.4.a.k yes 3 1.a even 1 1 trivial
338.4.b.f 6 13.d odd 4 2
338.4.c.k 6 13.c even 3 2
338.4.c.l 6 13.e even 6 2
338.4.e.h 12 13.f odd 12 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{3} + 12T_{3}^{2} + 27T_{3} - 13 \) Copy content Toggle raw display
\( T_{5}^{3} + 12T_{5}^{2} - 85T_{5} - 769 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 12 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$5$ \( T^{3} + 12 T^{2} + \cdots - 769 \) Copy content Toggle raw display
$7$ \( T^{3} - 27 T^{2} + \cdots + 307 \) Copy content Toggle raw display
$11$ \( T^{3} + 82 T^{2} + \cdots - 16211 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 90 T^{2} + \cdots - 77167 \) Copy content Toggle raw display
$19$ \( T^{3} + 130 T^{2} + \cdots - 76609 \) Copy content Toggle raw display
$23$ \( T^{3} - 19 T^{2} + \cdots - 604157 \) Copy content Toggle raw display
$29$ \( T^{3} + 101 T^{2} + \cdots - 3703349 \) Copy content Toggle raw display
$31$ \( T^{3} + 519 T^{2} + \cdots + 3401957 \) Copy content Toggle raw display
$37$ \( T^{3} + 84 T^{2} + \cdots + 30919 \) Copy content Toggle raw display
$41$ \( T^{3} + 187 T^{2} + \cdots - 20172347 \) Copy content Toggle raw display
$43$ \( T^{3} + 1205 T^{2} + \cdots + 64126453 \) Copy content Toggle raw display
$47$ \( T^{3} - 536 T^{2} + \cdots + 26128271 \) Copy content Toggle raw display
$53$ \( T^{3} + 1095 T^{2} + \cdots + 45870749 \) Copy content Toggle raw display
$59$ \( T^{3} - 1413 T^{2} + \cdots - 72818971 \) Copy content Toggle raw display
$61$ \( T^{3} + 1108 T^{2} + \cdots + 28377551 \) Copy content Toggle raw display
$67$ \( T^{3} - 1605 T^{2} + \cdots - 110488951 \) Copy content Toggle raw display
$71$ \( T^{3} - 909 T^{2} + \cdots + 7534771 \) Copy content Toggle raw display
$73$ \( T^{3} + 287 T^{2} + \cdots - 178534237 \) Copy content Toggle raw display
$79$ \( T^{3} + 1961 T^{2} + \cdots + 214064899 \) Copy content Toggle raw display
$83$ \( T^{3} + 191 T^{2} + \cdots - 29986853 \) Copy content Toggle raw display
$89$ \( T^{3} + 1091 T^{2} + \cdots + 10734907 \) Copy content Toggle raw display
$97$ \( T^{3} - 947 T^{2} + \cdots + 228842741 \) Copy content Toggle raw display
show more
show less