Properties

Label 338.4.a.j.1.3
Level $338$
Weight $4$
Character 338.1
Self dual yes
Analytic conductor $19.943$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +0.405813 q^{3} +4.00000 q^{4} +6.36227 q^{5} -0.811626 q^{6} -2.55065 q^{7} -8.00000 q^{8} -26.8353 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} +0.405813 q^{3} +4.00000 q^{4} +6.36227 q^{5} -0.811626 q^{6} -2.55065 q^{7} -8.00000 q^{8} -26.8353 q^{9} -12.7245 q^{10} +26.1209 q^{11} +1.62325 q^{12} +5.10129 q^{14} +2.58189 q^{15} +16.0000 q^{16} -93.7085 q^{17} +53.6706 q^{18} -37.2329 q^{19} +25.4491 q^{20} -1.03509 q^{21} -52.2419 q^{22} -104.926 q^{23} -3.24651 q^{24} -84.5215 q^{25} -21.8471 q^{27} -10.2026 q^{28} +249.544 q^{29} -5.16379 q^{30} +278.993 q^{31} -32.0000 q^{32} +10.6002 q^{33} +187.417 q^{34} -16.2279 q^{35} -107.341 q^{36} -10.9001 q^{37} +74.4658 q^{38} -50.8982 q^{40} -371.375 q^{41} +2.07017 q^{42} -413.718 q^{43} +104.484 q^{44} -170.734 q^{45} +209.852 q^{46} +238.631 q^{47} +6.49301 q^{48} -336.494 q^{49} +169.043 q^{50} -38.0282 q^{51} -424.907 q^{53} +43.6942 q^{54} +166.188 q^{55} +20.4052 q^{56} -15.1096 q^{57} -499.089 q^{58} -774.453 q^{59} +10.3276 q^{60} -123.423 q^{61} -557.985 q^{62} +68.4474 q^{63} +64.0000 q^{64} -21.2004 q^{66} -881.604 q^{67} -374.834 q^{68} -42.5804 q^{69} +32.4558 q^{70} +118.765 q^{71} +214.683 q^{72} +209.319 q^{73} +21.8002 q^{74} -34.2999 q^{75} -148.932 q^{76} -66.6253 q^{77} -532.358 q^{79} +101.796 q^{80} +715.688 q^{81} +742.751 q^{82} -376.511 q^{83} -4.14034 q^{84} -596.199 q^{85} +827.436 q^{86} +101.268 q^{87} -208.967 q^{88} +42.6336 q^{89} +341.467 q^{90} -419.704 q^{92} +113.219 q^{93} -477.263 q^{94} -236.886 q^{95} -12.9860 q^{96} +639.319 q^{97} +672.988 q^{98} -700.963 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 12 q^{3} + 12 q^{4} + 12 q^{5} + 24 q^{6} - 27 q^{7} - 24 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 6 q^{2} - 12 q^{3} + 12 q^{4} + 12 q^{5} + 24 q^{6} - 27 q^{7} - 24 q^{8} + 9 q^{9} - 24 q^{10} + 82 q^{11} - 48 q^{12} + 54 q^{14} - 90 q^{15} + 48 q^{16} - 90 q^{17} - 18 q^{18} + 130 q^{19} + 48 q^{20} + 234 q^{21} - 164 q^{22} + 19 q^{23} + 96 q^{24} - 61 q^{25} - 69 q^{27} - 108 q^{28} - 101 q^{29} + 180 q^{30} + 519 q^{31} - 96 q^{32} - 146 q^{33} + 180 q^{34} - 458 q^{35} + 36 q^{36} + 84 q^{37} - 260 q^{38} - 96 q^{40} + 187 q^{41} - 468 q^{42} - 1205 q^{43} + 328 q^{44} + 645 q^{45} - 38 q^{46} - 536 q^{47} - 192 q^{48} - 184 q^{49} + 122 q^{50} - 207 q^{51} - 1095 q^{53} + 138 q^{54} - 526 q^{55} + 216 q^{56} - 1409 q^{57} + 202 q^{58} - 1413 q^{59} - 360 q^{60} - 1108 q^{61} - 1038 q^{62} - 1404 q^{63} + 192 q^{64} + 292 q^{66} - 1605 q^{67} - 360 q^{68} - 314 q^{69} + 916 q^{70} - 909 q^{71} - 72 q^{72} + 287 q^{73} - 168 q^{74} - 505 q^{75} + 520 q^{76} + 480 q^{77} - 1961 q^{79} + 192 q^{80} + 915 q^{81} - 374 q^{82} + 191 q^{83} + 936 q^{84} + 67 q^{85} + 2410 q^{86} + 1636 q^{87} - 656 q^{88} + 1091 q^{89} - 1290 q^{90} + 76 q^{92} - 1614 q^{93} + 1072 q^{94} + 1829 q^{95} + 384 q^{96} - 947 q^{97} + 368 q^{98} - 2057 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0.405813 0.0780988 0.0390494 0.999237i \(-0.487567\pi\)
0.0390494 + 0.999237i \(0.487567\pi\)
\(4\) 4.00000 0.500000
\(5\) 6.36227 0.569059 0.284529 0.958667i \(-0.408163\pi\)
0.284529 + 0.958667i \(0.408163\pi\)
\(6\) −0.811626 −0.0552242
\(7\) −2.55065 −0.137722 −0.0688610 0.997626i \(-0.521936\pi\)
−0.0688610 + 0.997626i \(0.521936\pi\)
\(8\) −8.00000 −0.353553
\(9\) −26.8353 −0.993901
\(10\) −12.7245 −0.402385
\(11\) 26.1209 0.715978 0.357989 0.933726i \(-0.383463\pi\)
0.357989 + 0.933726i \(0.383463\pi\)
\(12\) 1.62325 0.0390494
\(13\) 0 0
\(14\) 5.10129 0.0973841
\(15\) 2.58189 0.0444428
\(16\) 16.0000 0.250000
\(17\) −93.7085 −1.33692 −0.668461 0.743748i \(-0.733046\pi\)
−0.668461 + 0.743748i \(0.733046\pi\)
\(18\) 53.6706 0.702794
\(19\) −37.2329 −0.449569 −0.224784 0.974409i \(-0.572168\pi\)
−0.224784 + 0.974409i \(0.572168\pi\)
\(20\) 25.4491 0.284529
\(21\) −1.03509 −0.0107559
\(22\) −52.2419 −0.506273
\(23\) −104.926 −0.951243 −0.475622 0.879650i \(-0.657777\pi\)
−0.475622 + 0.879650i \(0.657777\pi\)
\(24\) −3.24651 −0.0276121
\(25\) −84.5215 −0.676172
\(26\) 0 0
\(27\) −21.8471 −0.155721
\(28\) −10.2026 −0.0688610
\(29\) 249.544 1.59791 0.798953 0.601394i \(-0.205388\pi\)
0.798953 + 0.601394i \(0.205388\pi\)
\(30\) −5.16379 −0.0314258
\(31\) 278.993 1.61641 0.808203 0.588904i \(-0.200441\pi\)
0.808203 + 0.588904i \(0.200441\pi\)
\(32\) −32.0000 −0.176777
\(33\) 10.6002 0.0559170
\(34\) 187.417 0.945346
\(35\) −16.2279 −0.0783719
\(36\) −107.341 −0.496950
\(37\) −10.9001 −0.0484315 −0.0242157 0.999707i \(-0.507709\pi\)
−0.0242157 + 0.999707i \(0.507709\pi\)
\(38\) 74.4658 0.317893
\(39\) 0 0
\(40\) −50.8982 −0.201193
\(41\) −371.375 −1.41461 −0.707306 0.706907i \(-0.750090\pi\)
−0.707306 + 0.706907i \(0.750090\pi\)
\(42\) 2.07017 0.00760558
\(43\) −413.718 −1.46724 −0.733621 0.679559i \(-0.762171\pi\)
−0.733621 + 0.679559i \(0.762171\pi\)
\(44\) 104.484 0.357989
\(45\) −170.734 −0.565588
\(46\) 209.852 0.672630
\(47\) 238.631 0.740595 0.370297 0.928913i \(-0.379256\pi\)
0.370297 + 0.928913i \(0.379256\pi\)
\(48\) 6.49301 0.0195247
\(49\) −336.494 −0.981033
\(50\) 169.043 0.478126
\(51\) −38.0282 −0.104412
\(52\) 0 0
\(53\) −424.907 −1.10124 −0.550618 0.834757i \(-0.685608\pi\)
−0.550618 + 0.834757i \(0.685608\pi\)
\(54\) 43.6942 0.110112
\(55\) 166.188 0.407434
\(56\) 20.4052 0.0486921
\(57\) −15.1096 −0.0351108
\(58\) −499.089 −1.12989
\(59\) −774.453 −1.70890 −0.854451 0.519533i \(-0.826106\pi\)
−0.854451 + 0.519533i \(0.826106\pi\)
\(60\) 10.3276 0.0222214
\(61\) −123.423 −0.259060 −0.129530 0.991576i \(-0.541347\pi\)
−0.129530 + 0.991576i \(0.541347\pi\)
\(62\) −557.985 −1.14297
\(63\) 68.4474 0.136882
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −21.2004 −0.0395393
\(67\) −881.604 −1.60754 −0.803769 0.594941i \(-0.797175\pi\)
−0.803769 + 0.594941i \(0.797175\pi\)
\(68\) −374.834 −0.668461
\(69\) −42.5804 −0.0742909
\(70\) 32.4558 0.0554173
\(71\) 118.765 0.198519 0.0992593 0.995062i \(-0.468353\pi\)
0.0992593 + 0.995062i \(0.468353\pi\)
\(72\) 214.683 0.351397
\(73\) 209.319 0.335602 0.167801 0.985821i \(-0.446333\pi\)
0.167801 + 0.985821i \(0.446333\pi\)
\(74\) 21.8002 0.0342462
\(75\) −34.2999 −0.0528082
\(76\) −148.932 −0.224784
\(77\) −66.6253 −0.0986059
\(78\) 0 0
\(79\) −532.358 −0.758164 −0.379082 0.925363i \(-0.623760\pi\)
−0.379082 + 0.925363i \(0.623760\pi\)
\(80\) 101.796 0.142265
\(81\) 715.688 0.981739
\(82\) 742.751 1.00028
\(83\) −376.511 −0.497921 −0.248960 0.968514i \(-0.580089\pi\)
−0.248960 + 0.968514i \(0.580089\pi\)
\(84\) −4.14034 −0.00537796
\(85\) −596.199 −0.760787
\(86\) 827.436 1.03750
\(87\) 101.268 0.124794
\(88\) −208.967 −0.253136
\(89\) 42.6336 0.0507770 0.0253885 0.999678i \(-0.491918\pi\)
0.0253885 + 0.999678i \(0.491918\pi\)
\(90\) 341.467 0.399931
\(91\) 0 0
\(92\) −419.704 −0.475622
\(93\) 113.219 0.126239
\(94\) −477.263 −0.523679
\(95\) −236.886 −0.255831
\(96\) −12.9860 −0.0138060
\(97\) 639.319 0.669206 0.334603 0.942359i \(-0.391398\pi\)
0.334603 + 0.942359i \(0.391398\pi\)
\(98\) 672.988 0.693695
\(99\) −700.963 −0.711611
\(100\) −338.086 −0.338086
\(101\) 474.839 0.467804 0.233902 0.972260i \(-0.424851\pi\)
0.233902 + 0.972260i \(0.424851\pi\)
\(102\) 76.0563 0.0738304
\(103\) −1100.53 −1.05280 −0.526402 0.850236i \(-0.676459\pi\)
−0.526402 + 0.850236i \(0.676459\pi\)
\(104\) 0 0
\(105\) −6.58550 −0.00612075
\(106\) 849.815 0.778692
\(107\) −570.383 −0.515336 −0.257668 0.966233i \(-0.582954\pi\)
−0.257668 + 0.966233i \(0.582954\pi\)
\(108\) −87.3883 −0.0778606
\(109\) −593.029 −0.521118 −0.260559 0.965458i \(-0.583907\pi\)
−0.260559 + 0.965458i \(0.583907\pi\)
\(110\) −332.377 −0.288099
\(111\) −4.42340 −0.00378244
\(112\) −40.8103 −0.0344305
\(113\) 1839.12 1.53106 0.765529 0.643401i \(-0.222477\pi\)
0.765529 + 0.643401i \(0.222477\pi\)
\(114\) 30.2192 0.0248271
\(115\) −667.568 −0.541313
\(116\) 998.178 0.798953
\(117\) 0 0
\(118\) 1548.91 1.20838
\(119\) 239.017 0.184123
\(120\) −20.6552 −0.0157129
\(121\) −648.697 −0.487376
\(122\) 246.845 0.183183
\(123\) −150.709 −0.110480
\(124\) 1115.97 0.808203
\(125\) −1333.03 −0.953841
\(126\) −136.895 −0.0967901
\(127\) 2468.51 1.72476 0.862382 0.506258i \(-0.168972\pi\)
0.862382 + 0.506258i \(0.168972\pi\)
\(128\) −128.000 −0.0883883
\(129\) −167.892 −0.114590
\(130\) 0 0
\(131\) 2279.82 1.52053 0.760264 0.649615i \(-0.225070\pi\)
0.760264 + 0.649615i \(0.225070\pi\)
\(132\) 42.4009 0.0279585
\(133\) 94.9679 0.0619155
\(134\) 1763.21 1.13670
\(135\) −138.997 −0.0886146
\(136\) 749.668 0.472673
\(137\) −439.309 −0.273961 −0.136981 0.990574i \(-0.543740\pi\)
−0.136981 + 0.990574i \(0.543740\pi\)
\(138\) 85.1607 0.0525316
\(139\) −2178.94 −1.32961 −0.664803 0.747019i \(-0.731484\pi\)
−0.664803 + 0.747019i \(0.731484\pi\)
\(140\) −64.9116 −0.0391860
\(141\) 96.8397 0.0578395
\(142\) −237.530 −0.140374
\(143\) 0 0
\(144\) −429.365 −0.248475
\(145\) 1587.67 0.909302
\(146\) −418.638 −0.237307
\(147\) −136.554 −0.0766175
\(148\) −43.6004 −0.0242157
\(149\) 2868.47 1.57714 0.788572 0.614942i \(-0.210821\pi\)
0.788572 + 0.614942i \(0.210821\pi\)
\(150\) 68.5999 0.0373410
\(151\) −2202.00 −1.18673 −0.593366 0.804933i \(-0.702201\pi\)
−0.593366 + 0.804933i \(0.702201\pi\)
\(152\) 297.863 0.158947
\(153\) 2514.70 1.32877
\(154\) 133.251 0.0697249
\(155\) 1775.03 0.919830
\(156\) 0 0
\(157\) 865.139 0.439781 0.219890 0.975525i \(-0.429430\pi\)
0.219890 + 0.975525i \(0.429430\pi\)
\(158\) 1064.72 0.536103
\(159\) −172.433 −0.0860052
\(160\) −203.593 −0.100596
\(161\) 267.629 0.131007
\(162\) −1431.38 −0.694194
\(163\) 1060.84 0.509762 0.254881 0.966972i \(-0.417964\pi\)
0.254881 + 0.966972i \(0.417964\pi\)
\(164\) −1485.50 −0.707306
\(165\) 67.4415 0.0318201
\(166\) 753.022 0.352083
\(167\) 1404.09 0.650608 0.325304 0.945610i \(-0.394533\pi\)
0.325304 + 0.945610i \(0.394533\pi\)
\(168\) 8.28069 0.00380279
\(169\) 0 0
\(170\) 1192.40 0.537958
\(171\) 999.156 0.446827
\(172\) −1654.87 −0.733621
\(173\) 1022.22 0.449237 0.224618 0.974447i \(-0.427886\pi\)
0.224618 + 0.974447i \(0.427886\pi\)
\(174\) −202.537 −0.0882430
\(175\) 215.584 0.0931237
\(176\) 417.935 0.178994
\(177\) −314.283 −0.133463
\(178\) −85.2673 −0.0359048
\(179\) 418.223 0.174634 0.0873169 0.996181i \(-0.472171\pi\)
0.0873169 + 0.996181i \(0.472171\pi\)
\(180\) −682.934 −0.282794
\(181\) −2816.05 −1.15644 −0.578219 0.815882i \(-0.696252\pi\)
−0.578219 + 0.815882i \(0.696252\pi\)
\(182\) 0 0
\(183\) −50.0865 −0.0202322
\(184\) 839.408 0.336315
\(185\) −69.3494 −0.0275604
\(186\) −226.438 −0.0892647
\(187\) −2447.75 −0.957206
\(188\) 954.525 0.370297
\(189\) 55.7242 0.0214462
\(190\) 473.772 0.180900
\(191\) 1614.11 0.611480 0.305740 0.952115i \(-0.401096\pi\)
0.305740 + 0.952115i \(0.401096\pi\)
\(192\) 25.9720 0.00976235
\(193\) −2461.12 −0.917902 −0.458951 0.888462i \(-0.651775\pi\)
−0.458951 + 0.888462i \(0.651775\pi\)
\(194\) −1278.64 −0.473200
\(195\) 0 0
\(196\) −1345.98 −0.490516
\(197\) 3445.91 1.24625 0.623123 0.782123i \(-0.285863\pi\)
0.623123 + 0.782123i \(0.285863\pi\)
\(198\) 1401.93 0.503185
\(199\) 2205.02 0.785477 0.392739 0.919650i \(-0.371528\pi\)
0.392739 + 0.919650i \(0.371528\pi\)
\(200\) 676.172 0.239063
\(201\) −357.767 −0.125547
\(202\) −949.677 −0.330787
\(203\) −636.500 −0.220067
\(204\) −152.113 −0.0522060
\(205\) −2362.79 −0.804998
\(206\) 2201.07 0.744444
\(207\) 2815.72 0.945441
\(208\) 0 0
\(209\) −972.558 −0.321881
\(210\) 13.1710 0.00432802
\(211\) −933.193 −0.304472 −0.152236 0.988344i \(-0.548647\pi\)
−0.152236 + 0.988344i \(0.548647\pi\)
\(212\) −1699.63 −0.550618
\(213\) 48.1964 0.0155041
\(214\) 1140.77 0.364398
\(215\) −2632.19 −0.834947
\(216\) 174.777 0.0550558
\(217\) −711.612 −0.222614
\(218\) 1186.06 0.368486
\(219\) 84.9445 0.0262101
\(220\) 664.754 0.203717
\(221\) 0 0
\(222\) 8.84681 0.00267459
\(223\) −6363.62 −1.91094 −0.955469 0.295090i \(-0.904650\pi\)
−0.955469 + 0.295090i \(0.904650\pi\)
\(224\) 81.6207 0.0243460
\(225\) 2268.16 0.672048
\(226\) −3678.23 −1.08262
\(227\) −829.510 −0.242540 −0.121270 0.992620i \(-0.538697\pi\)
−0.121270 + 0.992620i \(0.538697\pi\)
\(228\) −60.4384 −0.0175554
\(229\) 5789.35 1.67062 0.835308 0.549782i \(-0.185289\pi\)
0.835308 + 0.549782i \(0.185289\pi\)
\(230\) 1335.14 0.382766
\(231\) −27.0374 −0.00770100
\(232\) −1996.36 −0.564945
\(233\) 320.751 0.0901849 0.0450924 0.998983i \(-0.485642\pi\)
0.0450924 + 0.998983i \(0.485642\pi\)
\(234\) 0 0
\(235\) 1518.24 0.421442
\(236\) −3097.81 −0.854451
\(237\) −216.038 −0.0592117
\(238\) −478.035 −0.130195
\(239\) 3582.11 0.969487 0.484744 0.874656i \(-0.338913\pi\)
0.484744 + 0.874656i \(0.338913\pi\)
\(240\) 41.3103 0.0111107
\(241\) 4880.24 1.30441 0.652207 0.758041i \(-0.273843\pi\)
0.652207 + 0.758041i \(0.273843\pi\)
\(242\) 1297.39 0.344627
\(243\) 880.307 0.232394
\(244\) −493.690 −0.129530
\(245\) −2140.87 −0.558265
\(246\) 301.418 0.0781208
\(247\) 0 0
\(248\) −2231.94 −0.571486
\(249\) −152.793 −0.0388870
\(250\) 2666.07 0.674467
\(251\) −2980.22 −0.749442 −0.374721 0.927138i \(-0.622261\pi\)
−0.374721 + 0.927138i \(0.622261\pi\)
\(252\) 273.790 0.0684410
\(253\) −2740.77 −0.681069
\(254\) −4937.02 −1.21959
\(255\) −241.946 −0.0594165
\(256\) 256.000 0.0625000
\(257\) −3855.93 −0.935900 −0.467950 0.883755i \(-0.655007\pi\)
−0.467950 + 0.883755i \(0.655007\pi\)
\(258\) 335.784 0.0810272
\(259\) 27.8023 0.00667008
\(260\) 0 0
\(261\) −6696.60 −1.58816
\(262\) −4559.65 −1.07518
\(263\) −4431.18 −1.03893 −0.519464 0.854492i \(-0.673868\pi\)
−0.519464 + 0.854492i \(0.673868\pi\)
\(264\) −84.8018 −0.0197696
\(265\) −2703.38 −0.626668
\(266\) −189.936 −0.0437809
\(267\) 17.3013 0.00396562
\(268\) −3526.42 −0.803769
\(269\) 1261.33 0.285892 0.142946 0.989731i \(-0.454343\pi\)
0.142946 + 0.989731i \(0.454343\pi\)
\(270\) 277.994 0.0626600
\(271\) 6200.75 1.38992 0.694960 0.719048i \(-0.255422\pi\)
0.694960 + 0.719048i \(0.255422\pi\)
\(272\) −1499.34 −0.334230
\(273\) 0 0
\(274\) 878.618 0.193720
\(275\) −2207.78 −0.484124
\(276\) −170.321 −0.0371455
\(277\) −1157.57 −0.251089 −0.125544 0.992088i \(-0.540068\pi\)
−0.125544 + 0.992088i \(0.540068\pi\)
\(278\) 4357.88 0.940173
\(279\) −7486.86 −1.60655
\(280\) 129.823 0.0277087
\(281\) 6322.71 1.34228 0.671141 0.741330i \(-0.265805\pi\)
0.671141 + 0.741330i \(0.265805\pi\)
\(282\) −193.679 −0.0408987
\(283\) −9308.35 −1.95521 −0.977604 0.210454i \(-0.932506\pi\)
−0.977604 + 0.210454i \(0.932506\pi\)
\(284\) 475.060 0.0992593
\(285\) −96.1314 −0.0199801
\(286\) 0 0
\(287\) 947.247 0.194823
\(288\) 858.730 0.175698
\(289\) 3868.29 0.787358
\(290\) −3175.34 −0.642974
\(291\) 259.444 0.0522642
\(292\) 837.277 0.167801
\(293\) −506.196 −0.100929 −0.0504646 0.998726i \(-0.516070\pi\)
−0.0504646 + 0.998726i \(0.516070\pi\)
\(294\) 273.108 0.0541767
\(295\) −4927.28 −0.972466
\(296\) 87.2008 0.0171231
\(297\) −570.666 −0.111493
\(298\) −5736.95 −1.11521
\(299\) 0 0
\(300\) −137.200 −0.0264041
\(301\) 1055.25 0.202071
\(302\) 4404.01 0.839146
\(303\) 192.696 0.0365349
\(304\) −595.726 −0.112392
\(305\) −785.248 −0.147420
\(306\) −5029.40 −0.939580
\(307\) 4094.64 0.761217 0.380608 0.924736i \(-0.375715\pi\)
0.380608 + 0.924736i \(0.375715\pi\)
\(308\) −266.501 −0.0493029
\(309\) −446.611 −0.0822227
\(310\) −3550.05 −0.650418
\(311\) 8705.00 1.58719 0.793594 0.608448i \(-0.208208\pi\)
0.793594 + 0.608448i \(0.208208\pi\)
\(312\) 0 0
\(313\) −3144.78 −0.567903 −0.283951 0.958839i \(-0.591645\pi\)
−0.283951 + 0.958839i \(0.591645\pi\)
\(314\) −1730.28 −0.310972
\(315\) 435.481 0.0778939
\(316\) −2129.43 −0.379082
\(317\) 9902.03 1.75443 0.877214 0.480100i \(-0.159400\pi\)
0.877214 + 0.480100i \(0.159400\pi\)
\(318\) 344.866 0.0608149
\(319\) 6518.33 1.14406
\(320\) 407.185 0.0711324
\(321\) −231.469 −0.0402471
\(322\) −535.258 −0.0926360
\(323\) 3489.04 0.601038
\(324\) 2862.75 0.490869
\(325\) 0 0
\(326\) −2121.67 −0.360456
\(327\) −240.659 −0.0406987
\(328\) 2971.00 0.500141
\(329\) −608.664 −0.101996
\(330\) −134.883 −0.0225002
\(331\) 1966.37 0.326530 0.163265 0.986582i \(-0.447797\pi\)
0.163265 + 0.986582i \(0.447797\pi\)
\(332\) −1506.04 −0.248960
\(333\) 292.508 0.0481361
\(334\) −2808.17 −0.460049
\(335\) −5609.00 −0.914784
\(336\) −16.5614 −0.00268898
\(337\) −9570.83 −1.54705 −0.773526 0.633765i \(-0.781509\pi\)
−0.773526 + 0.633765i \(0.781509\pi\)
\(338\) 0 0
\(339\) 746.338 0.119574
\(340\) −2384.80 −0.380393
\(341\) 7287.55 1.15731
\(342\) −1998.31 −0.315954
\(343\) 1733.15 0.272832
\(344\) 3309.74 0.518748
\(345\) −270.908 −0.0422759
\(346\) −2044.44 −0.317658
\(347\) −6454.21 −0.998502 −0.499251 0.866457i \(-0.666392\pi\)
−0.499251 + 0.866457i \(0.666392\pi\)
\(348\) 405.074 0.0623972
\(349\) −2779.52 −0.426316 −0.213158 0.977018i \(-0.568375\pi\)
−0.213158 + 0.977018i \(0.568375\pi\)
\(350\) −431.169 −0.0658484
\(351\) 0 0
\(352\) −835.870 −0.126568
\(353\) 11147.3 1.68077 0.840387 0.541987i \(-0.182328\pi\)
0.840387 + 0.541987i \(0.182328\pi\)
\(354\) 628.566 0.0943727
\(355\) 755.616 0.112969
\(356\) 170.535 0.0253885
\(357\) 96.9964 0.0143798
\(358\) −836.446 −0.123485
\(359\) −4313.27 −0.634111 −0.317056 0.948407i \(-0.602694\pi\)
−0.317056 + 0.948407i \(0.602694\pi\)
\(360\) 1365.87 0.199966
\(361\) −5472.71 −0.797888
\(362\) 5632.10 0.817725
\(363\) −263.250 −0.0380634
\(364\) 0 0
\(365\) 1331.75 0.190977
\(366\) 100.173 0.0143064
\(367\) −6909.51 −0.982762 −0.491381 0.870945i \(-0.663508\pi\)
−0.491381 + 0.870945i \(0.663508\pi\)
\(368\) −1678.82 −0.237811
\(369\) 9965.98 1.40598
\(370\) 138.699 0.0194881
\(371\) 1083.79 0.151664
\(372\) 452.876 0.0631196
\(373\) 2316.19 0.321523 0.160761 0.986993i \(-0.448605\pi\)
0.160761 + 0.986993i \(0.448605\pi\)
\(374\) 4895.51 0.676847
\(375\) −540.962 −0.0744938
\(376\) −1909.05 −0.261840
\(377\) 0 0
\(378\) −111.448 −0.0151648
\(379\) −11393.1 −1.54412 −0.772062 0.635547i \(-0.780775\pi\)
−0.772062 + 0.635547i \(0.780775\pi\)
\(380\) −947.543 −0.127916
\(381\) 1001.75 0.134702
\(382\) −3228.21 −0.432381
\(383\) −11952.8 −1.59467 −0.797335 0.603537i \(-0.793757\pi\)
−0.797335 + 0.603537i \(0.793757\pi\)
\(384\) −51.9441 −0.00690302
\(385\) −423.888 −0.0561126
\(386\) 4922.23 0.649055
\(387\) 11102.2 1.45829
\(388\) 2557.28 0.334603
\(389\) 5282.24 0.688484 0.344242 0.938881i \(-0.388136\pi\)
0.344242 + 0.938881i \(0.388136\pi\)
\(390\) 0 0
\(391\) 9832.46 1.27174
\(392\) 2691.95 0.346847
\(393\) 925.182 0.118751
\(394\) −6891.81 −0.881230
\(395\) −3387.01 −0.431440
\(396\) −2803.85 −0.355805
\(397\) 9111.58 1.15188 0.575941 0.817491i \(-0.304636\pi\)
0.575941 + 0.817491i \(0.304636\pi\)
\(398\) −4410.05 −0.555416
\(399\) 38.5392 0.00483553
\(400\) −1352.34 −0.169043
\(401\) −499.562 −0.0622118 −0.0311059 0.999516i \(-0.509903\pi\)
−0.0311059 + 0.999516i \(0.509903\pi\)
\(402\) 715.533 0.0887750
\(403\) 0 0
\(404\) 1899.35 0.233902
\(405\) 4553.40 0.558667
\(406\) 1273.00 0.155611
\(407\) −284.721 −0.0346759
\(408\) 304.225 0.0369152
\(409\) 12803.2 1.54787 0.773934 0.633266i \(-0.218286\pi\)
0.773934 + 0.633266i \(0.218286\pi\)
\(410\) 4725.58 0.569219
\(411\) −178.277 −0.0213960
\(412\) −4402.13 −0.526402
\(413\) 1975.36 0.235353
\(414\) −5631.45 −0.668528
\(415\) −2395.47 −0.283346
\(416\) 0 0
\(417\) −884.242 −0.103841
\(418\) 1945.12 0.227605
\(419\) −7368.27 −0.859102 −0.429551 0.903043i \(-0.641328\pi\)
−0.429551 + 0.903043i \(0.641328\pi\)
\(420\) −26.3420 −0.00306038
\(421\) −15266.9 −1.76737 −0.883686 0.468080i \(-0.844946\pi\)
−0.883686 + 0.468080i \(0.844946\pi\)
\(422\) 1866.39 0.215294
\(423\) −6403.75 −0.736077
\(424\) 3399.26 0.389346
\(425\) 7920.38 0.903988
\(426\) −96.3929 −0.0109630
\(427\) 314.807 0.0356782
\(428\) −2281.53 −0.257668
\(429\) 0 0
\(430\) 5264.37 0.590397
\(431\) −20.9424 −0.00234051 −0.00117026 0.999999i \(-0.500373\pi\)
−0.00117026 + 0.999999i \(0.500373\pi\)
\(432\) −349.553 −0.0389303
\(433\) 7458.11 0.827746 0.413873 0.910335i \(-0.364176\pi\)
0.413873 + 0.910335i \(0.364176\pi\)
\(434\) 1423.22 0.157412
\(435\) 644.297 0.0710154
\(436\) −2372.12 −0.260559
\(437\) 3906.70 0.427649
\(438\) −169.889 −0.0185334
\(439\) 9014.34 0.980025 0.490012 0.871715i \(-0.336992\pi\)
0.490012 + 0.871715i \(0.336992\pi\)
\(440\) −1329.51 −0.144050
\(441\) 9029.93 0.975049
\(442\) 0 0
\(443\) 1787.12 0.191668 0.0958339 0.995397i \(-0.469448\pi\)
0.0958339 + 0.995397i \(0.469448\pi\)
\(444\) −17.6936 −0.00189122
\(445\) 271.247 0.0288951
\(446\) 12727.2 1.35124
\(447\) 1164.06 0.123173
\(448\) −163.241 −0.0172152
\(449\) −4540.95 −0.477284 −0.238642 0.971108i \(-0.576702\pi\)
−0.238642 + 0.971108i \(0.576702\pi\)
\(450\) −4536.32 −0.475209
\(451\) −9700.67 −1.01283
\(452\) 7356.47 0.765529
\(453\) −893.602 −0.0926823
\(454\) 1659.02 0.171501
\(455\) 0 0
\(456\) 120.877 0.0124135
\(457\) 6873.87 0.703602 0.351801 0.936075i \(-0.385569\pi\)
0.351801 + 0.936075i \(0.385569\pi\)
\(458\) −11578.7 −1.18130
\(459\) 2047.26 0.208187
\(460\) −2670.27 −0.270657
\(461\) 9308.59 0.940443 0.470221 0.882549i \(-0.344174\pi\)
0.470221 + 0.882549i \(0.344174\pi\)
\(462\) 54.0748 0.00544543
\(463\) −14763.5 −1.48190 −0.740950 0.671560i \(-0.765625\pi\)
−0.740950 + 0.671560i \(0.765625\pi\)
\(464\) 3992.71 0.399476
\(465\) 720.330 0.0718376
\(466\) −641.501 −0.0637703
\(467\) 7397.81 0.733040 0.366520 0.930410i \(-0.380549\pi\)
0.366520 + 0.930410i \(0.380549\pi\)
\(468\) 0 0
\(469\) 2248.66 0.221393
\(470\) −3036.47 −0.298005
\(471\) 351.085 0.0343463
\(472\) 6195.62 0.604188
\(473\) −10806.7 −1.05051
\(474\) 432.076 0.0418690
\(475\) 3146.98 0.303986
\(476\) 956.069 0.0920617
\(477\) 11402.5 1.09452
\(478\) −7164.22 −0.685531
\(479\) −12365.0 −1.17948 −0.589740 0.807593i \(-0.700770\pi\)
−0.589740 + 0.807593i \(0.700770\pi\)
\(480\) −82.6206 −0.00785645
\(481\) 0 0
\(482\) −9760.48 −0.922360
\(483\) 108.607 0.0102315
\(484\) −2594.79 −0.243688
\(485\) 4067.52 0.380818
\(486\) −1760.61 −0.164327
\(487\) 8447.36 0.786010 0.393005 0.919536i \(-0.371436\pi\)
0.393005 + 0.919536i \(0.371436\pi\)
\(488\) 987.380 0.0915914
\(489\) 430.502 0.0398118
\(490\) 4281.74 0.394753
\(491\) 14183.0 1.30360 0.651801 0.758390i \(-0.274014\pi\)
0.651801 + 0.758390i \(0.274014\pi\)
\(492\) −602.836 −0.0552398
\(493\) −23384.4 −2.13627
\(494\) 0 0
\(495\) −4459.72 −0.404949
\(496\) 4463.88 0.404101
\(497\) −302.928 −0.0273404
\(498\) 305.586 0.0274973
\(499\) −14029.9 −1.25865 −0.629324 0.777143i \(-0.716668\pi\)
−0.629324 + 0.777143i \(0.716668\pi\)
\(500\) −5332.13 −0.476920
\(501\) 569.797 0.0508117
\(502\) 5960.44 0.529935
\(503\) 9748.44 0.864139 0.432069 0.901840i \(-0.357784\pi\)
0.432069 + 0.901840i \(0.357784\pi\)
\(504\) −547.579 −0.0483951
\(505\) 3021.05 0.266208
\(506\) 5481.53 0.481589
\(507\) 0 0
\(508\) 9874.05 0.862382
\(509\) 11469.7 0.998793 0.499397 0.866373i \(-0.333555\pi\)
0.499397 + 0.866373i \(0.333555\pi\)
\(510\) 483.891 0.0420138
\(511\) −533.899 −0.0462198
\(512\) −512.000 −0.0441942
\(513\) 813.430 0.0700074
\(514\) 7711.86 0.661781
\(515\) −7001.89 −0.599107
\(516\) −671.569 −0.0572949
\(517\) 6233.27 0.530249
\(518\) −55.6046 −0.00471646
\(519\) 414.830 0.0350848
\(520\) 0 0
\(521\) −8428.10 −0.708717 −0.354359 0.935110i \(-0.615301\pi\)
−0.354359 + 0.935110i \(0.615301\pi\)
\(522\) 13393.2 1.12300
\(523\) −17172.7 −1.43577 −0.717885 0.696162i \(-0.754890\pi\)
−0.717885 + 0.696162i \(0.754890\pi\)
\(524\) 9119.29 0.760264
\(525\) 87.4870 0.00727285
\(526\) 8862.35 0.734633
\(527\) −26144.0 −2.16101
\(528\) 169.604 0.0139793
\(529\) −1157.53 −0.0951366
\(530\) 5406.75 0.443121
\(531\) 20782.7 1.69848
\(532\) 379.872 0.0309578
\(533\) 0 0
\(534\) −34.6026 −0.00280412
\(535\) −3628.93 −0.293257
\(536\) 7052.83 0.568351
\(537\) 169.720 0.0136387
\(538\) −2522.67 −0.202156
\(539\) −8789.54 −0.702398
\(540\) −555.988 −0.0443073
\(541\) −3228.20 −0.256546 −0.128273 0.991739i \(-0.540943\pi\)
−0.128273 + 0.991739i \(0.540943\pi\)
\(542\) −12401.5 −0.982823
\(543\) −1142.79 −0.0903164
\(544\) 2998.67 0.236336
\(545\) −3773.01 −0.296547
\(546\) 0 0
\(547\) 6923.31 0.541169 0.270584 0.962696i \(-0.412783\pi\)
0.270584 + 0.962696i \(0.412783\pi\)
\(548\) −1757.24 −0.136981
\(549\) 3312.08 0.257480
\(550\) 4415.56 0.342327
\(551\) −9291.26 −0.718368
\(552\) 340.643 0.0262658
\(553\) 1357.86 0.104416
\(554\) 2315.14 0.177547
\(555\) −28.1429 −0.00215243
\(556\) −8715.75 −0.664803
\(557\) −17673.8 −1.34446 −0.672229 0.740343i \(-0.734663\pi\)
−0.672229 + 0.740343i \(0.734663\pi\)
\(558\) 14973.7 1.13600
\(559\) 0 0
\(560\) −259.647 −0.0195930
\(561\) −993.331 −0.0747566
\(562\) −12645.4 −0.949136
\(563\) −2442.19 −0.182817 −0.0914085 0.995813i \(-0.529137\pi\)
−0.0914085 + 0.995813i \(0.529137\pi\)
\(564\) 387.359 0.0289198
\(565\) 11701.0 0.871262
\(566\) 18616.7 1.38254
\(567\) −1825.47 −0.135207
\(568\) −950.121 −0.0701869
\(569\) 6974.12 0.513832 0.256916 0.966434i \(-0.417294\pi\)
0.256916 + 0.966434i \(0.417294\pi\)
\(570\) 192.263 0.0141281
\(571\) 5061.39 0.370950 0.185475 0.982649i \(-0.440618\pi\)
0.185475 + 0.982649i \(0.440618\pi\)
\(572\) 0 0
\(573\) 655.026 0.0477558
\(574\) −1894.49 −0.137761
\(575\) 8868.50 0.643204
\(576\) −1717.46 −0.124238
\(577\) 3849.90 0.277771 0.138885 0.990308i \(-0.455648\pi\)
0.138885 + 0.990308i \(0.455648\pi\)
\(578\) −7736.58 −0.556746
\(579\) −998.754 −0.0716870
\(580\) 6350.68 0.454651
\(581\) 960.346 0.0685746
\(582\) −518.888 −0.0369564
\(583\) −11099.0 −0.788461
\(584\) −1674.55 −0.118653
\(585\) 0 0
\(586\) 1012.39 0.0713677
\(587\) −11682.1 −0.821418 −0.410709 0.911766i \(-0.634719\pi\)
−0.410709 + 0.911766i \(0.634719\pi\)
\(588\) −546.215 −0.0383087
\(589\) −10387.7 −0.726686
\(590\) 9854.56 0.687637
\(591\) 1398.39 0.0973304
\(592\) −174.402 −0.0121079
\(593\) −14539.7 −1.00687 −0.503435 0.864033i \(-0.667931\pi\)
−0.503435 + 0.864033i \(0.667931\pi\)
\(594\) 1141.33 0.0788374
\(595\) 1520.69 0.104777
\(596\) 11473.9 0.788572
\(597\) 894.827 0.0613448
\(598\) 0 0
\(599\) 8414.92 0.573997 0.286998 0.957931i \(-0.407343\pi\)
0.286998 + 0.957931i \(0.407343\pi\)
\(600\) 274.399 0.0186705
\(601\) 18270.7 1.24006 0.620032 0.784576i \(-0.287120\pi\)
0.620032 + 0.784576i \(0.287120\pi\)
\(602\) −2110.50 −0.142886
\(603\) 23658.1 1.59773
\(604\) −8808.01 −0.593366
\(605\) −4127.19 −0.277345
\(606\) −385.392 −0.0258341
\(607\) −5667.19 −0.378952 −0.189476 0.981885i \(-0.560679\pi\)
−0.189476 + 0.981885i \(0.560679\pi\)
\(608\) 1191.45 0.0794733
\(609\) −258.300 −0.0171869
\(610\) 1570.50 0.104242
\(611\) 0 0
\(612\) 10058.8 0.664383
\(613\) −14532.6 −0.957533 −0.478767 0.877942i \(-0.658916\pi\)
−0.478767 + 0.877942i \(0.658916\pi\)
\(614\) −8189.28 −0.538261
\(615\) −958.852 −0.0628694
\(616\) 533.002 0.0348624
\(617\) −11454.1 −0.747367 −0.373684 0.927556i \(-0.621905\pi\)
−0.373684 + 0.927556i \(0.621905\pi\)
\(618\) 893.222 0.0581402
\(619\) 10052.7 0.652751 0.326376 0.945240i \(-0.394173\pi\)
0.326376 + 0.945240i \(0.394173\pi\)
\(620\) 7100.11 0.459915
\(621\) 2292.33 0.148129
\(622\) −17410.0 −1.12231
\(623\) −108.743 −0.00699311
\(624\) 0 0
\(625\) 2084.07 0.133380
\(626\) 6289.56 0.401568
\(627\) −394.677 −0.0251386
\(628\) 3460.55 0.219890
\(629\) 1021.43 0.0647491
\(630\) −870.962 −0.0550793
\(631\) 12047.6 0.760078 0.380039 0.924970i \(-0.375911\pi\)
0.380039 + 0.924970i \(0.375911\pi\)
\(632\) 4258.86 0.268051
\(633\) −378.702 −0.0237789
\(634\) −19804.1 −1.24057
\(635\) 15705.3 0.981492
\(636\) −689.732 −0.0430026
\(637\) 0 0
\(638\) −13036.7 −0.808976
\(639\) −3187.10 −0.197308
\(640\) −814.371 −0.0502982
\(641\) −21150.8 −1.30329 −0.651643 0.758526i \(-0.725920\pi\)
−0.651643 + 0.758526i \(0.725920\pi\)
\(642\) 462.938 0.0284590
\(643\) 15329.4 0.940177 0.470089 0.882619i \(-0.344222\pi\)
0.470089 + 0.882619i \(0.344222\pi\)
\(644\) 1070.52 0.0655035
\(645\) −1068.18 −0.0652083
\(646\) −6978.08 −0.424998
\(647\) −14519.9 −0.882284 −0.441142 0.897437i \(-0.645426\pi\)
−0.441142 + 0.897437i \(0.645426\pi\)
\(648\) −5725.50 −0.347097
\(649\) −20229.4 −1.22354
\(650\) 0 0
\(651\) −288.781 −0.0173859
\(652\) 4243.35 0.254881
\(653\) 27615.6 1.65495 0.827475 0.561502i \(-0.189776\pi\)
0.827475 + 0.561502i \(0.189776\pi\)
\(654\) 481.318 0.0287783
\(655\) 14504.9 0.865270
\(656\) −5942.01 −0.353653
\(657\) −5617.15 −0.333555
\(658\) 1217.33 0.0721222
\(659\) −13898.5 −0.821560 −0.410780 0.911735i \(-0.634744\pi\)
−0.410780 + 0.911735i \(0.634744\pi\)
\(660\) 269.766 0.0159100
\(661\) 17344.3 1.02060 0.510298 0.859998i \(-0.329535\pi\)
0.510298 + 0.859998i \(0.329535\pi\)
\(662\) −3932.74 −0.230892
\(663\) 0 0
\(664\) 3012.09 0.176042
\(665\) 604.212 0.0352336
\(666\) −585.015 −0.0340374
\(667\) −26183.7 −1.52000
\(668\) 5616.35 0.325304
\(669\) −2582.44 −0.149242
\(670\) 11218.0 0.646850
\(671\) −3223.91 −0.185481
\(672\) 33.1228 0.00190140
\(673\) −2655.99 −0.152126 −0.0760631 0.997103i \(-0.524235\pi\)
−0.0760631 + 0.997103i \(0.524235\pi\)
\(674\) 19141.7 1.09393
\(675\) 1846.55 0.105294
\(676\) 0 0
\(677\) −18853.1 −1.07029 −0.535143 0.844761i \(-0.679742\pi\)
−0.535143 + 0.844761i \(0.679742\pi\)
\(678\) −1492.68 −0.0845514
\(679\) −1630.68 −0.0921644
\(680\) 4769.59 0.268979
\(681\) −336.626 −0.0189421
\(682\) −14575.1 −0.818342
\(683\) −1680.25 −0.0941333 −0.0470666 0.998892i \(-0.514987\pi\)
−0.0470666 + 0.998892i \(0.514987\pi\)
\(684\) 3996.62 0.223413
\(685\) −2795.00 −0.155900
\(686\) −3466.30 −0.192921
\(687\) 2349.39 0.130473
\(688\) −6619.49 −0.366810
\(689\) 0 0
\(690\) 541.816 0.0298936
\(691\) −10938.4 −0.602195 −0.301098 0.953593i \(-0.597353\pi\)
−0.301098 + 0.953593i \(0.597353\pi\)
\(692\) 4088.88 0.224618
\(693\) 1787.91 0.0980044
\(694\) 12908.4 0.706048
\(695\) −13863.0 −0.756624
\(696\) −810.148 −0.0441215
\(697\) 34801.0 1.89122
\(698\) 5559.05 0.301451
\(699\) 130.165 0.00704333
\(700\) 862.338 0.0465619
\(701\) 19632.4 1.05778 0.528892 0.848689i \(-0.322608\pi\)
0.528892 + 0.848689i \(0.322608\pi\)
\(702\) 0 0
\(703\) 405.842 0.0217733
\(704\) 1671.74 0.0894972
\(705\) 616.121 0.0329141
\(706\) −22294.7 −1.18849
\(707\) −1211.15 −0.0644269
\(708\) −1257.13 −0.0667316
\(709\) −19477.8 −1.03174 −0.515870 0.856667i \(-0.672531\pi\)
−0.515870 + 0.856667i \(0.672531\pi\)
\(710\) −1511.23 −0.0798810
\(711\) 14286.0 0.753539
\(712\) −341.069 −0.0179524
\(713\) −29273.6 −1.53759
\(714\) −193.993 −0.0101681
\(715\) 0 0
\(716\) 1672.89 0.0873169
\(717\) 1453.67 0.0757158
\(718\) 8626.55 0.448384
\(719\) −403.222 −0.0209147 −0.0104573 0.999945i \(-0.503329\pi\)
−0.0104573 + 0.999945i \(0.503329\pi\)
\(720\) −2731.74 −0.141397
\(721\) 2807.07 0.144994
\(722\) 10945.4 0.564192
\(723\) 1980.47 0.101873
\(724\) −11264.2 −0.578219
\(725\) −21091.9 −1.08046
\(726\) 526.500 0.0269149
\(727\) −29051.3 −1.48206 −0.741028 0.671474i \(-0.765661\pi\)
−0.741028 + 0.671474i \(0.765661\pi\)
\(728\) 0 0
\(729\) −18966.3 −0.963589
\(730\) −2663.49 −0.135041
\(731\) 38768.9 1.96159
\(732\) −200.346 −0.0101161
\(733\) 25289.5 1.27434 0.637169 0.770724i \(-0.280105\pi\)
0.637169 + 0.770724i \(0.280105\pi\)
\(734\) 13819.0 0.694918
\(735\) −868.792 −0.0435999
\(736\) 3357.63 0.168158
\(737\) −23028.3 −1.15096
\(738\) −19932.0 −0.994181
\(739\) −253.911 −0.0126391 −0.00631953 0.999980i \(-0.502012\pi\)
−0.00631953 + 0.999980i \(0.502012\pi\)
\(740\) −277.398 −0.0137802
\(741\) 0 0
\(742\) −2167.58 −0.107243
\(743\) −12903.6 −0.637127 −0.318564 0.947901i \(-0.603200\pi\)
−0.318564 + 0.947901i \(0.603200\pi\)
\(744\) −905.751 −0.0446323
\(745\) 18250.0 0.897488
\(746\) −4632.39 −0.227351
\(747\) 10103.8 0.494884
\(748\) −9791.02 −0.478603
\(749\) 1454.84 0.0709731
\(750\) 1081.92 0.0526751
\(751\) −33825.2 −1.64354 −0.821771 0.569818i \(-0.807014\pi\)
−0.821771 + 0.569818i \(0.807014\pi\)
\(752\) 3818.10 0.185149
\(753\) −1209.41 −0.0585305
\(754\) 0 0
\(755\) −14009.7 −0.675320
\(756\) 222.897 0.0107231
\(757\) −33857.6 −1.62559 −0.812796 0.582548i \(-0.802056\pi\)
−0.812796 + 0.582548i \(0.802056\pi\)
\(758\) 22786.2 1.09186
\(759\) −1112.24 −0.0531907
\(760\) 1895.09 0.0904500
\(761\) 11841.6 0.564072 0.282036 0.959404i \(-0.408990\pi\)
0.282036 + 0.959404i \(0.408990\pi\)
\(762\) −2003.51 −0.0952487
\(763\) 1512.61 0.0717694
\(764\) 6456.43 0.305740
\(765\) 15999.2 0.756147
\(766\) 23905.6 1.12760
\(767\) 0 0
\(768\) 103.888 0.00488117
\(769\) −9809.13 −0.459982 −0.229991 0.973193i \(-0.573870\pi\)
−0.229991 + 0.973193i \(0.573870\pi\)
\(770\) 847.776 0.0396776
\(771\) −1564.79 −0.0730926
\(772\) −9844.47 −0.458951
\(773\) −27121.7 −1.26196 −0.630982 0.775797i \(-0.717348\pi\)
−0.630982 + 0.775797i \(0.717348\pi\)
\(774\) −22204.5 −1.03117
\(775\) −23580.9 −1.09297
\(776\) −5114.55 −0.236600
\(777\) 11.2825 0.000520925 0
\(778\) −10564.5 −0.486832
\(779\) 13827.4 0.635966
\(780\) 0 0
\(781\) 3102.26 0.142135
\(782\) −19664.9 −0.899254
\(783\) −5451.82 −0.248828
\(784\) −5383.91 −0.245258
\(785\) 5504.25 0.250261
\(786\) −1850.36 −0.0839699
\(787\) −18455.4 −0.835914 −0.417957 0.908467i \(-0.637254\pi\)
−0.417957 + 0.908467i \(0.637254\pi\)
\(788\) 13783.6 0.623123
\(789\) −1798.23 −0.0811390
\(790\) 6774.01 0.305074
\(791\) −4690.94 −0.210860
\(792\) 5607.71 0.251592
\(793\) 0 0
\(794\) −18223.2 −0.814504
\(795\) −1097.07 −0.0489420
\(796\) 8820.09 0.392739
\(797\) −14051.4 −0.624498 −0.312249 0.950000i \(-0.601082\pi\)
−0.312249 + 0.950000i \(0.601082\pi\)
\(798\) −77.0785 −0.00341923
\(799\) −22361.8 −0.990117
\(800\) 2704.69 0.119531
\(801\) −1144.09 −0.0504673
\(802\) 999.123 0.0439904
\(803\) 5467.61 0.240284
\(804\) −1431.07 −0.0627734
\(805\) 1702.73 0.0745507
\(806\) 0 0
\(807\) 511.866 0.0223278
\(808\) −3798.71 −0.165394
\(809\) −24386.4 −1.05980 −0.529902 0.848059i \(-0.677771\pi\)
−0.529902 + 0.848059i \(0.677771\pi\)
\(810\) −9106.80 −0.395037
\(811\) −34306.9 −1.48542 −0.742711 0.669612i \(-0.766460\pi\)
−0.742711 + 0.669612i \(0.766460\pi\)
\(812\) −2546.00 −0.110033
\(813\) 2516.35 0.108551
\(814\) 569.442 0.0245196
\(815\) 6749.34 0.290085
\(816\) −608.451 −0.0261030
\(817\) 15403.9 0.659626
\(818\) −25606.4 −1.09451
\(819\) 0 0
\(820\) −9451.17 −0.402499
\(821\) 3274.55 0.139199 0.0695995 0.997575i \(-0.477828\pi\)
0.0695995 + 0.997575i \(0.477828\pi\)
\(822\) 356.555 0.0151293
\(823\) 17214.8 0.729125 0.364562 0.931179i \(-0.381219\pi\)
0.364562 + 0.931179i \(0.381219\pi\)
\(824\) 8804.26 0.372222
\(825\) −895.946 −0.0378095
\(826\) −3950.71 −0.166420
\(827\) 40718.9 1.71213 0.856067 0.516864i \(-0.172901\pi\)
0.856067 + 0.516864i \(0.172901\pi\)
\(828\) 11262.9 0.472721
\(829\) 1627.26 0.0681751 0.0340876 0.999419i \(-0.489147\pi\)
0.0340876 + 0.999419i \(0.489147\pi\)
\(830\) 4790.93 0.200356
\(831\) −469.757 −0.0196097
\(832\) 0 0
\(833\) 31532.4 1.31156
\(834\) 1768.48 0.0734264
\(835\) 8933.18 0.370234
\(836\) −3890.23 −0.160941
\(837\) −6095.18 −0.251709
\(838\) 14736.5 0.607477
\(839\) 17121.2 0.704516 0.352258 0.935903i \(-0.385414\pi\)
0.352258 + 0.935903i \(0.385414\pi\)
\(840\) 52.6840 0.00216401
\(841\) 37883.4 1.55330
\(842\) 30533.8 1.24972
\(843\) 2565.84 0.104831
\(844\) −3732.77 −0.152236
\(845\) 0 0
\(846\) 12807.5 0.520485
\(847\) 1654.60 0.0671223
\(848\) −6798.52 −0.275309
\(849\) −3777.45 −0.152699
\(850\) −15840.8 −0.639216
\(851\) 1143.70 0.0460701
\(852\) 192.786 0.00775203
\(853\) 4791.65 0.192336 0.0961682 0.995365i \(-0.469341\pi\)
0.0961682 + 0.995365i \(0.469341\pi\)
\(854\) −629.614 −0.0252283
\(855\) 6356.90 0.254271
\(856\) 4563.06 0.182199
\(857\) 12689.7 0.505802 0.252901 0.967492i \(-0.418615\pi\)
0.252901 + 0.967492i \(0.418615\pi\)
\(858\) 0 0
\(859\) −35646.1 −1.41586 −0.707932 0.706280i \(-0.750372\pi\)
−0.707932 + 0.706280i \(0.750372\pi\)
\(860\) −10528.7 −0.417473
\(861\) 384.406 0.0152155
\(862\) 41.8849 0.00165499
\(863\) −10664.4 −0.420650 −0.210325 0.977631i \(-0.567452\pi\)
−0.210325 + 0.977631i \(0.567452\pi\)
\(864\) 699.107 0.0275279
\(865\) 6503.64 0.255642
\(866\) −14916.2 −0.585305
\(867\) 1569.80 0.0614917
\(868\) −2846.45 −0.111307
\(869\) −13905.7 −0.542828
\(870\) −1288.59 −0.0502155
\(871\) 0 0
\(872\) 4744.23 0.184243
\(873\) −17156.3 −0.665124
\(874\) −7813.40 −0.302394
\(875\) 3400.10 0.131365
\(876\) 339.778 0.0131051
\(877\) 11014.5 0.424097 0.212048 0.977259i \(-0.431987\pi\)
0.212048 + 0.977259i \(0.431987\pi\)
\(878\) −18028.7 −0.692982
\(879\) −205.421 −0.00788245
\(880\) 2659.02 0.101858
\(881\) −4543.01 −0.173732 −0.0868660 0.996220i \(-0.527685\pi\)
−0.0868660 + 0.996220i \(0.527685\pi\)
\(882\) −18059.9 −0.689464
\(883\) 28212.2 1.07522 0.537608 0.843195i \(-0.319328\pi\)
0.537608 + 0.843195i \(0.319328\pi\)
\(884\) 0 0
\(885\) −1999.56 −0.0759484
\(886\) −3574.25 −0.135530
\(887\) −30696.0 −1.16197 −0.580987 0.813913i \(-0.697333\pi\)
−0.580987 + 0.813913i \(0.697333\pi\)
\(888\) 35.3872 0.00133729
\(889\) −6296.30 −0.237538
\(890\) −542.494 −0.0204319
\(891\) 18694.4 0.702903
\(892\) −25454.5 −0.955469
\(893\) −8884.93 −0.332948
\(894\) −2328.13 −0.0870965
\(895\) 2660.85 0.0993770
\(896\) 326.483 0.0121730
\(897\) 0 0
\(898\) 9081.89 0.337491
\(899\) 69621.1 2.58286
\(900\) 9072.64 0.336024
\(901\) 39817.4 1.47227
\(902\) 19401.3 0.716180
\(903\) 428.234 0.0157815
\(904\) −14712.9 −0.541311
\(905\) −17916.5 −0.658082
\(906\) 1787.20 0.0655363
\(907\) 30277.2 1.10842 0.554211 0.832376i \(-0.313020\pi\)
0.554211 + 0.832376i \(0.313020\pi\)
\(908\) −3318.04 −0.121270
\(909\) −12742.4 −0.464951
\(910\) 0 0
\(911\) 18833.6 0.684946 0.342473 0.939528i \(-0.388736\pi\)
0.342473 + 0.939528i \(0.388736\pi\)
\(912\) −241.754 −0.00877770
\(913\) −9834.82 −0.356500
\(914\) −13747.7 −0.497522
\(915\) −318.664 −0.0115133
\(916\) 23157.4 0.835308
\(917\) −5815.02 −0.209410
\(918\) −4094.52 −0.147210
\(919\) −2558.65 −0.0918411 −0.0459206 0.998945i \(-0.514622\pi\)
−0.0459206 + 0.998945i \(0.514622\pi\)
\(920\) 5340.54 0.191383
\(921\) 1661.66 0.0594501
\(922\) −18617.2 −0.664993
\(923\) 0 0
\(924\) −108.150 −0.00385050
\(925\) 921.293 0.0327480
\(926\) 29527.1 1.04786
\(927\) 29533.1 1.04638
\(928\) −7985.42 −0.282472
\(929\) 16392.9 0.578938 0.289469 0.957187i \(-0.406521\pi\)
0.289469 + 0.957187i \(0.406521\pi\)
\(930\) −1440.66 −0.0507969
\(931\) 12528.7 0.441042
\(932\) 1283.00 0.0450924
\(933\) 3532.60 0.123957
\(934\) −14795.6 −0.518338
\(935\) −15573.3 −0.544707
\(936\) 0 0
\(937\) 24289.2 0.846845 0.423422 0.905932i \(-0.360829\pi\)
0.423422 + 0.905932i \(0.360829\pi\)
\(938\) −4497.32 −0.156549
\(939\) −1276.19 −0.0443525
\(940\) 6072.95 0.210721
\(941\) −31263.6 −1.08306 −0.541532 0.840680i \(-0.682156\pi\)
−0.541532 + 0.840680i \(0.682156\pi\)
\(942\) −702.169 −0.0242865
\(943\) 38967.0 1.34564
\(944\) −12391.2 −0.427225
\(945\) 354.532 0.0122042
\(946\) 21613.4 0.742825
\(947\) −44085.9 −1.51278 −0.756389 0.654122i \(-0.773038\pi\)
−0.756389 + 0.654122i \(0.773038\pi\)
\(948\) −864.151 −0.0296058
\(949\) 0 0
\(950\) −6293.96 −0.214950
\(951\) 4018.37 0.137019
\(952\) −1912.14 −0.0650974
\(953\) −634.082 −0.0215529 −0.0107765 0.999942i \(-0.503430\pi\)
−0.0107765 + 0.999942i \(0.503430\pi\)
\(954\) −22805.0 −0.773942
\(955\) 10269.4 0.347968
\(956\) 14328.4 0.484744
\(957\) 2645.23 0.0893501
\(958\) 24730.0 0.834018
\(959\) 1120.52 0.0377305
\(960\) 165.241 0.00555535
\(961\) 48045.9 1.61277
\(962\) 0 0
\(963\) 15306.4 0.512193
\(964\) 19521.0 0.652207
\(965\) −15658.3 −0.522340
\(966\) −217.215 −0.00723476
\(967\) 58557.1 1.94733 0.973666 0.227981i \(-0.0732125\pi\)
0.973666 + 0.227981i \(0.0732125\pi\)
\(968\) 5189.57 0.172313
\(969\) 1415.90 0.0469404
\(970\) −8135.04 −0.269279
\(971\) −3335.69 −0.110244 −0.0551222 0.998480i \(-0.517555\pi\)
−0.0551222 + 0.998480i \(0.517555\pi\)
\(972\) 3521.23 0.116197
\(973\) 5557.70 0.183116
\(974\) −16894.7 −0.555793
\(975\) 0 0
\(976\) −1974.76 −0.0647649
\(977\) 23707.7 0.776331 0.388166 0.921590i \(-0.373109\pi\)
0.388166 + 0.921590i \(0.373109\pi\)
\(978\) −861.004 −0.0281512
\(979\) 1113.63 0.0363552
\(980\) −8563.47 −0.279133
\(981\) 15914.1 0.517940
\(982\) −28365.9 −0.921786
\(983\) −34833.6 −1.13023 −0.565117 0.825011i \(-0.691169\pi\)
−0.565117 + 0.825011i \(0.691169\pi\)
\(984\) 1205.67 0.0390604
\(985\) 21923.8 0.709188
\(986\) 46768.9 1.51057
\(987\) −247.004 −0.00796577
\(988\) 0 0
\(989\) 43409.8 1.39570
\(990\) 8919.44 0.286342
\(991\) 23957.5 0.767948 0.383974 0.923344i \(-0.374555\pi\)
0.383974 + 0.923344i \(0.374555\pi\)
\(992\) −8927.77 −0.285743
\(993\) 797.979 0.0255016
\(994\) 605.856 0.0193326
\(995\) 14029.0 0.446983
\(996\) −611.172 −0.0194435
\(997\) −43361.9 −1.37742 −0.688708 0.725038i \(-0.741822\pi\)
−0.688708 + 0.725038i \(0.741822\pi\)
\(998\) 28059.8 0.889998
\(999\) 238.135 0.00754181
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.a.j.1.3 3
13.2 odd 12 338.4.e.h.147.1 12
13.3 even 3 338.4.c.l.191.1 6
13.4 even 6 338.4.c.k.315.1 6
13.5 odd 4 338.4.b.f.337.6 6
13.6 odd 12 338.4.e.h.23.4 12
13.7 odd 12 338.4.e.h.23.1 12
13.8 odd 4 338.4.b.f.337.3 6
13.9 even 3 338.4.c.l.315.1 6
13.10 even 6 338.4.c.k.191.1 6
13.11 odd 12 338.4.e.h.147.4 12
13.12 even 2 338.4.a.k.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.3 3 1.1 even 1 trivial
338.4.a.k.1.3 yes 3 13.12 even 2
338.4.b.f.337.3 6 13.8 odd 4
338.4.b.f.337.6 6 13.5 odd 4
338.4.c.k.191.1 6 13.10 even 6
338.4.c.k.315.1 6 13.4 even 6
338.4.c.l.191.1 6 13.3 even 3
338.4.c.l.315.1 6 13.9 even 3
338.4.e.h.23.1 12 13.7 odd 12
338.4.e.h.23.4 12 13.6 odd 12
338.4.e.h.147.1 12 13.2 odd 12
338.4.e.h.147.4 12 13.11 odd 12