Properties

Label 338.4.a.j
Level $338$
Weight $4$
Character orbit 338.a
Self dual yes
Analytic conductor $19.943$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,-12,12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9426455819\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - 3 \beta_{2} - 5) q^{3} + 4 q^{4} + ( - \beta_{2} + 8 \beta_1 + 1) q^{5} + (6 \beta_{2} + 10) q^{6} + ( - 5 \beta_{2} - 8 \beta_1 - 8) q^{7} - 8 q^{8} + (21 \beta_{2} + 9 \beta_1 + 7) q^{9}+ \cdots + (20 \beta_{2} + 126 \beta_1 - 721) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 12 q^{3} + 12 q^{4} + 12 q^{5} + 24 q^{6} - 27 q^{7} - 24 q^{8} + 9 q^{9} - 24 q^{10} + 82 q^{11} - 48 q^{12} + 54 q^{14} - 90 q^{15} + 48 q^{16} - 90 q^{17} - 18 q^{18} + 130 q^{19} + 48 q^{20}+ \cdots - 2057 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
−2.00000 −8.74094 4.00000 14.1685 17.4819 −28.6504 −8.00000 49.4040 −28.3370
1.2 −2.00000 −3.66487 4.00000 −8.53079 7.32975 4.20105 −8.00000 −13.5687 17.0616
1.3 −2.00000 0.405813 4.00000 6.36227 −0.811626 −2.55065 −8.00000 −26.8353 −12.7245
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.4.a.j 3
13.b even 2 1 338.4.a.k yes 3
13.c even 3 2 338.4.c.l 6
13.d odd 4 2 338.4.b.f 6
13.e even 6 2 338.4.c.k 6
13.f odd 12 4 338.4.e.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.4.a.j 3 1.a even 1 1 trivial
338.4.a.k yes 3 13.b even 2 1
338.4.b.f 6 13.d odd 4 2
338.4.c.k 6 13.e even 6 2
338.4.c.l 6 13.c even 3 2
338.4.e.h 12 13.f odd 12 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{3} + 12T_{3}^{2} + 27T_{3} - 13 \) Copy content Toggle raw display
\( T_{5}^{3} - 12T_{5}^{2} - 85T_{5} + 769 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 12 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$5$ \( T^{3} - 12 T^{2} + \cdots + 769 \) Copy content Toggle raw display
$7$ \( T^{3} + 27 T^{2} + \cdots - 307 \) Copy content Toggle raw display
$11$ \( T^{3} - 82 T^{2} + \cdots + 16211 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 90 T^{2} + \cdots - 77167 \) Copy content Toggle raw display
$19$ \( T^{3} - 130 T^{2} + \cdots + 76609 \) Copy content Toggle raw display
$23$ \( T^{3} - 19 T^{2} + \cdots - 604157 \) Copy content Toggle raw display
$29$ \( T^{3} + 101 T^{2} + \cdots - 3703349 \) Copy content Toggle raw display
$31$ \( T^{3} - 519 T^{2} + \cdots - 3401957 \) Copy content Toggle raw display
$37$ \( T^{3} - 84 T^{2} + \cdots - 30919 \) Copy content Toggle raw display
$41$ \( T^{3} - 187 T^{2} + \cdots + 20172347 \) Copy content Toggle raw display
$43$ \( T^{3} + 1205 T^{2} + \cdots + 64126453 \) Copy content Toggle raw display
$47$ \( T^{3} + 536 T^{2} + \cdots - 26128271 \) Copy content Toggle raw display
$53$ \( T^{3} + 1095 T^{2} + \cdots + 45870749 \) Copy content Toggle raw display
$59$ \( T^{3} + 1413 T^{2} + \cdots + 72818971 \) Copy content Toggle raw display
$61$ \( T^{3} + 1108 T^{2} + \cdots + 28377551 \) Copy content Toggle raw display
$67$ \( T^{3} + 1605 T^{2} + \cdots + 110488951 \) Copy content Toggle raw display
$71$ \( T^{3} + 909 T^{2} + \cdots - 7534771 \) Copy content Toggle raw display
$73$ \( T^{3} - 287 T^{2} + \cdots + 178534237 \) Copy content Toggle raw display
$79$ \( T^{3} + 1961 T^{2} + \cdots + 214064899 \) Copy content Toggle raw display
$83$ \( T^{3} - 191 T^{2} + \cdots + 29986853 \) Copy content Toggle raw display
$89$ \( T^{3} - 1091 T^{2} + \cdots - 10734907 \) Copy content Toggle raw display
$97$ \( T^{3} + 947 T^{2} + \cdots - 228842741 \) Copy content Toggle raw display
show more
show less