Defining parameters
| Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 338.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(182\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(338))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 151 | 39 | 112 |
| Cusp forms | 123 | 39 | 84 |
| Eisenstein series | 28 | 0 | 28 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(40\) | \(11\) | \(29\) | \(33\) | \(11\) | \(22\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(-\) | \(-\) | \(35\) | \(9\) | \(26\) | \(28\) | \(9\) | \(19\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(+\) | \(-\) | \(37\) | \(7\) | \(30\) | \(30\) | \(7\) | \(23\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(-\) | \(+\) | \(39\) | \(12\) | \(27\) | \(32\) | \(12\) | \(20\) | \(7\) | \(0\) | \(7\) | |||
| Plus space | \(+\) | \(79\) | \(23\) | \(56\) | \(65\) | \(23\) | \(42\) | \(14\) | \(0\) | \(14\) | ||||
| Minus space | \(-\) | \(72\) | \(16\) | \(56\) | \(58\) | \(16\) | \(42\) | \(14\) | \(0\) | \(14\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(338))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(338))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(338)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)