Properties

Label 338.3.f.j.319.1
Level $338$
Weight $3$
Character 338.319
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,0,-6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 319.1
Root \(-3.90972 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.319
Dual form 338.3.f.j.249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.52185 + 2.63592i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.79174 - 4.79174i) q^{5} +(-1.11407 + 4.15776i) q^{6} +(4.25390 + 1.13983i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-0.132034 - 0.228689i) q^{9} +(-8.29953 - 4.79174i) q^{10} +(-3.71800 - 13.8758i) q^{11} +6.08739i q^{12} +6.22814 q^{14} +(19.9229 - 5.33833i) q^{15} +(2.00000 - 3.46410i) q^{16} +(20.9957 - 12.1219i) q^{17} +(-0.264067 - 0.264067i) q^{18} +(6.82178 - 25.4592i) q^{19} +(-13.0913 - 3.50779i) q^{20} +(-9.47827 + 9.47827i) q^{21} +(-10.1578 - 17.5938i) q^{22} +(5.44507 + 3.14371i) q^{23} +(2.22814 + 8.31552i) q^{24} +20.9215i q^{25} -26.5895 q^{27} +(8.50779 - 2.27966i) q^{28} +(11.1112 - 19.2451i) q^{29} +(25.2612 - 14.5846i) q^{30} +(8.59518 + 8.59518i) q^{31} +(1.46410 - 5.46410i) q^{32} +(42.2336 + 11.3164i) q^{33} +(24.2437 - 24.2437i) q^{34} +(-14.9218 - 25.8453i) q^{35} +(-0.457378 - 0.264067i) q^{36} +(-1.64504 - 6.13936i) q^{37} -37.2749i q^{38} -19.1669 q^{40} +(70.4778 - 18.8845i) q^{41} +(-9.47827 + 16.4168i) q^{42} +(-26.9695 + 15.5708i) q^{43} +(-20.3155 - 20.3155i) q^{44} +(-0.463147 + 1.72849i) q^{45} +(8.58878 + 2.30136i) q^{46} +(-7.65637 + 7.65637i) q^{47} +(6.08739 + 10.5437i) q^{48} +(-25.6388 - 14.8026i) q^{49} +(7.65779 + 28.5793i) q^{50} +73.7905i q^{51} -33.7616 q^{53} +(-36.3219 + 9.73243i) q^{54} +(-48.6733 + 84.3047i) q^{55} +(10.7875 - 6.22814i) q^{56} +(56.7267 + 56.7267i) q^{57} +(8.13394 - 30.3563i) q^{58} +(36.4842 + 9.77592i) q^{59} +(29.1692 - 29.1692i) q^{60} +(11.5359 + 19.9807i) q^{61} +(14.8873 + 8.59518i) q^{62} +(-0.300991 - 1.12332i) q^{63} -8.00000i q^{64} +61.8342 q^{66} +(-103.954 + 27.8544i) q^{67} +(24.2437 - 41.9914i) q^{68} +(-16.5731 + 9.56849i) q^{69} +(-29.8436 - 29.8436i) q^{70} +(0.591796 - 2.20861i) q^{71} +(-0.721445 - 0.193311i) q^{72} +(-38.1773 + 38.1773i) q^{73} +(-4.49432 - 7.78440i) q^{74} +(-55.1473 - 31.8393i) q^{75} +(-13.6436 - 50.9185i) q^{76} -63.2639i q^{77} -19.1299 q^{79} +(-26.1825 + 7.01559i) q^{80} +(41.6534 - 72.1459i) q^{81} +(89.3622 - 51.5933i) q^{82} +(-34.7720 - 34.7720i) q^{83} +(-6.93858 + 25.8951i) q^{84} +(-158.691 - 42.5210i) q^{85} +(-31.1417 + 31.1417i) q^{86} +(33.8190 + 58.5762i) q^{87} +(-35.1875 - 20.3155i) q^{88} +(0.930292 + 3.47190i) q^{89} +2.53068i q^{90} +12.5748 q^{92} +(-35.7367 + 9.57562i) q^{93} +(-7.65637 + 13.2612i) q^{94} +(-154.682 + 89.3058i) q^{95} +(12.1748 + 12.1748i) q^{96} +(-6.51404 + 24.3107i) q^{97} +(-40.4414 - 10.8362i) q^{98} +(-2.68233 + 2.68233i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 6 q^{6} + 8 q^{7} + 16 q^{8} - 42 q^{9} + 18 q^{10} + 24 q^{11} + 20 q^{14} + 126 q^{15} + 16 q^{16} + 42 q^{17} - 84 q^{18} + 68 q^{19} + 12 q^{20} + 102 q^{21} - 42 q^{22} + 36 q^{23}+ \cdots - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.52185 + 2.63592i −0.507282 + 0.878639i 0.492682 + 0.870209i \(0.336016\pi\)
−0.999964 + 0.00842924i \(0.997317\pi\)
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.79174 4.79174i −0.958347 0.958347i 0.0408192 0.999167i \(-0.487003\pi\)
−0.999167 + 0.0408192i \(0.987003\pi\)
\(6\) −1.11407 + 4.15776i −0.185678 + 0.692960i
\(7\) 4.25390 + 1.13983i 0.607700 + 0.162833i 0.549530 0.835474i \(-0.314807\pi\)
0.0581698 + 0.998307i \(0.481474\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −0.132034 0.228689i −0.0146704 0.0254099i
\(10\) −8.29953 4.79174i −0.829953 0.479174i
\(11\) −3.71800 13.8758i −0.338000 1.26143i −0.900580 0.434690i \(-0.856858\pi\)
0.562580 0.826743i \(-0.309809\pi\)
\(12\) 6.08739i 0.507282i
\(13\) 0 0
\(14\) 6.22814 0.444867
\(15\) 19.9229 5.33833i 1.32819 0.355888i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 20.9957 12.1219i 1.23504 0.713051i 0.266964 0.963707i \(-0.413980\pi\)
0.968076 + 0.250656i \(0.0806462\pi\)
\(18\) −0.264067 0.264067i −0.0146704 0.0146704i
\(19\) 6.82178 25.4592i 0.359041 1.33996i −0.516281 0.856419i \(-0.672684\pi\)
0.875322 0.483540i \(-0.160649\pi\)
\(20\) −13.0913 3.50779i −0.654563 0.175390i
\(21\) −9.47827 + 9.47827i −0.451346 + 0.451346i
\(22\) −10.1578 17.5938i −0.461716 0.799716i
\(23\) 5.44507 + 3.14371i 0.236742 + 0.136683i 0.613678 0.789556i \(-0.289689\pi\)
−0.376936 + 0.926239i \(0.623022\pi\)
\(24\) 2.22814 + 8.31552i 0.0928391 + 0.346480i
\(25\) 20.9215i 0.836859i
\(26\) 0 0
\(27\) −26.5895 −0.984796
\(28\) 8.50779 2.27966i 0.303850 0.0814163i
\(29\) 11.1112 19.2451i 0.383144 0.663625i −0.608366 0.793657i \(-0.708175\pi\)
0.991510 + 0.130032i \(0.0415080\pi\)
\(30\) 25.2612 14.5846i 0.842041 0.486153i
\(31\) 8.59518 + 8.59518i 0.277264 + 0.277264i 0.832016 0.554752i \(-0.187187\pi\)
−0.554752 + 0.832016i \(0.687187\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 42.2336 + 11.3164i 1.27980 + 0.342923i
\(34\) 24.2437 24.2437i 0.713051 0.713051i
\(35\) −14.9218 25.8453i −0.426337 0.738438i
\(36\) −0.457378 0.264067i −0.0127049 0.00733521i
\(37\) −1.64504 6.13936i −0.0444605 0.165929i 0.940126 0.340827i \(-0.110707\pi\)
−0.984587 + 0.174898i \(0.944040\pi\)
\(38\) 37.2749i 0.980919i
\(39\) 0 0
\(40\) −19.1669 −0.479174
\(41\) 70.4778 18.8845i 1.71897 0.460596i 0.741375 0.671091i \(-0.234174\pi\)
0.977595 + 0.210495i \(0.0675075\pi\)
\(42\) −9.47827 + 16.4168i −0.225673 + 0.390877i
\(43\) −26.9695 + 15.5708i −0.627197 + 0.362113i −0.779666 0.626196i \(-0.784611\pi\)
0.152468 + 0.988308i \(0.451278\pi\)
\(44\) −20.3155 20.3155i −0.461716 0.461716i
\(45\) −0.463147 + 1.72849i −0.0102922 + 0.0384109i
\(46\) 8.58878 + 2.30136i 0.186713 + 0.0500295i
\(47\) −7.65637 + 7.65637i −0.162902 + 0.162902i −0.783851 0.620949i \(-0.786747\pi\)
0.620949 + 0.783851i \(0.286747\pi\)
\(48\) 6.08739 + 10.5437i 0.126821 + 0.219660i
\(49\) −25.6388 14.8026i −0.523241 0.302093i
\(50\) 7.65779 + 28.5793i 0.153156 + 0.571585i
\(51\) 73.7905i 1.44687i
\(52\) 0 0
\(53\) −33.7616 −0.637010 −0.318505 0.947921i \(-0.603181\pi\)
−0.318505 + 0.947921i \(0.603181\pi\)
\(54\) −36.3219 + 9.73243i −0.672628 + 0.180230i
\(55\) −48.6733 + 84.3047i −0.884969 + 1.53281i
\(56\) 10.7875 6.22814i 0.192633 0.111217i
\(57\) 56.7267 + 56.7267i 0.995205 + 0.995205i
\(58\) 8.13394 30.3563i 0.140240 0.523384i
\(59\) 36.4842 + 9.77592i 0.618377 + 0.165694i 0.554390 0.832257i \(-0.312952\pi\)
0.0639871 + 0.997951i \(0.479618\pi\)
\(60\) 29.1692 29.1692i 0.486153 0.486153i
\(61\) 11.5359 + 19.9807i 0.189113 + 0.327553i 0.944955 0.327201i \(-0.106106\pi\)
−0.755842 + 0.654754i \(0.772772\pi\)
\(62\) 14.8873 + 8.59518i 0.240118 + 0.138632i
\(63\) −0.300991 1.12332i −0.00477764 0.0178304i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 61.8342 0.936882
\(67\) −103.954 + 27.8544i −1.55155 + 0.415737i −0.929977 0.367618i \(-0.880173\pi\)
−0.621575 + 0.783355i \(0.713507\pi\)
\(68\) 24.2437 41.9914i 0.356525 0.617520i
\(69\) −16.5731 + 9.56849i −0.240190 + 0.138674i
\(70\) −29.8436 29.8436i −0.426337 0.426337i
\(71\) 0.591796 2.20861i 0.00833516 0.0311072i −0.961633 0.274339i \(-0.911541\pi\)
0.969968 + 0.243232i \(0.0782076\pi\)
\(72\) −0.721445 0.193311i −0.0100201 0.00268487i
\(73\) −38.1773 + 38.1773i −0.522977 + 0.522977i −0.918469 0.395492i \(-0.870574\pi\)
0.395492 + 0.918469i \(0.370574\pi\)
\(74\) −4.49432 7.78440i −0.0607341 0.105195i
\(75\) −55.1473 31.8393i −0.735297 0.424524i
\(76\) −13.6436 50.9185i −0.179521 0.669980i
\(77\) 63.2639i 0.821610i
\(78\) 0 0
\(79\) −19.1299 −0.242150 −0.121075 0.992643i \(-0.538634\pi\)
−0.121075 + 0.992643i \(0.538634\pi\)
\(80\) −26.1825 + 7.01559i −0.327282 + 0.0876949i
\(81\) 41.6534 72.1459i 0.514240 0.890690i
\(82\) 89.3622 51.5933i 1.08978 0.629187i
\(83\) −34.7720 34.7720i −0.418940 0.418940i 0.465898 0.884838i \(-0.345731\pi\)
−0.884838 + 0.465898i \(0.845731\pi\)
\(84\) −6.93858 + 25.8951i −0.0826021 + 0.308275i
\(85\) −158.691 42.5210i −1.86695 0.500247i
\(86\) −31.1417 + 31.1417i −0.362113 + 0.362113i
\(87\) 33.8190 + 58.5762i 0.388724 + 0.673290i
\(88\) −35.1875 20.3155i −0.399858 0.230858i
\(89\) 0.930292 + 3.47190i 0.0104527 + 0.0390101i 0.970955 0.239261i \(-0.0769052\pi\)
−0.960503 + 0.278271i \(0.910239\pi\)
\(90\) 2.53068i 0.0281187i
\(91\) 0 0
\(92\) 12.5748 0.136683
\(93\) −35.7367 + 9.57562i −0.384266 + 0.102964i
\(94\) −7.65637 + 13.2612i −0.0814508 + 0.141077i
\(95\) −154.682 + 89.3058i −1.62823 + 0.940061i
\(96\) 12.1748 + 12.1748i 0.126821 + 0.126821i
\(97\) −6.51404 + 24.3107i −0.0671551 + 0.250626i −0.991340 0.131319i \(-0.958079\pi\)
0.924185 + 0.381945i \(0.124746\pi\)
\(98\) −40.4414 10.8362i −0.412667 0.110574i
\(99\) −2.68233 + 2.68233i −0.0270943 + 0.0270943i
\(100\) 20.9215 + 36.2371i 0.209215 + 0.362371i
\(101\) 131.473 + 75.9060i 1.30171 + 0.751545i 0.980698 0.195529i \(-0.0626425\pi\)
0.321016 + 0.947074i \(0.395976\pi\)
\(102\) 27.0092 + 100.800i 0.264796 + 0.988232i
\(103\) 17.3672i 0.168614i −0.996440 0.0843069i \(-0.973132\pi\)
0.996440 0.0843069i \(-0.0268676\pi\)
\(104\) 0 0
\(105\) 90.8347 0.865093
\(106\) −46.1191 + 12.3576i −0.435086 + 0.116581i
\(107\) −26.5964 + 46.0662i −0.248564 + 0.430526i −0.963128 0.269045i \(-0.913292\pi\)
0.714564 + 0.699571i \(0.246625\pi\)
\(108\) −46.0544 + 26.5895i −0.426429 + 0.246199i
\(109\) −53.3779 53.3779i −0.489705 0.489705i 0.418508 0.908213i \(-0.362553\pi\)
−0.908213 + 0.418508i \(0.862553\pi\)
\(110\) −35.6313 + 132.978i −0.323921 + 1.20889i
\(111\) 18.6863 + 5.00699i 0.168345 + 0.0451080i
\(112\) 12.4563 12.4563i 0.111217 0.111217i
\(113\) −18.1133 31.3732i −0.160295 0.277639i 0.774680 0.632354i \(-0.217911\pi\)
−0.934974 + 0.354715i \(0.884578\pi\)
\(114\) 98.2535 + 56.7267i 0.861873 + 0.497603i
\(115\) −11.0275 41.1552i −0.0958912 0.357871i
\(116\) 44.4447i 0.383144i
\(117\) 0 0
\(118\) 53.4166 0.452683
\(119\) 103.130 27.6337i 0.866641 0.232216i
\(120\) 29.1692 50.5225i 0.243076 0.421020i
\(121\) −73.9242 + 42.6801i −0.610943 + 0.352728i
\(122\) 23.0717 + 23.0717i 0.189113 + 0.189113i
\(123\) −57.4785 + 214.513i −0.467305 + 1.74401i
\(124\) 23.4825 + 6.29211i 0.189375 + 0.0507428i
\(125\) −19.5432 + 19.5432i −0.156346 + 0.156346i
\(126\) −0.822324 1.42431i −0.00652638 0.0113040i
\(127\) 115.255 + 66.5425i 0.907520 + 0.523957i 0.879632 0.475654i \(-0.157789\pi\)
0.0278874 + 0.999611i \(0.491122\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 94.7857i 0.734773i
\(130\) 0 0
\(131\) 38.2739 0.292167 0.146083 0.989272i \(-0.453333\pi\)
0.146083 + 0.989272i \(0.453333\pi\)
\(132\) 84.4671 22.6329i 0.639902 0.171461i
\(133\) 58.0383 100.525i 0.436378 0.755829i
\(134\) −131.808 + 76.0996i −0.983644 + 0.567907i
\(135\) 127.410 + 127.410i 0.943777 + 0.943777i
\(136\) 17.7476 66.2351i 0.130497 0.487023i
\(137\) 7.76140 + 2.07966i 0.0566525 + 0.0151800i 0.287034 0.957920i \(-0.407331\pi\)
−0.230381 + 0.973100i \(0.573997\pi\)
\(138\) −19.1370 + 19.1370i −0.138674 + 0.138674i
\(139\) 121.981 + 211.277i 0.877558 + 1.51998i 0.854012 + 0.520253i \(0.174162\pi\)
0.0235463 + 0.999723i \(0.492504\pi\)
\(140\) −51.6906 29.8436i −0.369219 0.213169i
\(141\) −8.52973 31.8334i −0.0604945 0.225769i
\(142\) 3.23364i 0.0227721i
\(143\) 0 0
\(144\) −1.05627 −0.00733521
\(145\) −145.459 + 38.9757i −1.00317 + 0.268798i
\(146\) −38.1773 + 66.1251i −0.261488 + 0.452911i
\(147\) 78.0367 45.0545i 0.530862 0.306493i
\(148\) −8.98865 8.98865i −0.0607341 0.0607341i
\(149\) 48.9509 182.687i 0.328529 1.22609i −0.582187 0.813055i \(-0.697803\pi\)
0.910716 0.413033i \(-0.135531\pi\)
\(150\) −86.9865 23.3080i −0.579910 0.155386i
\(151\) 70.5995 70.5995i 0.467546 0.467546i −0.433573 0.901119i \(-0.642747\pi\)
0.901119 + 0.433573i \(0.142747\pi\)
\(152\) −37.2749 64.5620i −0.245230 0.424750i
\(153\) −5.54428 3.20099i −0.0362371 0.0209215i
\(154\) −23.1562 86.4202i −0.150365 0.561170i
\(155\) 82.3717i 0.531430i
\(156\) 0 0
\(157\) 176.794 1.12608 0.563038 0.826431i \(-0.309632\pi\)
0.563038 + 0.826431i \(0.309632\pi\)
\(158\) −26.1319 + 7.00202i −0.165392 + 0.0443166i
\(159\) 51.3799 88.9926i 0.323144 0.559702i
\(160\) −33.1981 + 19.1669i −0.207488 + 0.119793i
\(161\) 19.5795 + 19.5795i 0.121612 + 0.121612i
\(162\) 30.4924 113.799i 0.188225 0.702465i
\(163\) 117.116 + 31.3812i 0.718504 + 0.192523i 0.599504 0.800372i \(-0.295365\pi\)
0.119000 + 0.992894i \(0.462031\pi\)
\(164\) 103.187 103.187i 0.629187 0.629187i
\(165\) −148.147 256.598i −0.897858 1.55514i
\(166\) −60.2269 34.7720i −0.362813 0.209470i
\(167\) 76.7939 + 286.599i 0.459844 + 1.71616i 0.673444 + 0.739238i \(0.264814\pi\)
−0.213601 + 0.976921i \(0.568519\pi\)
\(168\) 37.9131i 0.225673i
\(169\) 0 0
\(170\) −232.339 −1.36670
\(171\) −6.72295 + 1.80141i −0.0393155 + 0.0105346i
\(172\) −31.1417 + 53.9390i −0.181056 + 0.313599i
\(173\) 241.179 139.245i 1.39410 0.804884i 0.400334 0.916369i \(-0.368894\pi\)
0.993766 + 0.111485i \(0.0355608\pi\)
\(174\) 67.6380 + 67.6380i 0.388724 + 0.388724i
\(175\) −23.8469 + 88.9978i −0.136268 + 0.508559i
\(176\) −55.5030 14.8720i −0.315358 0.0845000i
\(177\) −81.2919 + 81.2919i −0.459276 + 0.459276i
\(178\) 2.54160 + 4.40219i 0.0142787 + 0.0247314i
\(179\) −68.2036 39.3774i −0.381026 0.219985i 0.297239 0.954803i \(-0.403934\pi\)
−0.678264 + 0.734818i \(0.737268\pi\)
\(180\) 0.926294 + 3.45698i 0.00514608 + 0.0192054i
\(181\) 200.758i 1.10916i 0.832130 + 0.554581i \(0.187121\pi\)
−0.832130 + 0.554581i \(0.812879\pi\)
\(182\) 0 0
\(183\) −70.2233 −0.383734
\(184\) 17.1776 4.60271i 0.0933563 0.0250147i
\(185\) −21.5356 + 37.3008i −0.116409 + 0.201626i
\(186\) −45.3123 + 26.1611i −0.243615 + 0.140651i
\(187\) −246.262 246.262i −1.31691 1.31691i
\(188\) −5.60485 + 20.9176i −0.0298131 + 0.111264i
\(189\) −113.109 30.3075i −0.598460 0.160357i
\(190\) −178.612 + 178.612i −0.940061 + 0.940061i
\(191\) −20.2650 35.1001i −0.106100 0.183770i 0.808087 0.589063i \(-0.200503\pi\)
−0.914187 + 0.405293i \(0.867170\pi\)
\(192\) 21.0873 + 12.1748i 0.109830 + 0.0634103i
\(193\) −37.5529 140.149i −0.194575 0.726163i −0.992377 0.123243i \(-0.960671\pi\)
0.797802 0.602920i \(-0.205996\pi\)
\(194\) 35.5934i 0.183471i
\(195\) 0 0
\(196\) −59.2103 −0.302093
\(197\) −149.555 + 40.0731i −0.759161 + 0.203417i −0.617578 0.786510i \(-0.711886\pi\)
−0.141583 + 0.989926i \(0.545219\pi\)
\(198\) −2.68233 + 4.64594i −0.0135471 + 0.0234643i
\(199\) 225.470 130.175i 1.13302 0.654147i 0.188324 0.982107i \(-0.439695\pi\)
0.944691 + 0.327960i \(0.106361\pi\)
\(200\) 41.8430 + 41.8430i 0.209215 + 0.209215i
\(201\) 84.7802 316.404i 0.421792 1.57415i
\(202\) 207.379 + 55.5671i 1.02663 + 0.275084i
\(203\) 69.2019 69.2019i 0.340896 0.340896i
\(204\) 73.7905 + 127.809i 0.361718 + 0.626514i
\(205\) −428.200 247.221i −2.08878 1.20596i
\(206\) −6.35684 23.7241i −0.0308585 0.115165i
\(207\) 1.66030i 0.00802079i
\(208\) 0 0
\(209\) −378.630 −1.81162
\(210\) 124.083 33.2478i 0.590869 0.158323i
\(211\) −208.203 + 360.618i −0.986744 + 1.70909i −0.352831 + 0.935687i \(0.614781\pi\)
−0.633913 + 0.773404i \(0.718552\pi\)
\(212\) −58.4767 + 33.7616i −0.275834 + 0.159253i
\(213\) 4.92110 + 4.92110i 0.0231037 + 0.0231037i
\(214\) −19.4699 + 72.6626i −0.0909808 + 0.339545i
\(215\) 203.842 + 54.6193i 0.948103 + 0.254043i
\(216\) −53.1790 + 53.1790i −0.246199 + 0.246199i
\(217\) 26.7660 + 46.3600i 0.123346 + 0.213641i
\(218\) −92.4532 53.3779i −0.424097 0.244853i
\(219\) −42.5322 158.732i −0.194211 0.724805i
\(220\) 194.693i 0.884969i
\(221\) 0 0
\(222\) 27.3587 0.123237
\(223\) 197.340 52.8772i 0.884935 0.237118i 0.212400 0.977183i \(-0.431872\pi\)
0.672535 + 0.740065i \(0.265205\pi\)
\(224\) 12.4563 21.5749i 0.0556084 0.0963165i
\(225\) 4.78451 2.76234i 0.0212645 0.0122771i
\(226\) −36.2266 36.2266i −0.160295 0.160295i
\(227\) −28.7917 + 107.452i −0.126836 + 0.473358i −0.999898 0.0142503i \(-0.995464\pi\)
0.873063 + 0.487608i \(0.162130\pi\)
\(228\) 154.980 + 41.5268i 0.679738 + 0.182135i
\(229\) 212.309 212.309i 0.927114 0.927114i −0.0704045 0.997519i \(-0.522429\pi\)
0.997519 + 0.0704045i \(0.0224290\pi\)
\(230\) −30.1277 52.1826i −0.130990 0.226881i
\(231\) 166.758 + 96.2780i 0.721898 + 0.416788i
\(232\) −16.2679 60.7126i −0.0701202 0.261692i
\(233\) 46.5826i 0.199925i 0.994991 + 0.0999627i \(0.0318723\pi\)
−0.994991 + 0.0999627i \(0.968128\pi\)
\(234\) 0 0
\(235\) 73.3746 0.312233
\(236\) 72.9685 19.5518i 0.309188 0.0828468i
\(237\) 29.1127 50.4247i 0.122839 0.212763i
\(238\) 130.764 75.4966i 0.549429 0.317213i
\(239\) −138.309 138.309i −0.578698 0.578698i 0.355847 0.934544i \(-0.384192\pi\)
−0.934544 + 0.355847i \(0.884192\pi\)
\(240\) 21.3533 79.6916i 0.0889721 0.332048i
\(241\) −217.195 58.1972i −0.901223 0.241482i −0.221682 0.975119i \(-0.571155\pi\)
−0.679541 + 0.733637i \(0.737821\pi\)
\(242\) −85.3603 + 85.3603i −0.352728 + 0.352728i
\(243\) 7.12754 + 12.3453i 0.0293314 + 0.0508035i
\(244\) 39.9614 + 23.0717i 0.163776 + 0.0945563i
\(245\) 51.9244 + 193.784i 0.211936 + 0.790957i
\(246\) 314.068i 1.27670i
\(247\) 0 0
\(248\) 34.3807 0.138632
\(249\) 144.574 38.7384i 0.580618 0.155576i
\(250\) −19.5432 + 33.8498i −0.0781728 + 0.135399i
\(251\) −3.02255 + 1.74507i −0.0120420 + 0.00695247i −0.506009 0.862528i \(-0.668880\pi\)
0.493967 + 0.869481i \(0.335546\pi\)
\(252\) −1.64465 1.64465i −0.00652638 0.00652638i
\(253\) 23.3766 87.2427i 0.0923977 0.344833i
\(254\) 181.798 + 48.7125i 0.715738 + 0.191781i
\(255\) 353.584 353.584i 1.38661 1.38661i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 160.572 + 92.7065i 0.624795 + 0.360726i 0.778734 0.627355i \(-0.215862\pi\)
−0.153938 + 0.988080i \(0.549196\pi\)
\(258\) −34.6940 129.480i −0.134473 0.501859i
\(259\) 27.9913i 0.108074i
\(260\) 0 0
\(261\) −5.86820 −0.0224835
\(262\) 52.2831 14.0092i 0.199554 0.0534703i
\(263\) 93.6758 162.251i 0.356182 0.616925i −0.631138 0.775671i \(-0.717412\pi\)
0.987319 + 0.158746i \(0.0507451\pi\)
\(264\) 107.100 61.8342i 0.405682 0.234221i
\(265\) 161.776 + 161.776i 0.610477 + 0.610477i
\(266\) 42.4870 158.564i 0.159726 0.596104i
\(267\) −10.5674 2.83152i −0.0395782 0.0106050i
\(268\) −152.199 + 152.199i −0.567907 + 0.567907i
\(269\) −172.006 297.923i −0.639427 1.10752i −0.985559 0.169334i \(-0.945838\pi\)
0.346132 0.938186i \(-0.387495\pi\)
\(270\) 220.680 + 127.410i 0.817335 + 0.471888i
\(271\) 6.27795 + 23.4296i 0.0231659 + 0.0864562i 0.976541 0.215332i \(-0.0690832\pi\)
−0.953375 + 0.301788i \(0.902417\pi\)
\(272\) 96.9749i 0.356525i
\(273\) 0 0
\(274\) 11.3635 0.0414725
\(275\) 290.301 77.7860i 1.05564 0.282858i
\(276\) −19.1370 + 33.1462i −0.0693369 + 0.120095i
\(277\) 428.588 247.446i 1.54725 0.893306i 0.548901 0.835888i \(-0.315047\pi\)
0.998350 0.0574180i \(-0.0182868\pi\)
\(278\) 243.961 + 243.961i 0.877558 + 0.877558i
\(279\) 0.830770 3.10048i 0.00297767 0.0111128i
\(280\) −81.5342 21.8470i −0.291194 0.0780251i
\(281\) −145.653 + 145.653i −0.518337 + 0.518337i −0.917068 0.398731i \(-0.869451\pi\)
0.398731 + 0.917068i \(0.369451\pi\)
\(282\) −23.3036 40.3631i −0.0826370 0.143132i
\(283\) −372.577 215.107i −1.31653 0.760096i −0.333357 0.942801i \(-0.608182\pi\)
−0.983168 + 0.182704i \(0.941515\pi\)
\(284\) −1.18359 4.41723i −0.00416758 0.0155536i
\(285\) 543.639i 1.90750i
\(286\) 0 0
\(287\) 321.330 1.11962
\(288\) −1.44289 + 0.386621i −0.00501004 + 0.00134244i
\(289\) 149.379 258.732i 0.516883 0.895267i
\(290\) −184.435 + 106.484i −0.635983 + 0.367185i
\(291\) −54.1677 54.1677i −0.186143 0.186143i
\(292\) −27.9477 + 104.302i −0.0957114 + 0.357200i
\(293\) 91.6460 + 24.5565i 0.312785 + 0.0838105i 0.411797 0.911276i \(-0.364901\pi\)
−0.0990115 + 0.995086i \(0.531568\pi\)
\(294\) 90.1090 90.1090i 0.306493 0.306493i
\(295\) −127.979 221.667i −0.433828 0.751412i
\(296\) −15.5688 8.98865i −0.0525973 0.0303671i
\(297\) 98.8597 + 368.950i 0.332861 + 1.24225i
\(298\) 267.473i 0.897559i
\(299\) 0 0
\(300\) −127.357 −0.424524
\(301\) −132.474 + 35.4962i −0.440111 + 0.117927i
\(302\) 70.5995 122.282i 0.233773 0.404907i
\(303\) −400.164 + 231.035i −1.32067 + 0.762490i
\(304\) −74.5498 74.5498i −0.245230 0.245230i
\(305\) 40.4655 151.019i 0.132674 0.495145i
\(306\) −8.74526 2.34329i −0.0285793 0.00765780i
\(307\) −210.306 + 210.306i −0.685035 + 0.685035i −0.961130 0.276095i \(-0.910959\pi\)
0.276095 + 0.961130i \(0.410959\pi\)
\(308\) −63.2639 109.576i −0.205402 0.355767i
\(309\) 45.7785 + 26.4302i 0.148151 + 0.0855347i
\(310\) −30.1501 112.522i −0.0972585 0.362974i
\(311\) 246.623i 0.793001i 0.918035 + 0.396500i \(0.129775\pi\)
−0.918035 + 0.396500i \(0.870225\pi\)
\(312\) 0 0
\(313\) −118.526 −0.378679 −0.189339 0.981912i \(-0.560635\pi\)
−0.189339 + 0.981912i \(0.560635\pi\)
\(314\) 241.505 64.7111i 0.769125 0.206086i
\(315\) −3.94036 + 6.82490i −0.0125091 + 0.0216664i
\(316\) −33.1339 + 19.1299i −0.104854 + 0.0605376i
\(317\) 284.814 + 284.814i 0.898466 + 0.898466i 0.995300 0.0968348i \(-0.0308718\pi\)
−0.0968348 + 0.995300i \(0.530872\pi\)
\(318\) 37.6127 140.372i 0.118279 0.441423i
\(319\) −308.352 82.6227i −0.966621 0.259005i
\(320\) −38.3339 + 38.3339i −0.119793 + 0.119793i
\(321\) −80.9512 140.212i −0.252184 0.436796i
\(322\) 33.9126 + 19.5795i 0.105319 + 0.0608058i
\(323\) −165.385 617.227i −0.512029 1.91092i
\(324\) 166.614i 0.514240i
\(325\) 0 0
\(326\) 171.470 0.525981
\(327\) 221.933 59.4666i 0.678693 0.181855i
\(328\) 103.187 178.724i 0.314593 0.544892i
\(329\) −41.2964 + 23.8425i −0.125521 + 0.0724695i
\(330\) −296.293 296.293i −0.897858 0.897858i
\(331\) −116.054 + 433.118i −0.350615 + 1.30851i 0.535299 + 0.844663i \(0.320199\pi\)
−0.885914 + 0.463850i \(0.846468\pi\)
\(332\) −94.9990 25.4549i −0.286141 0.0766714i
\(333\) −1.18680 + 1.18680i −0.00356398 + 0.00356398i
\(334\) 209.805 + 363.392i 0.628158 + 1.08800i
\(335\) 631.591 + 364.649i 1.88535 + 1.08850i
\(336\) 13.8772 + 51.7902i 0.0413010 + 0.154138i
\(337\) 474.455i 1.40788i 0.710260 + 0.703939i \(0.248577\pi\)
−0.710260 + 0.703939i \(0.751423\pi\)
\(338\) 0 0
\(339\) 110.263 0.325259
\(340\) −317.381 + 85.0420i −0.933474 + 0.250124i
\(341\) 87.3078 151.222i 0.256035 0.443465i
\(342\) −8.52436 + 4.92154i −0.0249250 + 0.0143905i
\(343\) −244.782 244.782i −0.713650 0.713650i
\(344\) −22.7973 + 85.0807i −0.0662712 + 0.247328i
\(345\) 125.264 + 33.5643i 0.363083 + 0.0972878i
\(346\) 278.490 278.490i 0.804884 0.804884i
\(347\) 266.818 + 462.142i 0.768927 + 1.33182i 0.938145 + 0.346242i \(0.112543\pi\)
−0.169218 + 0.985579i \(0.554124\pi\)
\(348\) 117.152 + 67.6380i 0.336645 + 0.194362i
\(349\) 69.9275 + 260.973i 0.200365 + 0.747774i 0.990812 + 0.135244i \(0.0431817\pi\)
−0.790447 + 0.612531i \(0.790152\pi\)
\(350\) 130.302i 0.372291i
\(351\) 0 0
\(352\) −81.2621 −0.230858
\(353\) −340.955 + 91.3587i −0.965879 + 0.258806i −0.707087 0.707127i \(-0.749991\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(354\) −81.2919 + 140.802i −0.229638 + 0.397745i
\(355\) −13.4188 + 7.74736i −0.0377995 + 0.0218236i
\(356\) 5.08321 + 5.08321i 0.0142787 + 0.0142787i
\(357\) −84.1085 + 313.897i −0.235598 + 0.879263i
\(358\) −107.581 28.8262i −0.300505 0.0805202i
\(359\) −116.092 + 116.092i −0.323375 + 0.323375i −0.850060 0.526685i \(-0.823435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(360\) 2.53068 + 4.38327i 0.00702967 + 0.0121758i
\(361\) −289.001 166.855i −0.800556 0.462201i
\(362\) 73.4826 + 274.241i 0.202991 + 0.757572i
\(363\) 259.810i 0.715731i
\(364\) 0 0
\(365\) 365.871 1.00239
\(366\) −95.9268 + 25.7035i −0.262095 + 0.0702282i
\(367\) −343.162 + 594.375i −0.935047 + 1.61955i −0.160497 + 0.987036i \(0.551310\pi\)
−0.774550 + 0.632513i \(0.782024\pi\)
\(368\) 21.7803 12.5748i 0.0591855 0.0341708i
\(369\) −13.6241 13.6241i −0.0369217 0.0369217i
\(370\) −15.7652 + 58.8364i −0.0426086 + 0.159017i
\(371\) −143.618 38.4824i −0.387111 0.103726i
\(372\) −52.3222 + 52.3222i −0.140651 + 0.140651i
\(373\) 308.636 + 534.572i 0.827441 + 1.43317i 0.900039 + 0.435809i \(0.143538\pi\)
−0.0725981 + 0.997361i \(0.523129\pi\)
\(374\) −426.538 246.262i −1.14048 0.658455i
\(375\) −21.7725 81.2560i −0.0580599 0.216683i
\(376\) 30.6255i 0.0814508i
\(377\) 0 0
\(378\) −165.603 −0.438103
\(379\) −518.382 + 138.900i −1.36776 + 0.366491i −0.866661 0.498898i \(-0.833738\pi\)
−0.501101 + 0.865389i \(0.667072\pi\)
\(380\) −178.612 + 309.364i −0.470030 + 0.814116i
\(381\) −350.801 + 202.535i −0.920737 + 0.531588i
\(382\) −40.5301 40.5301i −0.106100 0.106100i
\(383\) −67.8074 + 253.061i −0.177043 + 0.660732i 0.819152 + 0.573577i \(0.194444\pi\)
−0.996195 + 0.0871559i \(0.972222\pi\)
\(384\) 33.2621 + 8.91255i 0.0866200 + 0.0232098i
\(385\) −303.144 + 303.144i −0.787387 + 0.787387i
\(386\) −102.596 177.702i −0.265794 0.460369i
\(387\) 7.12176 + 4.11175i 0.0184025 + 0.0106247i
\(388\) 13.0281 + 48.6215i 0.0335775 + 0.125313i
\(389\) 184.591i 0.474527i −0.971445 0.237264i \(-0.923749\pi\)
0.971445 0.237264i \(-0.0762505\pi\)
\(390\) 0 0
\(391\) 152.431 0.389848
\(392\) −80.8828 + 21.6725i −0.206334 + 0.0552869i
\(393\) −58.2469 + 100.887i −0.148211 + 0.256709i
\(394\) −189.628 + 109.482i −0.481289 + 0.277872i
\(395\) 91.6653 + 91.6653i 0.232064 + 0.232064i
\(396\) −1.96360 + 7.32827i −0.00495860 + 0.0185057i
\(397\) 245.213 + 65.7046i 0.617664 + 0.165503i 0.554066 0.832473i \(-0.313076\pi\)
0.0635986 + 0.997976i \(0.479742\pi\)
\(398\) 260.350 260.350i 0.654147 0.654147i
\(399\) 176.651 + 305.968i 0.442734 + 0.766838i
\(400\) 72.4741 + 41.8430i 0.181185 + 0.104607i
\(401\) −70.1504 261.805i −0.174939 0.652880i −0.996562 0.0828492i \(-0.973598\pi\)
0.821623 0.570031i \(-0.193069\pi\)
\(402\) 463.248i 1.15236i
\(403\) 0 0
\(404\) 303.624 0.751545
\(405\) −545.296 + 146.112i −1.34641 + 0.360770i
\(406\) 69.2019 119.861i 0.170448 0.295225i
\(407\) −79.0721 + 45.6523i −0.194280 + 0.112168i
\(408\) 147.581 + 147.581i 0.361718 + 0.361718i
\(409\) 40.8612 152.496i 0.0999051 0.372851i −0.897812 0.440378i \(-0.854844\pi\)
0.997717 + 0.0675274i \(0.0215110\pi\)
\(410\) −675.422 180.979i −1.64737 0.441411i
\(411\) −17.2935 + 17.2935i −0.0420766 + 0.0420766i
\(412\) −17.3672 30.0809i −0.0421534 0.0730119i
\(413\) 144.057 + 83.1715i 0.348807 + 0.201384i
\(414\) −0.607713 2.26802i −0.00146791 0.00547830i
\(415\) 333.237i 0.802980i
\(416\) 0 0
\(417\) −742.543 −1.78068
\(418\) −517.218 + 138.588i −1.23736 + 0.331550i
\(419\) 326.238 565.061i 0.778611 1.34859i −0.154132 0.988050i \(-0.549258\pi\)
0.932743 0.360543i \(-0.117409\pi\)
\(420\) 157.330 90.8347i 0.374596 0.216273i
\(421\) −294.576 294.576i −0.699704 0.699704i 0.264642 0.964347i \(-0.414746\pi\)
−0.964347 + 0.264642i \(0.914746\pi\)
\(422\) −152.415 + 568.821i −0.361173 + 1.34792i
\(423\) 2.76183 + 0.740029i 0.00652914 + 0.00174948i
\(424\) −67.5231 + 67.5231i −0.159253 + 0.159253i
\(425\) 253.607 + 439.261i 0.596723 + 1.03355i
\(426\) 8.52359 + 4.92110i 0.0200084 + 0.0115519i
\(427\) 26.2978 + 98.1448i 0.0615874 + 0.229847i
\(428\) 106.385i 0.248564i
\(429\) 0 0
\(430\) 298.445 0.694059
\(431\) 68.2190 18.2792i 0.158281 0.0424112i −0.178808 0.983884i \(-0.557224\pi\)
0.337089 + 0.941473i \(0.390558\pi\)
\(432\) −53.1790 + 92.1087i −0.123100 + 0.213215i
\(433\) −404.363 + 233.459i −0.933864 + 0.539167i −0.888032 0.459782i \(-0.847927\pi\)
−0.0458326 + 0.998949i \(0.514594\pi\)
\(434\) 53.5320 + 53.5320i 0.123346 + 0.123346i
\(435\) 118.630 442.734i 0.272713 1.01778i
\(436\) −145.831 39.0753i −0.334475 0.0896223i
\(437\) 117.182 117.182i 0.268150 0.268150i
\(438\) −116.200 201.264i −0.265297 0.459508i
\(439\) −103.577 59.8002i −0.235938 0.136219i 0.377370 0.926063i \(-0.376828\pi\)
−0.613309 + 0.789843i \(0.710162\pi\)
\(440\) 71.2627 + 265.956i 0.161961 + 0.604445i
\(441\) 7.81775i 0.0177273i
\(442\) 0 0
\(443\) −56.7213 −0.128039 −0.0640195 0.997949i \(-0.520392\pi\)
−0.0640195 + 0.997949i \(0.520392\pi\)
\(444\) 37.3727 10.0140i 0.0841727 0.0225540i
\(445\) 12.1787 21.0941i 0.0273679 0.0474025i
\(446\) 250.218 144.463i 0.561026 0.323909i
\(447\) 407.052 + 407.052i 0.910631 + 0.910631i
\(448\) 9.11863 34.0312i 0.0203541 0.0759625i
\(449\) 178.504 + 47.8299i 0.397558 + 0.106525i 0.452058 0.891988i \(-0.350690\pi\)
−0.0545000 + 0.998514i \(0.517357\pi\)
\(450\) 5.52468 5.52468i 0.0122771 0.0122771i
\(451\) −524.072 907.720i −1.16202 2.01268i
\(452\) −62.7464 36.2266i −0.138819 0.0801474i
\(453\) 78.6527 + 293.536i 0.173626 + 0.647982i
\(454\) 157.321i 0.346522i
\(455\) 0 0
\(456\) 226.907 0.497603
\(457\) 286.031 76.6418i 0.625889 0.167706i 0.0680852 0.997680i \(-0.478311\pi\)
0.557803 + 0.829973i \(0.311644\pi\)
\(458\) 212.309 367.730i 0.463557 0.802904i
\(459\) −558.265 + 322.314i −1.21626 + 0.702210i
\(460\) −60.2553 60.2553i −0.130990 0.130990i
\(461\) 159.753 596.206i 0.346535 1.29329i −0.544273 0.838908i \(-0.683194\pi\)
0.890808 0.454379i \(-0.150139\pi\)
\(462\) 263.036 + 70.4804i 0.569343 + 0.152555i
\(463\) −198.699 + 198.699i −0.429156 + 0.429156i −0.888341 0.459185i \(-0.848142\pi\)
0.459185 + 0.888341i \(0.348142\pi\)
\(464\) −44.4447 76.9805i −0.0957860 0.165906i
\(465\) 217.125 + 125.357i 0.466935 + 0.269585i
\(466\) 17.0504 + 63.6330i 0.0365889 + 0.136552i
\(467\) 522.015i 1.11781i −0.829233 0.558903i \(-0.811223\pi\)
0.829233 0.558903i \(-0.188777\pi\)
\(468\) 0 0
\(469\) −473.959 −1.01057
\(470\) 100.232 26.8570i 0.213259 0.0571425i
\(471\) −269.053 + 466.014i −0.571239 + 0.989414i
\(472\) 92.5203 53.4166i 0.196018 0.113171i
\(473\) 316.330 + 316.330i 0.668773 + 0.668773i
\(474\) 21.3120 79.5374i 0.0449620 0.167801i
\(475\) 532.645 + 142.722i 1.12136 + 0.300467i
\(476\) 150.993 150.993i 0.317213 0.317213i
\(477\) 4.45766 + 7.72090i 0.00934520 + 0.0161864i
\(478\) −239.558 138.309i −0.501167 0.289349i
\(479\) 87.8794 + 327.970i 0.183464 + 0.684698i 0.994954 + 0.100331i \(0.0319903\pi\)
−0.811490 + 0.584367i \(0.801343\pi\)
\(480\) 116.677i 0.243076i
\(481\) 0 0
\(482\) −317.995 −0.659741
\(483\) −81.4067 + 21.8129i −0.168544 + 0.0451612i
\(484\) −85.3603 + 147.848i −0.176364 + 0.305472i
\(485\) 147.704 85.2771i 0.304545 0.175829i
\(486\) 14.2551 + 14.2551i 0.0293314 + 0.0293314i
\(487\) 55.8489 208.431i 0.114679 0.427990i −0.884583 0.466382i \(-0.845557\pi\)
0.999263 + 0.0383927i \(0.0122238\pi\)
\(488\) 63.0332 + 16.8897i 0.129166 + 0.0346100i
\(489\) −260.951 + 260.951i −0.533642 + 0.533642i
\(490\) 141.860 + 245.709i 0.289510 + 0.501447i
\(491\) 480.847 + 277.617i 0.979322 + 0.565412i 0.902065 0.431600i \(-0.142051\pi\)
0.0772564 + 0.997011i \(0.475384\pi\)
\(492\) 114.957 + 429.025i 0.233652 + 0.872003i
\(493\) 538.753i 1.09280i
\(494\) 0 0
\(495\) 25.7061 0.0519315
\(496\) 46.9649 12.5842i 0.0946874 0.0253714i
\(497\) 5.03488 8.72067i 0.0101305 0.0175466i
\(498\) 183.312 105.835i 0.368097 0.212521i
\(499\) 401.619 + 401.619i 0.804847 + 0.804847i 0.983849 0.179002i \(-0.0572868\pi\)
−0.179002 + 0.983849i \(0.557287\pi\)
\(500\) −14.3066 + 53.3930i −0.0286132 + 0.106786i
\(501\) −872.318 233.737i −1.74115 0.466541i
\(502\) −3.49014 + 3.49014i −0.00695247 + 0.00695247i
\(503\) 196.833 + 340.925i 0.391319 + 0.677784i 0.992624 0.121236i \(-0.0386857\pi\)
−0.601305 + 0.799020i \(0.705352\pi\)
\(504\) −2.84861 1.64465i −0.00565201 0.00326319i
\(505\) −266.263 993.706i −0.527253 1.96773i
\(506\) 127.732i 0.252435i
\(507\) 0 0
\(508\) 266.170 0.523957
\(509\) 422.083 113.097i 0.829239 0.222194i 0.180858 0.983509i \(-0.442113\pi\)
0.648382 + 0.761315i \(0.275446\pi\)
\(510\) 353.584 612.426i 0.693303 1.20084i
\(511\) −205.918 + 118.887i −0.402971 + 0.232655i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −181.388 + 676.948i −0.353582 + 1.31959i
\(514\) 253.279 + 67.8659i 0.492761 + 0.132035i
\(515\) −83.2191 + 83.2191i −0.161591 + 0.161591i
\(516\) −94.7857 164.174i −0.183693 0.318166i
\(517\) 134.704 + 77.7716i 0.260550 + 0.150429i
\(518\) −10.2455 38.2368i −0.0197790 0.0738162i
\(519\) 847.638i 1.63321i
\(520\) 0 0
\(521\) 947.876 1.81934 0.909669 0.415333i \(-0.136335\pi\)
0.909669 + 0.415333i \(0.136335\pi\)
\(522\) −8.01611 + 2.14791i −0.0153565 + 0.00411477i
\(523\) 68.3466 118.380i 0.130682 0.226348i −0.793258 0.608886i \(-0.791617\pi\)
0.923940 + 0.382538i \(0.124950\pi\)
\(524\) 66.2923 38.2739i 0.126512 0.0730417i
\(525\) −198.299 198.299i −0.377713 0.377713i
\(526\) 68.5754 255.927i 0.130372 0.486553i
\(527\) 284.651 + 76.2721i 0.540135 + 0.144729i
\(528\) 123.668 123.668i 0.234221 0.234221i
\(529\) −244.734 423.892i −0.462635 0.801308i
\(530\) 280.205 + 161.776i 0.528689 + 0.305239i
\(531\) −2.58150 9.63430i −0.00486159 0.0181437i
\(532\) 232.153i 0.436378i
\(533\) 0 0
\(534\) −15.4717 −0.0289733
\(535\) 348.180 93.2946i 0.650804 0.174382i
\(536\) −152.199 + 263.617i −0.283954 + 0.491822i
\(537\) 207.591 119.853i 0.386575 0.223189i
\(538\) −344.012 344.012i −0.639427 0.639427i
\(539\) −110.072 + 410.794i −0.204215 + 0.762141i
\(540\) 348.090 + 93.2705i 0.644612 + 0.172723i
\(541\) 394.763 394.763i 0.729691 0.729691i −0.240867 0.970558i \(-0.577432\pi\)
0.970558 + 0.240867i \(0.0774318\pi\)
\(542\) 17.1517 + 29.7076i 0.0316452 + 0.0548110i
\(543\) −529.182 305.523i −0.974552 0.562658i
\(544\) −35.4953 132.470i −0.0652487 0.243511i
\(545\) 511.545i 0.938616i
\(546\) 0 0
\(547\) −716.303 −1.30951 −0.654756 0.755840i \(-0.727229\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(548\) 15.5228 4.15932i 0.0283263 0.00759000i
\(549\) 3.04625 5.27625i 0.00554872 0.00961066i
\(550\) 368.087 212.515i 0.669250 0.386392i
\(551\) −414.168 414.168i −0.751666 0.751666i
\(552\) −14.0092 + 52.2832i −0.0253791 + 0.0947159i
\(553\) −81.3765 21.8048i −0.147155 0.0394300i
\(554\) 494.891 494.891i 0.893306 0.893306i
\(555\) −65.5478 113.532i −0.118104 0.204562i
\(556\) 422.553 + 243.961i 0.759988 + 0.438779i
\(557\) −15.6018 58.2268i −0.0280104 0.104536i 0.950505 0.310708i \(-0.100566\pi\)
−0.978516 + 0.206172i \(0.933899\pi\)
\(558\) 4.53941i 0.00813515i
\(559\) 0 0
\(560\) −119.374 −0.213169
\(561\) 1023.90 274.353i 1.82513 0.489043i
\(562\) −145.653 + 252.278i −0.259168 + 0.448893i
\(563\) 233.194 134.635i 0.414199 0.239138i −0.278393 0.960467i \(-0.589802\pi\)
0.692592 + 0.721329i \(0.256469\pi\)
\(564\) −46.6073 46.6073i −0.0826370 0.0826370i
\(565\) −63.5378 + 237.126i −0.112456 + 0.419693i
\(566\) −587.684 157.469i −1.03831 0.278215i
\(567\) 259.423 259.423i 0.457537 0.457537i
\(568\) −3.23364 5.60082i −0.00569302 0.00986060i
\(569\) −232.943 134.490i −0.409390 0.236361i 0.281138 0.959667i \(-0.409288\pi\)
−0.690528 + 0.723306i \(0.742622\pi\)
\(570\) −198.986 742.624i −0.349097 1.30285i
\(571\) 328.719i 0.575689i 0.957677 + 0.287845i \(0.0929387\pi\)
−0.957677 + 0.287845i \(0.907061\pi\)
\(572\) 0 0
\(573\) 123.361 0.215290
\(574\) 438.945 117.615i 0.764713 0.204904i
\(575\) −65.7711 + 113.919i −0.114384 + 0.198120i
\(576\) −1.82951 + 1.05627i −0.00317624 + 0.00183380i
\(577\) 18.1490 + 18.1490i 0.0314540 + 0.0314540i 0.722659 0.691205i \(-0.242920\pi\)
−0.691205 + 0.722659i \(0.742920\pi\)
\(578\) 109.353 408.111i 0.189192 0.706075i
\(579\) 426.572 + 114.300i 0.736739 + 0.197409i
\(580\) −212.967 + 212.967i −0.367185 + 0.367185i
\(581\) −108.283 187.551i −0.186373 0.322807i
\(582\) −93.8212 54.1677i −0.161205 0.0930716i
\(583\) 125.525 + 468.467i 0.215309 + 0.803546i
\(584\) 152.709i 0.261488i
\(585\) 0 0
\(586\) 134.179 0.228975
\(587\) −112.495 + 30.1430i −0.191644 + 0.0513509i −0.353364 0.935486i \(-0.614962\pi\)
0.161720 + 0.986837i \(0.448296\pi\)
\(588\) 90.1090 156.073i 0.153247 0.265431i
\(589\) 277.461 160.192i 0.471072 0.271973i
\(590\) −255.958 255.958i −0.433828 0.433828i
\(591\) 121.970 455.199i 0.206379 0.770218i
\(592\) −24.5574 6.58015i −0.0414822 0.0111151i
\(593\) −215.404 + 215.404i −0.363244 + 0.363244i −0.865006 0.501762i \(-0.832685\pi\)
0.501762 + 0.865006i \(0.332685\pi\)
\(594\) 270.090 + 467.809i 0.454697 + 0.787558i
\(595\) −626.587 361.760i −1.05309 0.608000i
\(596\) −97.9017 365.374i −0.164265 0.613044i
\(597\) 792.427i 1.32735i
\(598\) 0 0
\(599\) −657.704 −1.09800 −0.549002 0.835821i \(-0.684992\pi\)
−0.549002 + 0.835821i \(0.684992\pi\)
\(600\) −173.973 + 46.6159i −0.289955 + 0.0776932i
\(601\) −149.567 + 259.057i −0.248863 + 0.431044i −0.963211 0.268747i \(-0.913390\pi\)
0.714347 + 0.699791i \(0.246724\pi\)
\(602\) −167.970 + 96.9774i −0.279019 + 0.161092i
\(603\) 20.0954 + 20.0954i 0.0333257 + 0.0333257i
\(604\) 51.6824 192.881i 0.0855669 0.319340i
\(605\) 558.737 + 149.713i 0.923532 + 0.247460i
\(606\) −462.069 + 462.069i −0.762490 + 0.762490i
\(607\) 355.980 + 616.576i 0.586459 + 1.01578i 0.994692 + 0.102898i \(0.0328116\pi\)
−0.408233 + 0.912878i \(0.633855\pi\)
\(608\) −129.124 74.5498i −0.212375 0.122615i
\(609\) 77.0957 + 287.725i 0.126594 + 0.472455i
\(610\) 221.107i 0.362471i
\(611\) 0 0
\(612\) −12.8040 −0.0209215
\(613\) 705.887 189.142i 1.15153 0.308551i 0.367951 0.929845i \(-0.380059\pi\)
0.783578 + 0.621294i \(0.213393\pi\)
\(614\) −210.306 + 364.260i −0.342517 + 0.593257i
\(615\) 1303.31 752.466i 2.11920 1.22352i
\(616\) −126.528 126.528i −0.205402 0.205402i
\(617\) 90.7668 338.746i 0.147110 0.549021i −0.852543 0.522658i \(-0.824941\pi\)
0.999652 0.0263636i \(-0.00839276\pi\)
\(618\) 72.2087 + 19.3483i 0.116843 + 0.0313079i
\(619\) −283.795 + 283.795i −0.458474 + 0.458474i −0.898154 0.439680i \(-0.855092\pi\)
0.439680 + 0.898154i \(0.355092\pi\)
\(620\) −82.3717 142.672i −0.132858 0.230116i
\(621\) −144.782 83.5897i −0.233143 0.134605i
\(622\) 90.2704 + 336.894i 0.145129 + 0.541630i
\(623\) 15.8295i 0.0254084i
\(624\) 0 0
\(625\) 710.329 1.13653
\(626\) −161.910 + 43.3837i −0.258642 + 0.0693030i
\(627\) 576.216 998.036i 0.919005 1.59176i
\(628\) 306.216 176.794i 0.487606 0.281519i
\(629\) −108.959 108.959i −0.173226 0.173226i
\(630\) −2.88454 + 10.7653i −0.00457864 + 0.0170877i
\(631\) −1115.36 298.859i −1.76760 0.473627i −0.779365 0.626570i \(-0.784458\pi\)
−0.988235 + 0.152944i \(0.951125\pi\)
\(632\) −38.2597 + 38.2597i −0.0605376 + 0.0605376i
\(633\) −633.706 1097.61i −1.00112 1.73398i
\(634\) 493.312 + 284.814i 0.778094 + 0.449233i
\(635\) −233.417 871.126i −0.367587 1.37185i
\(636\) 205.520i 0.323144i
\(637\) 0 0
\(638\) −451.459 −0.707615
\(639\) −0.583223 + 0.156274i −0.000912712 + 0.000244560i
\(640\) −38.3339 + 66.3963i −0.0598967 + 0.103744i
\(641\) −225.174 + 130.005i −0.351286 + 0.202815i −0.665252 0.746619i \(-0.731676\pi\)
0.313965 + 0.949434i \(0.398342\pi\)
\(642\) −161.902 161.902i −0.252184 0.252184i
\(643\) 3.19272 11.9154i 0.00496535 0.0185309i −0.963399 0.268073i \(-0.913613\pi\)
0.968364 + 0.249542i \(0.0802800\pi\)
\(644\) 53.4921 + 14.3332i 0.0830622 + 0.0222565i
\(645\) −454.188 + 454.188i −0.704168 + 0.704168i
\(646\) −451.841 782.612i −0.699445 1.21147i
\(647\) −822.864 475.081i −1.27182 0.734283i −0.296486 0.955037i \(-0.595815\pi\)
−0.975329 + 0.220755i \(0.929148\pi\)
\(648\) −60.9849 227.599i −0.0941124 0.351232i
\(649\) 542.593i 0.836045i
\(650\) 0 0
\(651\) −162.935 −0.250284
\(652\) 234.232 62.7624i 0.359252 0.0962613i
\(653\) −282.884 + 489.970i −0.433207 + 0.750336i −0.997147 0.0754792i \(-0.975951\pi\)
0.563941 + 0.825815i \(0.309285\pi\)
\(654\) 281.399 162.466i 0.430274 0.248419i
\(655\) −183.398 183.398i −0.279997 0.279997i
\(656\) 75.5378 281.911i 0.115149 0.429742i
\(657\) 13.7714 + 3.69004i 0.0209611 + 0.00561650i
\(658\) −47.6849 + 47.6849i −0.0724695 + 0.0724695i
\(659\) −190.174 329.390i −0.288579 0.499833i 0.684892 0.728645i \(-0.259849\pi\)
−0.973471 + 0.228811i \(0.926516\pi\)
\(660\) −513.195 296.293i −0.777568 0.448929i
\(661\) −257.291 960.224i −0.389245 1.45268i −0.831364 0.555728i \(-0.812440\pi\)
0.442119 0.896956i \(-0.354227\pi\)
\(662\) 634.128i 0.957898i
\(663\) 0 0
\(664\) −139.088 −0.209470
\(665\) −759.795 + 203.586i −1.14255 + 0.306145i
\(666\) −1.18680 + 2.05561i −0.00178199 + 0.00308650i
\(667\) 121.002 69.8606i 0.181413 0.104739i
\(668\) 419.609 + 419.609i 0.628158 + 0.628158i
\(669\) −160.942 + 600.644i −0.240571 + 0.897823i
\(670\) 996.240 + 266.942i 1.48693 + 0.398420i
\(671\) 234.357 234.357i 0.349266 0.349266i
\(672\) 37.9131 + 65.6674i 0.0564183 + 0.0977193i
\(673\) 548.632 + 316.753i 0.815204 + 0.470658i 0.848760 0.528779i \(-0.177350\pi\)
−0.0335560 + 0.999437i \(0.510683\pi\)
\(674\) 173.663 + 648.117i 0.257660 + 0.961599i
\(675\) 556.292i 0.824136i
\(676\) 0 0
\(677\) −221.745 −0.327540 −0.163770 0.986499i \(-0.552366\pi\)
−0.163770 + 0.986499i \(0.552366\pi\)
\(678\) 150.622 40.3590i 0.222156 0.0595265i
\(679\) −55.4201 + 95.9905i −0.0816202 + 0.141370i
\(680\) −402.423 + 232.339i −0.591799 + 0.341675i
\(681\) −239.418 239.418i −0.351569 0.351569i
\(682\) 63.9137 238.529i 0.0937152 0.349750i
\(683\) 645.671 + 173.007i 0.945345 + 0.253304i 0.698386 0.715722i \(-0.253902\pi\)
0.246959 + 0.969026i \(0.420569\pi\)
\(684\) −9.84309 + 9.84309i −0.0143905 + 0.0143905i
\(685\) −27.2254 47.1558i −0.0397451 0.0688405i
\(686\) −423.975 244.782i −0.618039 0.356825i
\(687\) 236.527 + 882.731i 0.344290 + 1.28491i
\(688\) 124.567i 0.181056i
\(689\) 0 0
\(690\) 183.399 0.265795
\(691\) −548.121 + 146.869i −0.793229 + 0.212545i −0.632609 0.774471i \(-0.718016\pi\)
−0.160620 + 0.987016i \(0.551349\pi\)
\(692\) 278.490 482.359i 0.402442 0.697050i
\(693\) −14.4678 + 8.35297i −0.0208770 + 0.0120534i
\(694\) 533.636 + 533.636i 0.768927 + 0.768927i
\(695\) 427.883 1596.88i 0.615659 2.29767i
\(696\) 184.790 + 49.5145i 0.265504 + 0.0711415i
\(697\) 1250.81 1250.81i 1.79457 1.79457i
\(698\) 191.046 + 330.901i 0.273704 + 0.474070i
\(699\) −122.788 70.8916i −0.175662 0.101419i
\(700\) 47.6938 + 177.996i 0.0681340 + 0.254280i
\(701\) 597.453i 0.852287i 0.904656 + 0.426143i \(0.140128\pi\)
−0.904656 + 0.426143i \(0.859872\pi\)
\(702\) 0 0
\(703\) −167.526 −0.238301
\(704\) −111.006 + 29.7440i −0.157679 + 0.0422500i
\(705\) −111.665 + 193.409i −0.158390 + 0.274339i
\(706\) −432.314 + 249.596i −0.612342 + 0.353536i
\(707\) 472.753 + 472.753i 0.668675 + 0.668675i
\(708\) −59.5098 + 222.094i −0.0840534 + 0.313692i
\(709\) −38.3029 10.2632i −0.0540239 0.0144757i 0.231706 0.972786i \(-0.425569\pi\)
−0.285730 + 0.958310i \(0.592236\pi\)
\(710\) −15.4947 + 15.4947i −0.0218236 + 0.0218236i
\(711\) 2.52579 + 4.37479i 0.00355244 + 0.00615301i
\(712\) 8.80437 + 5.08321i 0.0123657 + 0.00713934i
\(713\) 19.7806 + 73.8221i 0.0277427 + 0.103537i
\(714\) 459.577i 0.643666i
\(715\) 0 0
\(716\) −157.509 −0.219985
\(717\) 575.055 154.085i 0.802029 0.214903i
\(718\) −116.092 + 201.077i −0.161688 + 0.280051i
\(719\) 864.778 499.280i 1.20275 0.694409i 0.241585 0.970380i \(-0.422333\pi\)
0.961166 + 0.275971i \(0.0889993\pi\)
\(720\) 5.06137 + 5.06137i 0.00702967 + 0.00702967i
\(721\) 19.7956 73.8783i 0.0274558 0.102466i
\(722\) −455.855 122.146i −0.631379 0.169177i
\(723\) 483.940 483.940i 0.669350 0.669350i
\(724\) 200.758 + 347.724i 0.277290 + 0.480281i
\(725\) 402.636 + 232.462i 0.555360 + 0.320638i
\(726\) −95.0972 354.908i −0.130988 0.488854i
\(727\) 685.178i 0.942473i −0.882007 0.471237i \(-0.843808\pi\)
0.882007 0.471237i \(-0.156192\pi\)
\(728\) 0 0
\(729\) 706.374 0.968963
\(730\) 499.789 133.918i 0.684643 0.183450i
\(731\) −377.495 + 653.841i −0.516409 + 0.894447i
\(732\) −121.630 + 70.2233i −0.166162 + 0.0959334i
\(733\) −176.253 176.253i −0.240454 0.240454i 0.576584 0.817038i \(-0.304385\pi\)
−0.817038 + 0.576584i \(0.804385\pi\)
\(734\) −251.212 + 937.537i −0.342251 + 1.27730i
\(735\) −589.820 158.042i −0.802477 0.215023i
\(736\) 25.1497 25.1497i 0.0341708 0.0341708i
\(737\) 773.001 + 1338.88i 1.04885 + 1.81666i
\(738\) −23.5976 13.6241i −0.0319751 0.0184608i
\(739\) 358.434 + 1337.69i 0.485026 + 1.81014i 0.579946 + 0.814655i \(0.303074\pi\)
−0.0949200 + 0.995485i \(0.530260\pi\)
\(740\) 86.1425i 0.116409i
\(741\) 0 0
\(742\) −210.272 −0.283385
\(743\) −563.335 + 150.945i −0.758190 + 0.203156i −0.617148 0.786847i \(-0.711712\pi\)
−0.141042 + 0.990004i \(0.545045\pi\)
\(744\) −52.3222 + 90.6247i −0.0703255 + 0.121807i
\(745\) −1109.95 + 640.829i −1.48986 + 0.860173i
\(746\) 617.271 + 617.271i 0.827441 + 0.827441i
\(747\) −3.36090 + 12.5431i −0.00449920 + 0.0167912i
\(748\) −672.800 180.276i −0.899466 0.241011i
\(749\) −165.646 + 165.646i −0.221156 + 0.221156i
\(750\) −59.4835 103.028i −0.0793113 0.137371i
\(751\) 1012.32 + 584.461i 1.34796 + 0.778244i 0.987960 0.154709i \(-0.0494441\pi\)
0.359998 + 0.932953i \(0.382777\pi\)
\(752\) 11.2097 + 41.8352i 0.0149065 + 0.0556319i
\(753\) 10.6229i 0.0141075i
\(754\) 0 0
\(755\) −676.588 −0.896143
\(756\) −226.218 + 60.6149i −0.299230 + 0.0801785i
\(757\) 561.343 972.275i 0.741537 1.28438i −0.210259 0.977646i \(-0.567431\pi\)
0.951796 0.306733i \(-0.0992360\pi\)
\(758\) −657.282 + 379.482i −0.867126 + 0.500636i
\(759\) 194.389 + 194.389i 0.256112 + 0.256112i
\(760\) −130.753 + 487.976i −0.172043 + 0.642073i
\(761\) 918.907 + 246.221i 1.20750 + 0.323549i 0.805781 0.592214i \(-0.201746\pi\)
0.401719 + 0.915763i \(0.368413\pi\)
\(762\) −405.070 + 405.070i −0.531588 + 0.531588i
\(763\) −166.222 287.906i −0.217854 0.377334i
\(764\) −70.2001 40.5301i −0.0918850 0.0530498i
\(765\) 11.2284 + 41.9050i 0.0146777 + 0.0547778i
\(766\) 370.506i 0.483690i
\(767\) 0 0
\(768\) 48.6991 0.0634103
\(769\) −199.332 + 53.4110i −0.259210 + 0.0694551i −0.386084 0.922464i \(-0.626172\pi\)
0.126874 + 0.991919i \(0.459506\pi\)
\(770\) −303.144 + 525.061i −0.393694 + 0.681898i
\(771\) −488.733 + 282.170i −0.633895 + 0.365979i
\(772\) −205.193 205.193i −0.265794 0.265794i
\(773\) −115.667 + 431.675i −0.149634 + 0.558441i 0.849871 + 0.526990i \(0.176680\pi\)
−0.999505 + 0.0314512i \(0.989987\pi\)
\(774\) 11.2335 + 3.01001i 0.0145136 + 0.00388890i
\(775\) −179.824 + 179.824i −0.232031 + 0.232031i
\(776\) 35.5934 + 61.6496i 0.0458678 + 0.0794453i
\(777\) 73.7826 + 42.5984i 0.0949583 + 0.0548242i
\(778\) −67.5651 252.156i −0.0868445 0.324108i
\(779\) 1923.14i 2.46872i
\(780\) 0 0
\(781\) −32.8465 −0.0420570
\(782\) 208.224 55.7934i 0.266271 0.0713471i
\(783\) −295.441 + 511.718i −0.377319 + 0.653535i
\(784\) −102.555 + 59.2103i −0.130810 + 0.0755233i
\(785\) −847.151 847.151i −1.07917 1.07917i
\(786\) −42.6397 + 159.134i −0.0542490 + 0.202460i
\(787\) 648.040 + 173.642i 0.823431 + 0.220638i 0.645846 0.763468i \(-0.276505\pi\)
0.177585 + 0.984105i \(0.443172\pi\)
\(788\) −218.963 + 218.963i −0.277872 + 0.277872i
\(789\) 285.120 + 493.843i 0.361369 + 0.625910i
\(790\) 158.769 + 91.6653i 0.200973 + 0.116032i
\(791\) −41.2921 154.104i −0.0522025 0.194822i
\(792\) 10.7293i 0.0135471i
\(793\) 0 0
\(794\) 359.016 0.452162
\(795\) −672.628 + 180.230i −0.846073 + 0.226705i
\(796\) 260.350 450.940i 0.327073 0.566508i
\(797\) 207.230 119.644i 0.260013 0.150118i −0.364328 0.931271i \(-0.618701\pi\)
0.624340 + 0.781152i \(0.285368\pi\)
\(798\) 353.302 + 353.302i 0.442734 + 0.442734i
\(799\) −67.9413 + 253.560i −0.0850329 + 0.317347i
\(800\) 114.317 + 30.6312i 0.142896 + 0.0382890i
\(801\) 0.671155 0.671155i 0.000837896 0.000837896i
\(802\) −191.654 331.955i −0.238971 0.413909i
\(803\) 671.683 + 387.796i 0.836466 + 0.482934i
\(804\) −169.560 632.808i −0.210896 0.787075i
\(805\) 187.639i 0.233092i
\(806\) 0 0
\(807\) 1047.07 1.29748
\(808\) 414.758 111.134i 0.513315 0.137542i
\(809\) −234.046 + 405.380i −0.289303 + 0.501088i −0.973644 0.228075i \(-0.926757\pi\)
0.684340 + 0.729163i \(0.260090\pi\)
\(810\) −691.408 + 399.185i −0.853590 + 0.492820i
\(811\) 680.928 + 680.928i 0.839615 + 0.839615i 0.988808 0.149193i \(-0.0476675\pi\)
−0.149193 + 0.988808i \(0.547668\pi\)
\(812\) 50.6593 189.063i 0.0623883 0.232836i
\(813\) −71.3126 19.1082i −0.0877154 0.0235033i
\(814\) −91.3046 + 91.3046i −0.112168 + 0.112168i
\(815\) −410.819 711.560i −0.504073 0.873080i
\(816\) 255.618 + 147.581i 0.313257 + 0.180859i
\(817\) 212.442 + 792.843i 0.260027 + 0.970433i
\(818\) 223.270i 0.272946i
\(819\) 0 0
\(820\) −988.886 −1.20596
\(821\) −1217.29 + 326.171i −1.48269 + 0.397285i −0.907260 0.420569i \(-0.861830\pi\)
−0.575426 + 0.817854i \(0.695164\pi\)
\(822\) −17.2935 + 29.9532i −0.0210383 + 0.0364394i
\(823\) −499.204 + 288.216i −0.606566 + 0.350201i −0.771620 0.636083i \(-0.780553\pi\)
0.165054 + 0.986285i \(0.447220\pi\)
\(824\) −34.7344 34.7344i −0.0421534 0.0421534i
\(825\) −236.757 + 883.589i −0.286978 + 1.07102i
\(826\) 227.229 + 60.8858i 0.275095 + 0.0737116i
\(827\) −434.651 + 434.651i −0.525575 + 0.525575i −0.919250 0.393675i \(-0.871204\pi\)
0.393675 + 0.919250i \(0.371204\pi\)
\(828\) −1.66030 2.87573i −0.00200520 0.00347310i
\(829\) 109.340 + 63.1272i 0.131893 + 0.0761486i 0.564495 0.825437i \(-0.309071\pi\)
−0.432602 + 0.901585i \(0.642404\pi\)
\(830\) 121.973 + 455.210i 0.146956 + 0.548446i
\(831\) 1506.30i 1.81263i
\(832\) 0 0
\(833\) −717.739 −0.861632
\(834\) −1014.33 + 271.790i −1.21623 + 0.325887i
\(835\) 1005.33 1741.28i 1.20399 2.08537i
\(836\) −655.806 + 378.630i −0.784457 + 0.452906i
\(837\) −228.542 228.542i −0.273048 0.273048i
\(838\) 238.823 891.299i 0.284991 1.06360i
\(839\) −1229.99 329.574i −1.46601 0.392817i −0.564451 0.825466i \(-0.690912\pi\)
−0.901562 + 0.432649i \(0.857579\pi\)
\(840\) 181.669 181.669i 0.216273 0.216273i
\(841\) 173.584 + 300.656i 0.206401 + 0.357498i
\(842\) −510.220 294.576i −0.605962 0.349852i
\(843\) −162.267 605.589i −0.192488 0.718374i
\(844\) 832.812i 0.986744i
\(845\) 0 0
\(846\) 4.04360 0.00477966
\(847\) −363.114 + 97.2960i −0.428706 + 0.114871i
\(848\) −67.5231 + 116.953i −0.0796263 + 0.137917i
\(849\) 1134.01 654.720i 1.33570 0.771166i
\(850\) 507.215 + 507.215i 0.596723 + 0.596723i
\(851\) 10.3430 38.6007i 0.0121540 0.0453593i
\(852\) 13.4447 + 3.60249i 0.0157801 + 0.00422828i
\(853\) −162.871 + 162.871i −0.190939 + 0.190939i −0.796102 0.605163i \(-0.793108\pi\)
0.605163 + 0.796102i \(0.293108\pi\)
\(854\) 71.8470 + 124.443i 0.0841299 + 0.145717i
\(855\) 40.8465 + 23.5827i 0.0477737 + 0.0275822i
\(856\) 38.9398 + 145.325i 0.0454904 + 0.169772i
\(857\) 1077.67i 1.25750i −0.777609 0.628748i \(-0.783568\pi\)
0.777609 0.628748i \(-0.216432\pi\)
\(858\) 0 0
\(859\) 654.044 0.761402 0.380701 0.924698i \(-0.375683\pi\)
0.380701 + 0.924698i \(0.375683\pi\)
\(860\) 407.684 109.239i 0.474051 0.127022i
\(861\) −489.015 + 846.999i −0.567962 + 0.983739i
\(862\) 86.4982 49.9398i 0.100346 0.0579348i
\(863\) −916.358 916.358i −1.06183 1.06183i −0.997958 0.0638705i \(-0.979656\pi\)
−0.0638705 0.997958i \(-0.520344\pi\)
\(864\) −38.9297 + 145.288i −0.0450576 + 0.168157i
\(865\) −1822.89 488.443i −2.10739 0.564674i
\(866\) −466.918 + 466.918i −0.539167 + 0.539167i
\(867\) 454.664 + 787.502i 0.524411 + 0.908306i
\(868\) 92.7201 + 53.5320i 0.106820 + 0.0616728i
\(869\) 71.1248 + 265.441i 0.0818468 + 0.305456i
\(870\) 648.207i 0.745066i
\(871\) 0 0
\(872\) −213.512 −0.244853
\(873\) 6.41967 1.72015i 0.00735358 0.00197039i
\(874\) 117.182 202.964i 0.134075 0.232225i
\(875\) −105.411 + 60.8589i −0.120469 + 0.0695530i
\(876\) −232.400 232.400i −0.265297 0.265297i
\(877\) −237.471 + 886.252i −0.270776 + 1.01055i 0.687843 + 0.725859i \(0.258558\pi\)
−0.958619 + 0.284691i \(0.908109\pi\)
\(878\) −163.377 43.7768i −0.186079 0.0498597i
\(879\) −204.200 + 204.200i −0.232309 + 0.232309i
\(880\) 194.693 + 337.219i 0.221242 + 0.383203i
\(881\) −837.311 483.422i −0.950410 0.548719i −0.0572017 0.998363i \(-0.518218\pi\)
−0.893208 + 0.449643i \(0.851551\pi\)
\(882\) 2.86150 + 10.6793i 0.00324433 + 0.0121080i
\(883\) 1129.48i 1.27914i −0.768731 0.639572i \(-0.779112\pi\)
0.768731 0.639572i \(-0.220888\pi\)
\(884\) 0 0
\(885\) 779.059 0.880293
\(886\) −77.4827 + 20.7614i −0.0874523 + 0.0234328i
\(887\) 827.477 1433.23i 0.932894 1.61582i 0.154547 0.987985i \(-0.450608\pi\)
0.778347 0.627834i \(-0.216058\pi\)
\(888\) 47.3866 27.3587i 0.0533633 0.0308093i
\(889\) 414.436 + 414.436i 0.466182 + 0.466182i
\(890\) 8.91542 33.2728i 0.0100173 0.0373852i
\(891\) −1155.95 309.735i −1.29736 0.347626i
\(892\) 288.926 288.926i 0.323909 0.323909i
\(893\) 142.695 + 247.155i 0.159793 + 0.276770i
\(894\) 705.035 + 407.052i 0.788630 + 0.455316i
\(895\) 138.128 + 515.500i 0.154333 + 0.575977i
\(896\) 49.8251i 0.0556084i
\(897\) 0 0
\(898\) 261.348 0.291033
\(899\) 260.918 69.9127i 0.290231 0.0777672i
\(900\) 5.52468 9.56903i 0.00613853 0.0106323i
\(901\) −708.847 + 409.253i −0.786733 + 0.454221i
\(902\) −1048.14 1048.14i −1.16202 1.16202i
\(903\) 108.039 403.209i 0.119645 0.446521i
\(904\) −98.9730 26.5197i −0.109483 0.0293360i
\(905\) 961.981 961.981i 1.06296 1.06296i
\(906\) 214.883 + 372.188i 0.237178 + 0.410804i
\(907\) −386.408 223.093i −0.426029 0.245968i 0.271625 0.962403i \(-0.412439\pi\)
−0.697653 + 0.716435i \(0.745772\pi\)
\(908\) 57.5835 + 214.904i 0.0634179 + 0.236679i
\(909\) 40.0886i 0.0441019i
\(910\) 0 0
\(911\) 1639.85 1.80005 0.900025 0.435838i \(-0.143548\pi\)
0.900025 + 0.435838i \(0.143548\pi\)
\(912\) 309.960 83.0536i 0.339869 0.0910676i
\(913\) −353.206 + 611.771i −0.386863 + 0.670067i
\(914\) 362.673 209.389i 0.396797 0.229091i
\(915\) 336.491 + 336.491i 0.367750 + 0.367750i
\(916\) 155.421 580.039i 0.169674 0.633231i
\(917\) 162.813 + 43.6256i 0.177550 + 0.0475743i
\(918\) −644.629 + 644.629i −0.702210 + 0.702210i
\(919\) −595.311 1031.11i −0.647782 1.12199i −0.983652 0.180082i \(-0.942364\pi\)
0.335870 0.941908i \(-0.390970\pi\)
\(920\) −104.365 60.2553i −0.113441 0.0654949i
\(921\) −234.295 874.401i −0.254392 0.949404i
\(922\) 872.906i 0.946752i
\(923\) 0 0
\(924\) 385.112 0.416788
\(925\) 128.445 34.4166i 0.138859 0.0372071i
\(926\) −198.699 + 344.157i −0.214578 + 0.371660i
\(927\) −3.97169 + 2.29306i −0.00428446 + 0.00247363i
\(928\) −88.8894 88.8894i −0.0957860 0.0957860i
\(929\) −206.356 + 770.131i −0.222127 + 0.828990i 0.761408 + 0.648273i \(0.224508\pi\)
−0.983535 + 0.180717i \(0.942158\pi\)
\(930\) 342.482 + 91.7677i 0.368260 + 0.0986750i
\(931\) −551.765 + 551.765i −0.592658 + 0.592658i
\(932\) 46.5826 + 80.6834i 0.0499813 + 0.0865702i
\(933\) −650.078 375.323i −0.696761 0.402275i
\(934\) −191.071 713.086i −0.204573 0.763475i
\(935\) 2360.05i 2.52411i
\(936\) 0 0
\(937\) 406.611 0.433950 0.216975 0.976177i \(-0.430381\pi\)
0.216975 + 0.976177i \(0.430381\pi\)
\(938\) −647.440 + 173.481i −0.690234 + 0.184948i
\(939\) 180.379 312.426i 0.192097 0.332722i
\(940\) 127.089 73.3746i 0.135201 0.0780581i
\(941\) 67.4219 + 67.4219i 0.0716492 + 0.0716492i 0.742023 0.670374i \(-0.233866\pi\)
−0.670374 + 0.742023i \(0.733866\pi\)
\(942\) −196.961 + 735.068i −0.209088 + 0.780327i
\(943\) 443.123 + 118.735i 0.469908 + 0.125911i
\(944\) 106.833 106.833i 0.113171 0.113171i
\(945\) 396.763 + 687.214i 0.419855 + 0.727210i
\(946\) 547.899 + 316.330i 0.579175 + 0.334387i
\(947\) −425.925 1589.57i −0.449762 1.67853i −0.703047 0.711143i \(-0.748178\pi\)
0.253285 0.967392i \(-0.418489\pi\)
\(948\) 116.451i 0.122839i
\(949\) 0 0
\(950\) 779.846 0.820891
\(951\) −1184.19 + 317.302i −1.24520 + 0.333651i
\(952\) 150.993 261.528i 0.158606 0.274714i
\(953\) 807.423 466.166i 0.847243 0.489156i −0.0124765 0.999922i \(-0.503971\pi\)
0.859720 + 0.510766i \(0.170638\pi\)
\(954\) 8.91532 + 8.91532i 0.00934520 + 0.00934520i
\(955\) −71.0856 + 265.295i −0.0744351 + 0.277796i
\(956\) −377.866 101.249i −0.395258 0.105909i
\(957\) 687.051 687.051i 0.717921 0.717921i
\(958\) 240.091 + 415.850i 0.250617 + 0.434081i
\(959\) 30.6457 + 17.6933i 0.0319559 + 0.0184498i
\(960\) −42.7066 159.383i −0.0444860 0.166024i
\(961\) 813.246i 0.846249i
\(962\) 0 0
\(963\) 14.0465 0.0145862
\(964\) −434.389 + 116.394i −0.450611 + 0.120741i
\(965\) −491.615 + 851.503i −0.509446 + 0.882386i
\(966\) −103.220 + 59.5939i −0.106853 + 0.0616914i
\(967\) 540.669 + 540.669i 0.559120 + 0.559120i 0.929057 0.369937i \(-0.120621\pi\)
−0.369937 + 0.929057i \(0.620621\pi\)
\(968\) −62.4880 + 233.209i −0.0645538 + 0.240918i
\(969\) 1878.65 + 503.382i 1.93875 + 0.519486i
\(970\) 170.554 170.554i 0.175829 0.175829i
\(971\) −848.378 1469.43i −0.873716 1.51332i −0.858124 0.513442i \(-0.828370\pi\)
−0.0155919 0.999878i \(-0.504963\pi\)
\(972\) 24.6905 + 14.2551i 0.0254018 + 0.0146657i
\(973\) 278.074 + 1037.79i 0.285790 + 1.06658i
\(974\) 305.164i 0.313310i
\(975\) 0 0
\(976\) 92.2869 0.0945563
\(977\) 275.638 73.8571i 0.282127 0.0755958i −0.114981 0.993368i \(-0.536681\pi\)
0.397108 + 0.917772i \(0.370014\pi\)
\(978\) −260.951 + 451.980i −0.266821 + 0.462148i
\(979\) 44.7164 25.8170i 0.0456756 0.0263708i
\(980\) 283.720 + 283.720i 0.289510 + 0.289510i
\(981\) −5.15926 + 19.2546i −0.00525918 + 0.0196275i
\(982\) 758.464 + 203.230i 0.772367 + 0.206955i
\(983\) 41.0192 41.0192i 0.0417286 0.0417286i −0.685935 0.727663i \(-0.740606\pi\)
0.727663 + 0.685935i \(0.240606\pi\)
\(984\) 314.068 + 543.982i 0.319175 + 0.552827i
\(985\) 908.647 + 524.607i 0.922484 + 0.532596i
\(986\) −197.197 735.950i −0.199997 0.746399i
\(987\) 145.138i 0.147050i
\(988\) 0 0
\(989\) −195.801 −0.197979
\(990\) 35.1151 9.40908i 0.0354698 0.00950412i
\(991\) −188.074 + 325.754i −0.189782 + 0.328712i −0.945178 0.326557i \(-0.894111\pi\)
0.755395 + 0.655269i \(0.227445\pi\)
\(992\) 59.5492 34.3807i 0.0600294 0.0346580i
\(993\) −965.046 965.046i −0.971849 0.971849i
\(994\) 3.68579 13.7556i 0.00370804 0.0138386i
\(995\) −1704.16 456.628i −1.71272 0.458922i
\(996\) 211.671 211.671i 0.212521 0.212521i
\(997\) 722.549 + 1251.49i 0.724724 + 1.25526i 0.959088 + 0.283109i \(0.0913659\pi\)
−0.234364 + 0.972149i \(0.575301\pi\)
\(998\) 695.624 + 401.619i 0.697018 + 0.402424i
\(999\) 43.7407 + 163.243i 0.0437845 + 0.163406i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.f.j.319.1 8
13.2 odd 12 inner 338.3.f.j.249.1 8
13.3 even 3 338.3.f.i.89.1 8
13.4 even 6 338.3.d.g.99.3 8
13.5 odd 4 338.3.f.i.19.1 8
13.6 odd 12 338.3.d.f.239.3 8
13.7 odd 12 338.3.d.g.239.3 8
13.8 odd 4 26.3.f.b.19.1 yes 8
13.9 even 3 338.3.d.f.99.3 8
13.10 even 6 26.3.f.b.11.1 8
13.11 odd 12 338.3.f.h.249.1 8
13.12 even 2 338.3.f.h.319.1 8
39.8 even 4 234.3.bb.f.19.1 8
39.23 odd 6 234.3.bb.f.37.1 8
52.23 odd 6 208.3.bd.f.193.2 8
52.47 even 4 208.3.bd.f.97.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.1 8 13.10 even 6
26.3.f.b.19.1 yes 8 13.8 odd 4
208.3.bd.f.97.2 8 52.47 even 4
208.3.bd.f.193.2 8 52.23 odd 6
234.3.bb.f.19.1 8 39.8 even 4
234.3.bb.f.37.1 8 39.23 odd 6
338.3.d.f.99.3 8 13.9 even 3
338.3.d.f.239.3 8 13.6 odd 12
338.3.d.g.99.3 8 13.4 even 6
338.3.d.g.239.3 8 13.7 odd 12
338.3.f.h.249.1 8 13.11 odd 12
338.3.f.h.319.1 8 13.12 even 2
338.3.f.i.19.1 8 13.5 odd 4
338.3.f.i.89.1 8 13.3 even 3
338.3.f.j.249.1 8 13.2 odd 12 inner
338.3.f.j.319.1 8 1.1 even 1 trivial