Properties

Label 338.3.f.j.249.2
Level $338$
Weight $3$
Character 338.249
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,0,-6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 249.2
Root \(3.90972 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.249
Dual form 338.3.f.j.319.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(2.38787 + 4.13592i) q^{3} +(1.73205 + 1.00000i) q^{4} +(5.88981 - 5.88981i) q^{5} +(1.74804 + 6.52379i) q^{6} +(0.344179 - 0.0922225i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-6.90386 + 11.9578i) q^{9} +(10.2015 - 5.88981i) q^{10} +(0.191720 - 0.715507i) q^{11} +9.55149i q^{12} +0.503913 q^{14} +(38.4239 + 10.2956i) q^{15} +(2.00000 + 3.46410i) q^{16} +(2.49470 + 1.44031i) q^{17} +(-13.8077 + 13.8077i) q^{18} +(-2.81216 - 10.4951i) q^{19} +(16.0913 - 4.31164i) q^{20} +(1.20328 + 1.20328i) q^{21} +(0.523787 - 0.907226i) q^{22} +(-19.8278 + 11.4476i) q^{23} +(-3.49609 + 13.0476i) q^{24} -44.3798i q^{25} -22.9605 q^{27} +(0.688358 + 0.184445i) q^{28} +(-15.2092 - 26.3432i) q^{29} +(48.7195 + 28.1282i) q^{30} +(-14.8631 + 14.8631i) q^{31} +(1.46410 + 5.46410i) q^{32} +(3.41708 - 0.915603i) q^{33} +(2.88063 + 2.88063i) q^{34} +(1.48398 - 2.57032i) q^{35} +(-23.9157 + 13.8077i) q^{36} +(-10.7928 + 40.2792i) q^{37} -15.3659i q^{38} +23.5593 q^{40} +(-24.8893 - 6.66907i) q^{41} +(1.20328 + 2.08414i) q^{42} +(25.3907 + 14.6593i) q^{43} +(1.04757 - 1.04757i) q^{44} +(29.7670 + 111.092i) q^{45} +(-31.2753 + 8.38019i) q^{46} +(-21.2000 - 21.2000i) q^{47} +(-9.55149 + 16.5437i) q^{48} +(-42.3253 + 24.4365i) q^{49} +(16.2441 - 60.6239i) q^{50} +13.7571i q^{51} -85.8410 q^{53} +(-31.3646 - 8.40412i) q^{54} +(-3.08501 - 5.34339i) q^{55} +(0.872803 + 0.503913i) q^{56} +(36.6919 - 36.6919i) q^{57} +(-11.1339 - 41.5524i) q^{58} +(96.6638 - 25.9010i) q^{59} +(56.2565 + 56.2565i) q^{60} +(-7.73202 + 13.3923i) q^{61} +(-25.7437 + 14.8631i) q^{62} +(-1.27338 + 4.75233i) q^{63} +8.00000i q^{64} +5.00295 q^{66} +(67.2315 + 18.0146i) q^{67} +(2.88063 + 4.98939i) q^{68} +(-94.6923 - 54.6706i) q^{69} +(2.96795 - 2.96795i) q^{70} +(-25.2424 - 94.2060i) q^{71} +(-37.7234 + 10.1080i) q^{72} +(-50.9541 - 50.9541i) q^{73} +(-29.4864 + 51.0720i) q^{74} +(183.551 - 105.973i) q^{75} +(5.62432 - 20.9903i) q^{76} -0.263943i q^{77} +105.981 q^{79} +(32.1825 + 8.62328i) q^{80} +(7.30809 + 12.6580i) q^{81} +(-31.5584 - 18.2202i) q^{82} +(27.2221 - 27.2221i) q^{83} +(0.880862 + 3.28742i) q^{84} +(23.1765 - 6.21012i) q^{85} +(29.3186 + 29.3186i) q^{86} +(72.6355 - 125.808i) q^{87} +(1.81445 - 1.04757i) q^{88} +(22.0127 - 82.1525i) q^{89} +162.650i q^{90} -45.7902 q^{92} +(-96.9639 - 25.9814i) q^{93} +(-21.2000 - 36.7195i) q^{94} +(-78.3775 - 45.2513i) q^{95} +(-19.1030 + 19.1030i) q^{96} +(-5.26095 - 19.6341i) q^{97} +(-66.7618 + 17.8888i) q^{98} +(7.23232 + 7.23232i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} + 6 q^{6} + 8 q^{7} + 16 q^{8} - 42 q^{9} + 18 q^{10} + 24 q^{11} + 20 q^{14} + 126 q^{15} + 16 q^{16} + 42 q^{17} - 84 q^{18} + 68 q^{19} + 12 q^{20} + 102 q^{21} - 42 q^{22} + 36 q^{23}+ \cdots - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 2.38787 + 4.13592i 0.795957 + 1.37864i 0.922230 + 0.386643i \(0.126365\pi\)
−0.126272 + 0.991996i \(0.540301\pi\)
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 5.88981 5.88981i 1.17796 1.17796i 0.197700 0.980263i \(-0.436653\pi\)
0.980263 0.197700i \(-0.0633472\pi\)
\(6\) 1.74804 + 6.52379i 0.291341 + 1.08730i
\(7\) 0.344179 0.0922225i 0.0491684 0.0131746i −0.234151 0.972200i \(-0.575231\pi\)
0.283319 + 0.959026i \(0.408564\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −6.90386 + 11.9578i −0.767096 + 1.32865i
\(10\) 10.2015 5.88981i 1.02015 0.588981i
\(11\) 0.191720 0.715507i 0.0174290 0.0650461i −0.956664 0.291195i \(-0.905947\pi\)
0.974093 + 0.226149i \(0.0726137\pi\)
\(12\) 9.55149i 0.795957i
\(13\) 0 0
\(14\) 0.503913 0.0359938
\(15\) 38.4239 + 10.2956i 2.56159 + 0.686377i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 2.49470 + 1.44031i 0.146747 + 0.0847244i 0.571576 0.820549i \(-0.306332\pi\)
−0.424829 + 0.905274i \(0.639666\pi\)
\(18\) −13.8077 + 13.8077i −0.767096 + 0.767096i
\(19\) −2.81216 10.4951i −0.148009 0.552375i −0.999603 0.0281743i \(-0.991031\pi\)
0.851594 0.524201i \(-0.175636\pi\)
\(20\) 16.0913 4.31164i 0.804563 0.215582i
\(21\) 1.20328 + 1.20328i 0.0572990 + 0.0572990i
\(22\) 0.523787 0.907226i 0.0238085 0.0412376i
\(23\) −19.8278 + 11.4476i −0.862076 + 0.497720i −0.864707 0.502277i \(-0.832496\pi\)
0.00263083 + 0.999997i \(0.499163\pi\)
\(24\) −3.49609 + 13.0476i −0.145670 + 0.543649i
\(25\) 44.3798i 1.77519i
\(26\) 0 0
\(27\) −22.9605 −0.850388
\(28\) 0.688358 + 0.184445i 0.0245842 + 0.00658732i
\(29\) −15.2092 26.3432i −0.524457 0.908386i −0.999595 0.0284745i \(-0.990935\pi\)
0.475138 0.879911i \(-0.342398\pi\)
\(30\) 48.7195 + 28.1282i 1.62398 + 0.937608i
\(31\) −14.8631 + 14.8631i −0.479456 + 0.479456i −0.904958 0.425502i \(-0.860098\pi\)
0.425502 + 0.904958i \(0.360098\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 3.41708 0.915603i 0.103548 0.0277456i
\(34\) 2.88063 + 2.88063i 0.0847244 + 0.0847244i
\(35\) 1.48398 2.57032i 0.0423993 0.0734378i
\(36\) −23.9157 + 13.8077i −0.664325 + 0.383548i
\(37\) −10.7928 + 40.2792i −0.291697 + 1.08863i 0.652108 + 0.758126i \(0.273885\pi\)
−0.943805 + 0.330502i \(0.892782\pi\)
\(38\) 15.3659i 0.404367i
\(39\) 0 0
\(40\) 23.5593 0.588981
\(41\) −24.8893 6.66907i −0.607056 0.162660i −0.0578194 0.998327i \(-0.518415\pi\)
−0.549237 + 0.835667i \(0.685081\pi\)
\(42\) 1.20328 + 2.08414i 0.0286495 + 0.0496224i
\(43\) 25.3907 + 14.6593i 0.590480 + 0.340914i 0.765287 0.643689i \(-0.222597\pi\)
−0.174807 + 0.984603i \(0.555930\pi\)
\(44\) 1.04757 1.04757i 0.0238085 0.0238085i
\(45\) 29.7670 + 111.092i 0.661489 + 2.46871i
\(46\) −31.2753 + 8.38019i −0.679898 + 0.182178i
\(47\) −21.2000 21.2000i −0.451065 0.451065i 0.444643 0.895708i \(-0.353330\pi\)
−0.895708 + 0.444643i \(0.853330\pi\)
\(48\) −9.55149 + 16.5437i −0.198989 + 0.344660i
\(49\) −42.3253 + 24.4365i −0.863781 + 0.498704i
\(50\) 16.2441 60.6239i 0.324883 1.21248i
\(51\) 13.7571i 0.269748i
\(52\) 0 0
\(53\) −85.8410 −1.61964 −0.809821 0.586678i \(-0.800436\pi\)
−0.809821 + 0.586678i \(0.800436\pi\)
\(54\) −31.3646 8.40412i −0.580826 0.155632i
\(55\) −3.08501 5.34339i −0.0560911 0.0971526i
\(56\) 0.872803 + 0.503913i 0.0155858 + 0.00899844i
\(57\) 36.6919 36.6919i 0.643718 0.643718i
\(58\) −11.1339 41.5524i −0.191965 0.716421i
\(59\) 96.6638 25.9010i 1.63837 0.439000i 0.682046 0.731309i \(-0.261090\pi\)
0.956324 + 0.292309i \(0.0944237\pi\)
\(60\) 56.2565 + 56.2565i 0.937608 + 0.937608i
\(61\) −7.73202 + 13.3923i −0.126754 + 0.219545i −0.922417 0.386195i \(-0.873789\pi\)
0.795663 + 0.605740i \(0.207123\pi\)
\(62\) −25.7437 + 14.8631i −0.415221 + 0.239728i
\(63\) −1.27338 + 4.75233i −0.0202124 + 0.0754338i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 5.00295 0.0758023
\(67\) 67.2315 + 18.0146i 1.00346 + 0.268875i 0.722893 0.690960i \(-0.242812\pi\)
0.280563 + 0.959836i \(0.409479\pi\)
\(68\) 2.88063 + 4.98939i 0.0423622 + 0.0733735i
\(69\) −94.6923 54.6706i −1.37235 0.792328i
\(70\) 2.96795 2.96795i 0.0423993 0.0423993i
\(71\) −25.2424 94.2060i −0.355527 1.32685i −0.879820 0.475307i \(-0.842337\pi\)
0.524293 0.851538i \(-0.324330\pi\)
\(72\) −37.7234 + 10.1080i −0.523936 + 0.140388i
\(73\) −50.9541 50.9541i −0.698001 0.698001i 0.265978 0.963979i \(-0.414305\pi\)
−0.963979 + 0.265978i \(0.914305\pi\)
\(74\) −29.4864 + 51.0720i −0.398465 + 0.690162i
\(75\) 183.551 105.973i 2.44735 1.41298i
\(76\) 5.62432 20.9903i 0.0740043 0.276188i
\(77\) 0.263943i 0.00342783i
\(78\) 0 0
\(79\) 105.981 1.34153 0.670767 0.741669i \(-0.265965\pi\)
0.670767 + 0.741669i \(0.265965\pi\)
\(80\) 32.1825 + 8.62328i 0.402282 + 0.107791i
\(81\) 7.30809 + 12.6580i 0.0902233 + 0.156271i
\(82\) −31.5584 18.2202i −0.384858 0.222198i
\(83\) 27.2221 27.2221i 0.327977 0.327977i −0.523840 0.851817i \(-0.675501\pi\)
0.851817 + 0.523840i \(0.175501\pi\)
\(84\) 0.880862 + 3.28742i 0.0104864 + 0.0391360i
\(85\) 23.1765 6.21012i 0.272664 0.0730602i
\(86\) 29.3186 + 29.3186i 0.340914 + 0.340914i
\(87\) 72.6355 125.808i 0.834891 1.44607i
\(88\) 1.81445 1.04757i 0.0206188 0.0119043i
\(89\) 22.0127 82.1525i 0.247334 0.923061i −0.724863 0.688893i \(-0.758097\pi\)
0.972196 0.234168i \(-0.0752365\pi\)
\(90\) 162.650i 1.80722i
\(91\) 0 0
\(92\) −45.7902 −0.497720
\(93\) −96.9639 25.9814i −1.04262 0.279370i
\(94\) −21.2000 36.7195i −0.225532 0.390633i
\(95\) −78.3775 45.2513i −0.825026 0.476329i
\(96\) −19.1030 + 19.1030i −0.198989 + 0.198989i
\(97\) −5.26095 19.6341i −0.0542366 0.202414i 0.933491 0.358601i \(-0.116746\pi\)
−0.987727 + 0.156188i \(0.950080\pi\)
\(98\) −66.7618 + 17.8888i −0.681243 + 0.182538i
\(99\) 7.23232 + 7.23232i 0.0730537 + 0.0730537i
\(100\) 44.3798 76.8681i 0.443798 0.768681i
\(101\) 24.0962 13.9119i 0.238576 0.137742i −0.375946 0.926642i \(-0.622682\pi\)
0.614522 + 0.788900i \(0.289349\pi\)
\(102\) −5.03546 + 18.7926i −0.0493673 + 0.184241i
\(103\) 68.0852i 0.661021i −0.943802 0.330511i \(-0.892779\pi\)
0.943802 0.330511i \(-0.107221\pi\)
\(104\) 0 0
\(105\) 14.1742 0.134992
\(106\) −117.261 31.4200i −1.10624 0.296415i
\(107\) 64.2996 + 111.370i 0.600930 + 1.04084i 0.992680 + 0.120770i \(0.0385365\pi\)
−0.391750 + 0.920072i \(0.628130\pi\)
\(108\) −39.7687 22.9605i −0.368229 0.212597i
\(109\) 30.5407 30.5407i 0.280190 0.280190i −0.552995 0.833185i \(-0.686515\pi\)
0.833185 + 0.552995i \(0.186515\pi\)
\(110\) −2.25838 8.42840i −0.0205308 0.0766219i
\(111\) −192.363 + 51.5436i −1.73300 + 0.464357i
\(112\) 1.00783 + 1.00783i 0.00899844 + 0.00899844i
\(113\) −23.0706 + 39.9595i −0.204165 + 0.353624i −0.949866 0.312656i \(-0.898781\pi\)
0.745701 + 0.666280i \(0.232115\pi\)
\(114\) 63.5522 36.6919i 0.557476 0.321859i
\(115\) −49.3578 + 184.206i −0.429198 + 1.60179i
\(116\) 60.8370i 0.524457i
\(117\) 0 0
\(118\) 141.526 1.19937
\(119\) 0.991451 + 0.265659i 0.00833152 + 0.00223243i
\(120\) 56.2565 + 97.4391i 0.468804 + 0.811992i
\(121\) 104.314 + 60.2256i 0.862098 + 0.497733i
\(122\) −15.4640 + 15.4640i −0.126754 + 0.126754i
\(123\) −31.8498 118.865i −0.258941 0.966381i
\(124\) −40.6068 + 10.8806i −0.327474 + 0.0877465i
\(125\) −114.143 114.143i −0.913147 0.913147i
\(126\) −3.47895 + 6.02571i −0.0276107 + 0.0478231i
\(127\) −199.748 + 115.325i −1.57282 + 0.908067i −0.576997 + 0.816746i \(0.695776\pi\)
−0.995822 + 0.0913210i \(0.970891\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 140.018i 1.08541i
\(130\) 0 0
\(131\) 162.262 1.23864 0.619321 0.785138i \(-0.287408\pi\)
0.619321 + 0.785138i \(0.287408\pi\)
\(132\) 6.83416 + 1.83121i 0.0517739 + 0.0138728i
\(133\) −1.93577 3.35286i −0.0145547 0.0252095i
\(134\) 85.2462 + 49.2169i 0.636165 + 0.367290i
\(135\) −135.233 + 135.233i −1.00173 + 1.00173i
\(136\) 2.10877 + 7.87002i 0.0155056 + 0.0578678i
\(137\) −99.8210 + 26.7470i −0.728620 + 0.195233i −0.604015 0.796973i \(-0.706433\pi\)
−0.124606 + 0.992206i \(0.539767\pi\)
\(138\) −109.341 109.341i −0.792328 0.792328i
\(139\) 12.7892 22.1516i 0.0920087 0.159364i −0.816348 0.577561i \(-0.804005\pi\)
0.908356 + 0.418197i \(0.137338\pi\)
\(140\) 5.14064 2.96795i 0.0367189 0.0211997i
\(141\) 37.0586 138.305i 0.262827 0.980883i
\(142\) 137.927i 0.971318i
\(143\) 0 0
\(144\) −55.2309 −0.383548
\(145\) −244.736 65.5768i −1.68784 0.452254i
\(146\) −50.9541 88.2551i −0.349001 0.604487i
\(147\) −202.135 116.703i −1.37507 0.793895i
\(148\) −58.9729 + 58.9729i −0.398465 + 0.398465i
\(149\) −6.96307 25.9865i −0.0467320 0.174406i 0.938615 0.344965i \(-0.112109\pi\)
−0.985347 + 0.170559i \(0.945443\pi\)
\(150\) 289.524 77.5778i 1.93016 0.517185i
\(151\) 109.697 + 109.697i 0.726468 + 0.726468i 0.969914 0.243446i \(-0.0782780\pi\)
−0.243446 + 0.969914i \(0.578278\pi\)
\(152\) 15.3659 26.6146i 0.101092 0.175096i
\(153\) −34.4461 + 19.8875i −0.225138 + 0.129983i
\(154\) 0.0966099 0.360553i 0.000627337 0.00234125i
\(155\) 175.082i 1.12956i
\(156\) 0 0
\(157\) −142.680 −0.908790 −0.454395 0.890800i \(-0.650145\pi\)
−0.454395 + 0.890800i \(0.650145\pi\)
\(158\) 144.773 + 38.7918i 0.916284 + 0.245518i
\(159\) −204.977 355.031i −1.28917 2.23290i
\(160\) 40.8058 + 23.5593i 0.255036 + 0.147245i
\(161\) −5.76857 + 5.76857i −0.0358296 + 0.0358296i
\(162\) 5.34989 + 19.9661i 0.0330240 + 0.123247i
\(163\) 25.6588 6.87526i 0.157416 0.0421795i −0.179250 0.983804i \(-0.557367\pi\)
0.336666 + 0.941624i \(0.390701\pi\)
\(164\) −36.4405 36.4405i −0.222198 0.222198i
\(165\) 14.7332 25.5187i 0.0892922 0.154659i
\(166\) 47.1500 27.2221i 0.284036 0.163988i
\(167\) 1.94780 7.26931i 0.0116635 0.0435288i −0.959849 0.280518i \(-0.909494\pi\)
0.971512 + 0.236989i \(0.0761605\pi\)
\(168\) 4.81312i 0.0286495i
\(169\) 0 0
\(170\) 33.9327 0.199604
\(171\) 144.914 + 38.8296i 0.847450 + 0.227074i
\(172\) 29.3186 + 50.7813i 0.170457 + 0.295240i
\(173\) 24.9669 + 14.4146i 0.144317 + 0.0833216i 0.570420 0.821353i \(-0.306780\pi\)
−0.426103 + 0.904675i \(0.640114\pi\)
\(174\) 145.271 145.271i 0.834891 0.834891i
\(175\) −4.09281 15.2746i −0.0233875 0.0872834i
\(176\) 2.86203 0.766878i 0.0162615 0.00435726i
\(177\) 337.945 + 337.945i 1.90929 + 1.90929i
\(178\) 60.1398 104.165i 0.337864 0.585197i
\(179\) 183.682 106.049i 1.02616 0.592453i 0.110277 0.993901i \(-0.464826\pi\)
0.915882 + 0.401448i \(0.131493\pi\)
\(180\) −59.5340 + 222.184i −0.330744 + 1.23435i
\(181\) 112.088i 0.619270i −0.950856 0.309635i \(-0.899793\pi\)
0.950856 0.309635i \(-0.100207\pi\)
\(182\) 0 0
\(183\) −73.8523 −0.403564
\(184\) −62.5506 16.7604i −0.339949 0.0910891i
\(185\) 173.670 + 300.805i 0.938755 + 1.62597i
\(186\) −122.945 70.9825i −0.660996 0.381626i
\(187\) 1.50884 1.50884i 0.00806865 0.00806865i
\(188\) −15.5195 57.9196i −0.0825505 0.308083i
\(189\) −7.90251 + 2.11747i −0.0418122 + 0.0112036i
\(190\) −90.5025 90.5025i −0.476329 0.476329i
\(191\) −132.524 + 229.538i −0.693843 + 1.20177i 0.276726 + 0.960949i \(0.410751\pi\)
−0.970569 + 0.240823i \(0.922583\pi\)
\(192\) −33.0873 + 19.1030i −0.172330 + 0.0994947i
\(193\) 41.2029 153.771i 0.213486 0.796742i −0.773208 0.634153i \(-0.781349\pi\)
0.986694 0.162589i \(-0.0519844\pi\)
\(194\) 28.7464i 0.148177i
\(195\) 0 0
\(196\) −97.7461 −0.498704
\(197\) 290.559 + 77.8551i 1.47492 + 0.395204i 0.904615 0.426230i \(-0.140158\pi\)
0.570305 + 0.821433i \(0.306825\pi\)
\(198\) 7.23232 + 12.5267i 0.0365268 + 0.0632663i
\(199\) 162.223 + 93.6594i 0.815190 + 0.470650i 0.848755 0.528786i \(-0.177353\pi\)
−0.0335648 + 0.999437i \(0.510686\pi\)
\(200\) 88.7596 88.7596i 0.443798 0.443798i
\(201\) 86.0333 + 321.081i 0.428026 + 1.59742i
\(202\) 38.0081 10.1842i 0.188159 0.0504170i
\(203\) −7.66414 7.66414i −0.0377544 0.0377544i
\(204\) −13.7571 + 23.8281i −0.0674370 + 0.116804i
\(205\) −185.873 + 107.314i −0.906697 + 0.523482i
\(206\) 24.9209 93.0061i 0.120975 0.451486i
\(207\) 316.130i 1.52720i
\(208\) 0 0
\(209\) −8.04849 −0.0385095
\(210\) 19.3623 + 5.18811i 0.0922014 + 0.0247053i
\(211\) −84.9065 147.062i −0.402401 0.696978i 0.591614 0.806221i \(-0.298491\pi\)
−0.994015 + 0.109243i \(0.965157\pi\)
\(212\) −148.681 85.8410i −0.701325 0.404910i
\(213\) 329.353 329.353i 1.54626 1.54626i
\(214\) 47.0705 + 175.670i 0.219956 + 0.820886i
\(215\) 235.887 63.2057i 1.09715 0.293980i
\(216\) −45.9210 45.9210i −0.212597 0.212597i
\(217\) −3.74486 + 6.48629i −0.0172574 + 0.0298907i
\(218\) 52.8981 30.5407i 0.242652 0.140095i
\(219\) 89.0700 332.414i 0.406712 1.51787i
\(220\) 12.3400i 0.0560911i
\(221\) 0 0
\(222\) −281.639 −1.26865
\(223\) −232.297 62.2439i −1.04169 0.279121i −0.302878 0.953029i \(-0.597947\pi\)
−0.738815 + 0.673909i \(0.764614\pi\)
\(224\) 1.00783 + 1.74561i 0.00449922 + 0.00779288i
\(225\) 530.687 + 306.392i 2.35861 + 1.36174i
\(226\) −46.1413 + 46.1413i −0.204165 + 0.204165i
\(227\) 23.4180 + 87.3971i 0.103163 + 0.385009i 0.998130 0.0611224i \(-0.0194680\pi\)
−0.894967 + 0.446132i \(0.852801\pi\)
\(228\) 100.244 26.8603i 0.439667 0.117808i
\(229\) −248.887 248.887i −1.08684 1.08684i −0.995852 0.0909923i \(-0.970996\pi\)
−0.0909923 0.995852i \(-0.529004\pi\)
\(230\) −134.848 + 233.563i −0.586295 + 1.01549i
\(231\) 1.09165 0.630263i 0.00472574 0.00272841i
\(232\) 22.2679 83.1049i 0.0959823 0.358211i
\(233\) 384.870i 1.65180i 0.563815 + 0.825901i \(0.309333\pi\)
−0.563815 + 0.825901i \(0.690667\pi\)
\(234\) 0 0
\(235\) −249.728 −1.06267
\(236\) 193.328 + 51.8020i 0.819185 + 0.219500i
\(237\) 253.069 + 438.329i 1.06780 + 1.84949i
\(238\) 1.25711 + 0.725793i 0.00528198 + 0.00304955i
\(239\) −210.628 + 210.628i −0.881290 + 0.881290i −0.993666 0.112375i \(-0.964154\pi\)
0.112375 + 0.993666i \(0.464154\pi\)
\(240\) 41.1826 + 153.696i 0.171594 + 0.640398i
\(241\) −180.960 + 48.4880i −0.750870 + 0.201195i −0.613904 0.789381i \(-0.710402\pi\)
−0.136966 + 0.990576i \(0.543735\pi\)
\(242\) 120.451 + 120.451i 0.497733 + 0.497733i
\(243\) −138.224 + 239.411i −0.568822 + 0.985228i
\(244\) −26.7845 + 15.4640i −0.109773 + 0.0633772i
\(245\) −105.362 + 393.215i −0.430047 + 1.60496i
\(246\) 174.030i 0.707440i
\(247\) 0 0
\(248\) −59.4525 −0.239728
\(249\) 177.591 + 47.5853i 0.713216 + 0.191106i
\(250\) −114.143 197.702i −0.456573 0.790808i
\(251\) 87.0514 + 50.2592i 0.346818 + 0.200236i 0.663283 0.748369i \(-0.269163\pi\)
−0.316465 + 0.948604i \(0.602496\pi\)
\(252\) −6.95789 + 6.95789i −0.0276107 + 0.0276107i
\(253\) 4.38944 + 16.3816i 0.0173496 + 0.0647495i
\(254\) −315.073 + 84.4234i −1.24044 + 0.332376i
\(255\) 81.0270 + 81.0270i 0.317753 + 0.317753i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 60.1930 34.7524i 0.234214 0.135223i −0.378301 0.925683i \(-0.623491\pi\)
0.612515 + 0.790459i \(0.290158\pi\)
\(258\) −51.2502 + 191.268i −0.198644 + 0.741350i
\(259\) 14.8586i 0.0573691i
\(260\) 0 0
\(261\) 420.010 1.60924
\(262\) 221.654 + 59.3920i 0.846008 + 0.226687i
\(263\) −129.589 224.455i −0.492735 0.853441i 0.507230 0.861810i \(-0.330669\pi\)
−0.999965 + 0.00836922i \(0.997336\pi\)
\(264\) 8.66536 + 5.00295i 0.0328233 + 0.0189506i
\(265\) −505.587 + 505.587i −1.90788 + 1.90788i
\(266\) −1.41708 5.28863i −0.00532739 0.0198821i
\(267\) 392.339 105.127i 1.46943 0.393734i
\(268\) 98.4338 + 98.4338i 0.367290 + 0.367290i
\(269\) −21.0056 + 36.3828i −0.0780878 + 0.135252i −0.902425 0.430847i \(-0.858215\pi\)
0.824337 + 0.566099i \(0.191548\pi\)
\(270\) −234.230 + 135.233i −0.867520 + 0.500863i
\(271\) −81.5504 + 304.350i −0.300924 + 1.12306i 0.635474 + 0.772122i \(0.280805\pi\)
−0.936398 + 0.350941i \(0.885862\pi\)
\(272\) 11.5225i 0.0423622i
\(273\) 0 0
\(274\) −146.148 −0.533387
\(275\) −31.7540 8.50847i −0.115469 0.0309399i
\(276\) −109.341 189.385i −0.396164 0.686176i
\(277\) 164.261 + 94.8364i 0.593001 + 0.342370i 0.766283 0.642503i \(-0.222104\pi\)
−0.173282 + 0.984872i \(0.555437\pi\)
\(278\) 25.5784 25.5784i 0.0920087 0.0920087i
\(279\) −75.1180 280.344i −0.269240 1.00482i
\(280\) 8.10860 2.17269i 0.0289593 0.00775961i
\(281\) 32.8661 + 32.8661i 0.116961 + 0.116961i 0.763165 0.646204i \(-0.223644\pi\)
−0.646204 + 0.763165i \(0.723644\pi\)
\(282\) 101.246 175.363i 0.359028 0.621855i
\(283\) −456.365 + 263.482i −1.61260 + 0.931033i −0.623831 + 0.781559i \(0.714425\pi\)
−0.988766 + 0.149474i \(0.952242\pi\)
\(284\) 50.4849 188.412i 0.177764 0.663423i
\(285\) 432.217i 1.51655i
\(286\) 0 0
\(287\) −9.18141 −0.0319910
\(288\) −75.4468 20.2159i −0.261968 0.0701942i
\(289\) −140.351 243.095i −0.485644 0.841159i
\(290\) −310.313 179.159i −1.07004 0.617791i
\(291\) 68.6426 68.6426i 0.235885 0.235885i
\(292\) −37.3010 139.209i −0.127743 0.476744i
\(293\) 132.277 35.4435i 0.451457 0.120968i −0.0259239 0.999664i \(-0.508253\pi\)
0.477381 + 0.878696i \(0.341586\pi\)
\(294\) −233.405 233.405i −0.793895 0.793895i
\(295\) 416.780 721.884i 1.41281 2.44706i
\(296\) −102.144 + 58.9729i −0.345081 + 0.199233i
\(297\) −4.40197 + 16.4284i −0.0148215 + 0.0553144i
\(298\) 38.0469i 0.127674i
\(299\) 0 0
\(300\) 423.893 1.41298
\(301\) 10.0908 + 2.70383i 0.0335244 + 0.00898283i
\(302\) 109.697 + 190.000i 0.363234 + 0.629140i
\(303\) 115.077 + 66.4398i 0.379792 + 0.219273i
\(304\) 30.7319 30.7319i 0.101092 0.101092i
\(305\) 33.3377 + 124.418i 0.109304 + 0.407928i
\(306\) −54.3336 + 14.5586i −0.177561 + 0.0475772i
\(307\) 306.038 + 306.038i 0.996866 + 0.996866i 0.999995 0.00312957i \(-0.000996174\pi\)
−0.00312957 + 0.999995i \(0.500996\pi\)
\(308\) 0.263943 0.457163i 0.000856959 0.00148430i
\(309\) 281.595 162.579i 0.911309 0.526145i
\(310\) −64.0845 + 239.167i −0.206724 + 0.771505i
\(311\) 138.274i 0.444611i −0.974977 0.222305i \(-0.928642\pi\)
0.974977 0.222305i \(-0.0713582\pi\)
\(312\) 0 0
\(313\) 525.434 1.67870 0.839352 0.543589i \(-0.182935\pi\)
0.839352 + 0.543589i \(0.182935\pi\)
\(314\) −194.905 52.2245i −0.620715 0.166320i
\(315\) 20.4903 + 35.4903i 0.0650487 + 0.112668i
\(316\) 183.565 + 105.981i 0.580901 + 0.335383i
\(317\) −24.3899 + 24.3899i −0.0769397 + 0.0769397i −0.744529 0.667590i \(-0.767326\pi\)
0.667590 + 0.744529i \(0.267326\pi\)
\(318\) −150.054 560.008i −0.471867 1.76103i
\(319\) −21.7646 + 5.83182i −0.0682277 + 0.0182816i
\(320\) 47.1185 + 47.1185i 0.147245 + 0.147245i
\(321\) −307.078 + 531.875i −0.956630 + 1.65693i
\(322\) −9.99146 + 5.76857i −0.0310294 + 0.0179148i
\(323\) 8.10079 30.2326i 0.0250799 0.0935993i
\(324\) 29.2323i 0.0902233i
\(325\) 0 0
\(326\) 37.5671 0.115237
\(327\) 199.241 + 53.3865i 0.609300 + 0.163261i
\(328\) −36.4405 63.1167i −0.111099 0.192429i
\(329\) −9.25172 5.34148i −0.0281207 0.0162355i
\(330\) 29.4664 29.4664i 0.0892922 0.0892922i
\(331\) −5.73931 21.4194i −0.0173393 0.0647111i 0.956714 0.291029i \(-0.0939977\pi\)
−0.974053 + 0.226318i \(0.927331\pi\)
\(332\) 74.3720 19.9279i 0.224012 0.0600239i
\(333\) −407.141 407.141i −1.22264 1.22264i
\(334\) 5.32150 9.21711i 0.0159326 0.0275961i
\(335\) 502.084 289.878i 1.49876 0.865308i
\(336\) −1.76172 + 6.57484i −0.00524322 + 0.0195680i
\(337\) 544.688i 1.61629i 0.588987 + 0.808143i \(0.299527\pi\)
−0.588987 + 0.808143i \(0.700473\pi\)
\(338\) 0 0
\(339\) −220.359 −0.650026
\(340\) 46.3530 + 12.4202i 0.136332 + 0.0365301i
\(341\) 7.78512 + 13.4842i 0.0228303 + 0.0395432i
\(342\) 183.744 + 106.084i 0.537262 + 0.310188i
\(343\) −24.6597 + 24.6597i −0.0718943 + 0.0718943i
\(344\) 21.4627 + 80.0999i 0.0623916 + 0.232849i
\(345\) −879.719 + 235.720i −2.54991 + 0.683247i
\(346\) 28.8293 + 28.8293i 0.0833216 + 0.0833216i
\(347\) 320.301 554.777i 0.923057 1.59878i 0.128400 0.991722i \(-0.459016\pi\)
0.794657 0.607059i \(-0.207651\pi\)
\(348\) 251.617 145.271i 0.723036 0.417445i
\(349\) −15.6551 + 58.4257i −0.0448571 + 0.167409i −0.984721 0.174141i \(-0.944285\pi\)
0.939864 + 0.341550i \(0.110952\pi\)
\(350\) 22.3635i 0.0638958i
\(351\) 0 0
\(352\) 4.19030 0.0119043
\(353\) −283.357 75.9253i −0.802711 0.215086i −0.165937 0.986136i \(-0.553065\pi\)
−0.636774 + 0.771051i \(0.719732\pi\)
\(354\) 337.945 + 585.338i 0.954647 + 1.65350i
\(355\) −703.529 406.183i −1.98177 1.14418i
\(356\) 120.280 120.280i 0.337864 0.337864i
\(357\) 1.26872 + 4.73492i 0.00355383 + 0.0132631i
\(358\) 289.732 77.6333i 0.809306 0.216853i
\(359\) 118.752 + 118.752i 0.330785 + 0.330785i 0.852885 0.522099i \(-0.174851\pi\)
−0.522099 + 0.852885i \(0.674851\pi\)
\(360\) −162.650 + 281.718i −0.451805 + 0.782550i
\(361\) 210.396 121.472i 0.582813 0.336487i
\(362\) 41.0270 153.115i 0.113334 0.422969i
\(363\) 575.245i 1.58470i
\(364\) 0 0
\(365\) −600.220 −1.64444
\(366\) −100.884 27.0318i −0.275640 0.0738574i
\(367\) 51.1578 + 88.6080i 0.139395 + 0.241439i 0.927268 0.374399i \(-0.122151\pi\)
−0.787873 + 0.615838i \(0.788818\pi\)
\(368\) −79.3110 45.7902i −0.215519 0.124430i
\(369\) 251.580 251.580i 0.681789 0.681789i
\(370\) 127.135 + 474.474i 0.343608 + 1.28236i
\(371\) −29.5447 + 7.91647i −0.0796352 + 0.0213382i
\(372\) −141.965 141.965i −0.381626 0.381626i
\(373\) −302.308 + 523.613i −0.810477 + 1.40379i 0.102053 + 0.994779i \(0.467459\pi\)
−0.912530 + 0.409009i \(0.865875\pi\)
\(374\) 2.61338 1.50884i 0.00698765 0.00403432i
\(375\) 199.528 744.647i 0.532073 1.98573i
\(376\) 84.8001i 0.225532i
\(377\) 0 0
\(378\) −11.5701 −0.0306087
\(379\) −370.655 99.3166i −0.977980 0.262049i −0.265787 0.964032i \(-0.585632\pi\)
−0.712194 + 0.701983i \(0.752298\pi\)
\(380\) −90.5025 156.755i −0.238165 0.412513i
\(381\) −953.945 550.760i −2.50379 1.44557i
\(382\) −265.048 + 265.048i −0.693843 + 0.693843i
\(383\) 106.035 + 395.727i 0.276853 + 1.03323i 0.954589 + 0.297925i \(0.0962945\pi\)
−0.677736 + 0.735305i \(0.737039\pi\)
\(384\) −52.1903 + 13.9843i −0.135912 + 0.0364176i
\(385\) −1.55458 1.55458i −0.00403786 0.00403786i
\(386\) 112.568 194.974i 0.291628 0.505114i
\(387\) −350.587 + 202.412i −0.905910 + 0.523027i
\(388\) 10.5219 39.2682i 0.0271183 0.101207i
\(389\) 43.6909i 0.112316i 0.998422 + 0.0561579i \(0.0178850\pi\)
−0.998422 + 0.0561579i \(0.982115\pi\)
\(390\) 0 0
\(391\) −65.9523 −0.168676
\(392\) −133.524 35.7775i −0.340621 0.0912692i
\(393\) 387.461 + 671.102i 0.985906 + 1.70764i
\(394\) 368.414 + 212.704i 0.935062 + 0.539858i
\(395\) 624.209 624.209i 1.58028 1.58028i
\(396\) 5.29442 + 19.7591i 0.0133698 + 0.0498966i
\(397\) −264.715 + 70.9301i −0.666788 + 0.178665i −0.576307 0.817233i \(-0.695507\pi\)
−0.0904803 + 0.995898i \(0.528840\pi\)
\(398\) 187.319 + 187.319i 0.470650 + 0.470650i
\(399\) 9.24476 16.0124i 0.0231698 0.0401313i
\(400\) 153.736 88.7596i 0.384340 0.221899i
\(401\) 23.0664 86.0849i 0.0575222 0.214676i −0.931182 0.364554i \(-0.881221\pi\)
0.988704 + 0.149878i \(0.0478882\pi\)
\(402\) 470.095i 1.16939i
\(403\) 0 0
\(404\) 55.6477 0.137742
\(405\) 117.596 + 31.5099i 0.290361 + 0.0778021i
\(406\) −7.66414 13.2747i −0.0188772 0.0326962i
\(407\) 26.7509 + 15.4446i 0.0657270 + 0.0379475i
\(408\) −27.5143 + 27.5143i −0.0674370 + 0.0674370i
\(409\) −188.970 705.246i −0.462030 1.72432i −0.666554 0.745456i \(-0.732232\pi\)
0.204525 0.978861i \(-0.434435\pi\)
\(410\) −293.187 + 78.5591i −0.715089 + 0.191608i
\(411\) −348.983 348.983i −0.849107 0.849107i
\(412\) 68.0852 117.927i 0.165255 0.286231i
\(413\) 30.8810 17.8291i 0.0747724 0.0431699i
\(414\) 115.711 431.841i 0.279496 1.04309i
\(415\) 320.666i 0.772688i
\(416\) 0 0
\(417\) 122.156 0.292940
\(418\) −10.9944 2.94595i −0.0263025 0.00704773i
\(419\) −130.487 226.011i −0.311426 0.539405i 0.667246 0.744838i \(-0.267473\pi\)
−0.978671 + 0.205433i \(0.934140\pi\)
\(420\) 24.5504 + 14.1742i 0.0584533 + 0.0337480i
\(421\) 103.038 103.038i 0.244745 0.244745i −0.574065 0.818810i \(-0.694634\pi\)
0.818810 + 0.574065i \(0.194634\pi\)
\(422\) −62.1559 231.969i −0.147289 0.549690i
\(423\) 399.869 107.145i 0.945316 0.253297i
\(424\) −171.682 171.682i −0.404910 0.404910i
\(425\) 63.9208 110.714i 0.150402 0.260504i
\(426\) 570.455 329.353i 1.33910 0.773128i
\(427\) −1.42613 + 5.32240i −0.00333989 + 0.0124646i
\(428\) 257.198i 0.600930i
\(429\) 0 0
\(430\) 345.362 0.803168
\(431\) −131.588 35.2588i −0.305308 0.0818069i 0.102913 0.994690i \(-0.467184\pi\)
−0.408220 + 0.912883i \(0.633850\pi\)
\(432\) −45.9210 79.5375i −0.106299 0.184114i
\(433\) −174.382 100.679i −0.402729 0.232516i 0.284932 0.958548i \(-0.408029\pi\)
−0.687661 + 0.726032i \(0.741362\pi\)
\(434\) −7.48972 + 7.48972i −0.0172574 + 0.0172574i
\(435\) −313.178 1168.80i −0.719950 2.68689i
\(436\) 83.4388 22.3574i 0.191373 0.0512783i
\(437\) 175.902 + 175.902i 0.402523 + 0.402523i
\(438\) 243.344 421.484i 0.555579 0.962291i
\(439\) 64.3905 37.1759i 0.146675 0.0846830i −0.424866 0.905256i \(-0.639679\pi\)
0.571542 + 0.820573i \(0.306346\pi\)
\(440\) 4.51677 16.8568i 0.0102654 0.0383109i
\(441\) 674.826i 1.53022i
\(442\) 0 0
\(443\) 130.644 0.294908 0.147454 0.989069i \(-0.452892\pi\)
0.147454 + 0.989069i \(0.452892\pi\)
\(444\) −384.726 103.087i −0.866501 0.232178i
\(445\) −354.212 613.513i −0.795982 1.37868i
\(446\) −294.541 170.054i −0.660407 0.381286i
\(447\) 90.8512 90.8512i 0.203246 0.203246i
\(448\) 0.737780 + 2.75343i 0.00164683 + 0.00614605i
\(449\) 696.251 186.560i 1.55067 0.415501i 0.620975 0.783831i \(-0.286737\pi\)
0.929695 + 0.368330i \(0.120070\pi\)
\(450\) 612.784 + 612.784i 1.36174 + 1.36174i
\(451\) −9.54353 + 16.5299i −0.0211608 + 0.0366516i
\(452\) −79.9190 + 46.1413i −0.176812 + 0.102082i
\(453\) −191.755 + 715.638i −0.423299 + 1.57977i
\(454\) 127.958i 0.281846i
\(455\) 0 0
\(456\) 146.768 0.321859
\(457\) −350.261 93.8520i −0.766434 0.205365i −0.145639 0.989338i \(-0.546524\pi\)
−0.620796 + 0.783972i \(0.713190\pi\)
\(458\) −248.887 431.085i −0.543422 0.941234i
\(459\) −57.2795 33.0703i −0.124792 0.0720486i
\(460\) −269.696 + 269.696i −0.586295 + 0.586295i
\(461\) 223.937 + 835.746i 0.485765 + 1.81290i 0.576593 + 0.817032i \(0.304382\pi\)
−0.0908282 + 0.995867i \(0.528951\pi\)
\(462\) 1.72191 0.461384i 0.00372708 0.000998667i
\(463\) −163.492 163.492i −0.353114 0.353114i 0.508153 0.861267i \(-0.330328\pi\)
−0.861267 + 0.508153i \(0.830328\pi\)
\(464\) 60.8370 105.373i 0.131114 0.227096i
\(465\) −724.125 + 418.074i −1.55726 + 0.899083i
\(466\) −140.872 + 525.742i −0.302301 + 1.12820i
\(467\) 242.866i 0.520056i −0.965601 0.260028i \(-0.916268\pi\)
0.965601 0.260028i \(-0.0837318\pi\)
\(468\) 0 0
\(469\) 24.8010 0.0528807
\(470\) −341.135 91.4070i −0.725820 0.194483i
\(471\) −340.702 590.113i −0.723358 1.25289i
\(472\) 245.130 + 141.526i 0.519342 + 0.299842i
\(473\) 15.3567 15.3567i 0.0324666 0.0324666i
\(474\) 185.260 + 691.398i 0.390843 + 1.45865i
\(475\) −465.772 + 124.803i −0.980572 + 0.262744i
\(476\) 1.45159 + 1.45159i 0.00304955 + 0.00304955i
\(477\) 592.635 1026.47i 1.24242 2.15194i
\(478\) −364.819 + 210.628i −0.763220 + 0.440645i
\(479\) 57.8547 215.917i 0.120782 0.450766i −0.878872 0.477058i \(-0.841703\pi\)
0.999654 + 0.0262919i \(0.00836994\pi\)
\(480\) 225.026i 0.468804i
\(481\) 0 0
\(482\) −264.943 −0.549675
\(483\) −37.6329 10.0837i −0.0779150 0.0208773i
\(484\) 120.451 + 208.628i 0.248866 + 0.431049i
\(485\) −146.627 84.6553i −0.302324 0.174547i
\(486\) −276.447 + 276.447i −0.568822 + 0.568822i
\(487\) 5.58396 + 20.8396i 0.0114660 + 0.0427918i 0.971422 0.237360i \(-0.0762820\pi\)
−0.959956 + 0.280151i \(0.909615\pi\)
\(488\) −42.2485 + 11.3205i −0.0865749 + 0.0231977i
\(489\) 89.7055 + 89.7055i 0.183447 + 0.183447i
\(490\) −287.853 + 498.576i −0.587455 + 1.01750i
\(491\) 50.4972 29.1546i 0.102846 0.0593780i −0.447695 0.894186i \(-0.647755\pi\)
0.550541 + 0.834808i \(0.314422\pi\)
\(492\) 63.6995 237.730i 0.129471 0.483191i
\(493\) 87.6244i 0.177737i
\(494\) 0 0
\(495\) 85.1940 0.172109
\(496\) −81.2137 21.7611i −0.163737 0.0438733i
\(497\) −17.3758 30.0958i −0.0349614 0.0605549i
\(498\) 225.176 + 130.006i 0.452161 + 0.261055i
\(499\) −625.494 + 625.494i −1.25350 + 1.25350i −0.299353 + 0.954142i \(0.596771\pi\)
−0.954142 + 0.299353i \(0.903229\pi\)
\(500\) −83.5587 311.845i −0.167117 0.623691i
\(501\) 34.7163 9.30221i 0.0692941 0.0185673i
\(502\) 100.518 + 100.518i 0.200236 + 0.200236i
\(503\) 5.25707 9.10551i 0.0104514 0.0181024i −0.860752 0.509024i \(-0.830006\pi\)
0.871204 + 0.490921i \(0.163340\pi\)
\(504\) −12.0514 + 6.95789i −0.0239116 + 0.0138053i
\(505\) 59.9832 223.860i 0.118779 0.443288i
\(506\) 23.9843i 0.0473999i
\(507\) 0 0
\(508\) −461.298 −0.908067
\(509\) 98.4183 + 26.3711i 0.193356 + 0.0518097i 0.354198 0.935171i \(-0.384754\pi\)
−0.160841 + 0.986980i \(0.551421\pi\)
\(510\) 81.0270 + 140.343i 0.158876 + 0.275182i
\(511\) −22.2364 12.8382i −0.0435155 0.0251237i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 64.5686 + 240.973i 0.125865 + 0.469734i
\(514\) 94.9454 25.4405i 0.184719 0.0494952i
\(515\) −401.009 401.009i −0.778658 0.778658i
\(516\) −140.018 + 242.518i −0.271353 + 0.469997i
\(517\) −19.2332 + 11.1043i −0.0372016 + 0.0214784i
\(518\) −5.43862 + 20.2972i −0.0104993 + 0.0391838i
\(519\) 137.681i 0.265282i
\(520\) 0 0
\(521\) 170.985 0.328185 0.164093 0.986445i \(-0.447530\pi\)
0.164093 + 0.986445i \(0.447530\pi\)
\(522\) 573.745 + 153.734i 1.09913 + 0.294510i
\(523\) 417.695 + 723.469i 0.798652 + 1.38331i 0.920494 + 0.390756i \(0.127786\pi\)
−0.121842 + 0.992549i \(0.538880\pi\)
\(524\) 281.046 + 162.262i 0.536347 + 0.309660i
\(525\) 53.4013 53.4013i 0.101717 0.101717i
\(526\) −94.8659 354.044i −0.180353 0.673088i
\(527\) −58.4866 + 15.6714i −0.110980 + 0.0297371i
\(528\) 10.0059 + 10.0059i 0.0189506 + 0.0189506i
\(529\) −2.40684 + 4.16878i −0.00454980 + 0.00788048i
\(530\) −875.703 + 505.587i −1.65227 + 0.953938i
\(531\) −357.634 + 1334.71i −0.673510 + 2.51357i
\(532\) 7.74309i 0.0145547i
\(533\) 0 0
\(534\) 574.424 1.07570
\(535\) 1034.66 + 277.237i 1.93395 + 0.518199i
\(536\) 98.4338 + 170.492i 0.183645 + 0.318083i
\(537\) 877.220 + 506.463i 1.63356 + 0.943135i
\(538\) −42.0112 + 42.0112i −0.0780878 + 0.0780878i
\(539\) 9.36991 + 34.9690i 0.0173839 + 0.0648775i
\(540\) −369.463 + 98.9974i −0.684191 + 0.183329i
\(541\) −503.966 503.966i −0.931545 0.931545i 0.0662572 0.997803i \(-0.478894\pi\)
−0.997803 + 0.0662572i \(0.978894\pi\)
\(542\) −222.800 + 385.900i −0.411070 + 0.711993i
\(543\) 463.586 267.651i 0.853749 0.492912i
\(544\) −4.21753 + 15.7400i −0.00775282 + 0.0289339i
\(545\) 359.758i 0.660107i
\(546\) 0 0
\(547\) −249.081 −0.455359 −0.227680 0.973736i \(-0.573114\pi\)
−0.227680 + 0.973736i \(0.573114\pi\)
\(548\) −199.642 53.4939i −0.364310 0.0976166i
\(549\) −106.762 184.917i −0.194466 0.336824i
\(550\) −40.2625 23.2456i −0.0732046 0.0422647i
\(551\) −233.704 + 233.704i −0.424146 + 0.424146i
\(552\) −80.0433 298.726i −0.145006 0.541170i
\(553\) 36.4765 9.77384i 0.0659611 0.0176742i
\(554\) 189.673 + 189.673i 0.342370 + 0.342370i
\(555\) −829.402 + 1436.57i −1.49442 + 2.58841i
\(556\) 44.3031 25.5784i 0.0796819 0.0460044i
\(557\) 169.408 632.239i 0.304144 1.13508i −0.629536 0.776971i \(-0.716755\pi\)
0.933680 0.358109i \(-0.116578\pi\)
\(558\) 410.452i 0.735577i
\(559\) 0 0
\(560\) 11.8718 0.0211997
\(561\) 9.84333 + 2.63751i 0.0175460 + 0.00470145i
\(562\) 32.8661 + 56.9258i 0.0584806 + 0.101291i
\(563\) 828.273 + 478.204i 1.47118 + 0.849385i 0.999476 0.0323732i \(-0.0103065\pi\)
0.471702 + 0.881758i \(0.343640\pi\)
\(564\) 202.492 202.492i 0.359028 0.359028i
\(565\) 99.4723 + 371.236i 0.176057 + 0.657055i
\(566\) −719.847 + 192.883i −1.27182 + 0.340782i
\(567\) 3.68264 + 3.68264i 0.00649495 + 0.00649495i
\(568\) 137.927 238.897i 0.242830 0.420593i
\(569\) 281.681 162.629i 0.495046 0.285815i −0.231619 0.972807i \(-0.574402\pi\)
0.726666 + 0.686991i \(0.241069\pi\)
\(570\) 158.202 590.419i 0.277548 1.03582i
\(571\) 218.946i 0.383442i −0.981449 0.191721i \(-0.938593\pi\)
0.981449 0.191721i \(-0.0614069\pi\)
\(572\) 0 0
\(573\) −1265.80 −2.20908
\(574\) −12.5420 3.36063i −0.0218502 0.00585475i
\(575\) 508.040 + 879.951i 0.883548 + 1.53035i
\(576\) −95.6628 55.2309i −0.166081 0.0958870i
\(577\) 478.578 478.578i 0.829425 0.829425i −0.158012 0.987437i \(-0.550508\pi\)
0.987437 + 0.158012i \(0.0505084\pi\)
\(578\) −102.744 383.446i −0.177758 0.663401i
\(579\) 734.372 196.774i 1.26834 0.339852i
\(580\) −358.319 358.319i −0.617791 0.617791i
\(581\) 6.85877 11.8797i 0.0118051 0.0204471i
\(582\) 118.892 68.6426i 0.204283 0.117943i
\(583\) −16.4574 + 61.4198i −0.0282288 + 0.105351i
\(584\) 203.816i 0.349001i
\(585\) 0 0
\(586\) 193.667 0.330490
\(587\) 239.510 + 64.1765i 0.408024 + 0.109330i 0.456992 0.889471i \(-0.348927\pi\)
−0.0489685 + 0.998800i \(0.515593\pi\)
\(588\) −233.405 404.269i −0.396947 0.687533i
\(589\) 197.788 + 114.193i 0.335803 + 0.193876i
\(590\) 833.560 833.560i 1.41281 1.41281i
\(591\) 371.816 + 1387.64i 0.629130 + 2.34795i
\(592\) −161.117 + 43.1711i −0.272157 + 0.0729242i
\(593\) 107.905 + 107.905i 0.181964 + 0.181964i 0.792211 0.610247i \(-0.208930\pi\)
−0.610247 + 0.792211i \(0.708930\pi\)
\(594\) −12.0264 + 20.8304i −0.0202465 + 0.0350679i
\(595\) 7.40414 4.27478i 0.0124439 0.00718451i
\(596\) 13.9261 51.9730i 0.0233660 0.0872031i
\(597\) 894.587i 1.49847i
\(598\) 0 0
\(599\) 788.030 1.31558 0.657788 0.753203i \(-0.271492\pi\)
0.657788 + 0.753203i \(0.271492\pi\)
\(600\) 579.049 + 155.156i 0.965081 + 0.258593i
\(601\) −191.526 331.733i −0.318679 0.551968i 0.661534 0.749915i \(-0.269906\pi\)
−0.980213 + 0.197947i \(0.936573\pi\)
\(602\) 12.7947 + 7.38701i 0.0212536 + 0.0122708i
\(603\) −679.574 + 679.574i −1.12699 + 1.12699i
\(604\) 80.3035 + 299.697i 0.132953 + 0.496187i
\(605\) 969.107 259.671i 1.60183 0.429209i
\(606\) 132.880 + 132.880i 0.219273 + 0.219273i
\(607\) −118.890 + 205.923i −0.195865 + 0.339248i −0.947184 0.320692i \(-0.896085\pi\)
0.751319 + 0.659939i \(0.229418\pi\)
\(608\) 53.2292 30.7319i 0.0875480 0.0505459i
\(609\) 13.3972 49.9992i 0.0219988 0.0821005i
\(610\) 182.161i 0.298624i
\(611\) 0 0
\(612\) −79.5499 −0.129983
\(613\) 423.210 + 113.399i 0.690391 + 0.184990i 0.586923 0.809643i \(-0.300339\pi\)
0.103468 + 0.994633i \(0.467006\pi\)
\(614\) 306.038 + 530.073i 0.498433 + 0.863311i
\(615\) −887.681 512.503i −1.44338 0.833338i
\(616\) 0.527886 0.527886i 0.000856959 0.000856959i
\(617\) −29.9483 111.769i −0.0485386 0.181149i 0.937401 0.348253i \(-0.113225\pi\)
−0.985939 + 0.167104i \(0.946558\pi\)
\(618\) 444.173 119.016i 0.718727 0.192582i
\(619\) 471.622 + 471.622i 0.761910 + 0.761910i 0.976667 0.214757i \(-0.0688961\pi\)
−0.214757 + 0.976667i \(0.568896\pi\)
\(620\) −175.082 + 303.251i −0.282390 + 0.489115i
\(621\) 455.255 262.841i 0.733099 0.423255i
\(622\) 50.6118 188.886i 0.0813694 0.303675i
\(623\) 30.3052i 0.0486440i
\(624\) 0 0
\(625\) −235.071 −0.376114
\(626\) 717.756 + 192.322i 1.14658 + 0.307224i
\(627\) −19.2188 33.2879i −0.0306519 0.0530907i
\(628\) −247.129 142.680i −0.393518 0.227197i
\(629\) −84.9395 + 84.9395i −0.135039 + 0.135039i
\(630\) 15.0000 + 55.9807i 0.0238095 + 0.0888582i
\(631\) −822.277 + 220.328i −1.30313 + 0.349173i −0.842634 0.538487i \(-0.818996\pi\)
−0.460499 + 0.887660i \(0.652330\pi\)
\(632\) 211.962 + 211.962i 0.335383 + 0.335383i
\(633\) 405.492 702.333i 0.640588 1.10953i
\(634\) −42.2445 + 24.3899i −0.0666318 + 0.0384699i
\(635\) −497.238 + 1855.72i −0.783052 + 2.92239i
\(636\) 819.909i 1.28917i
\(637\) 0 0
\(638\) −31.8657 −0.0499462
\(639\) 1300.77 + 348.541i 2.03564 + 0.545447i
\(640\) 47.1185 + 81.6116i 0.0736227 + 0.127518i
\(641\) −25.2926 14.6027i −0.0394580 0.0227811i 0.480141 0.877191i \(-0.340585\pi\)
−0.519599 + 0.854410i \(0.673919\pi\)
\(642\) −614.156 + 614.156i −0.956630 + 0.956630i
\(643\) 52.8962 + 197.411i 0.0822648 + 0.307016i 0.994782 0.102022i \(-0.0325311\pi\)
−0.912517 + 0.409038i \(0.865864\pi\)
\(644\) −15.7600 + 4.22289i −0.0244721 + 0.00655728i
\(645\) 824.681 + 824.681i 1.27857 + 1.27857i
\(646\) 22.1318 38.3334i 0.0342597 0.0593396i
\(647\) 915.647 528.649i 1.41522 0.817077i 0.419345 0.907827i \(-0.362260\pi\)
0.995874 + 0.0907495i \(0.0289263\pi\)
\(648\) −10.6998 + 39.9321i −0.0165120 + 0.0616237i
\(649\) 74.1294i 0.114221i
\(650\) 0 0
\(651\) −35.7690 −0.0549447
\(652\) 51.3177 + 13.7505i 0.0787081 + 0.0210898i
\(653\) −38.0505 65.9054i −0.0582703 0.100927i 0.835419 0.549614i \(-0.185225\pi\)
−0.893689 + 0.448687i \(0.851892\pi\)
\(654\) 252.628 + 145.855i 0.386281 + 0.223019i
\(655\) 955.693 955.693i 1.45907 1.45907i
\(656\) −26.6763 99.5572i −0.0406650 0.151764i
\(657\) 961.081 257.521i 1.46283 0.391965i
\(658\) −10.6830 10.6830i −0.0162355 0.0162355i
\(659\) 421.818 730.610i 0.640087 1.10866i −0.345325 0.938483i \(-0.612231\pi\)
0.985413 0.170181i \(-0.0544352\pi\)
\(660\) 51.0374 29.4664i 0.0773293 0.0446461i
\(661\) 216.792 809.079i 0.327976 1.22402i −0.583311 0.812249i \(-0.698243\pi\)
0.911286 0.411773i \(-0.135090\pi\)
\(662\) 31.3602i 0.0473718i
\(663\) 0 0
\(664\) 108.888 0.163988
\(665\) −31.1491 8.34636i −0.0468407 0.0125509i
\(666\) −407.141 705.188i −0.611322 1.05884i
\(667\) 603.130 + 348.218i 0.904244 + 0.522065i
\(668\) 10.6430 10.6430i 0.0159326 0.0159326i
\(669\) −297.261 1109.39i −0.444336 1.65829i
\(670\) 791.962 212.206i 1.18203 0.316725i
\(671\) 8.09987 + 8.09987i 0.0120713 + 0.0120713i
\(672\) −4.81312 + 8.33656i −0.00716238 + 0.0124056i
\(673\) −334.718 + 193.250i −0.497353 + 0.287147i −0.727620 0.685981i \(-0.759373\pi\)
0.230267 + 0.973128i \(0.426040\pi\)
\(674\) −199.370 + 744.058i −0.295801 + 1.10394i
\(675\) 1018.98i 1.50960i
\(676\) 0 0
\(677\) 328.683 0.485500 0.242750 0.970089i \(-0.421951\pi\)
0.242750 + 0.970089i \(0.421951\pi\)
\(678\) −301.016 80.6570i −0.443976 0.118963i
\(679\) −3.62141 6.27247i −0.00533345 0.00923781i
\(680\) 58.7732 + 33.9327i 0.0864312 + 0.0499011i
\(681\) −305.548 + 305.548i −0.448675 + 0.448675i
\(682\) 5.69910 + 21.2693i 0.00835646 + 0.0311867i
\(683\) −780.775 + 209.208i −1.14316 + 0.306308i −0.780219 0.625506i \(-0.784892\pi\)
−0.362936 + 0.931814i \(0.618226\pi\)
\(684\) 212.169 + 212.169i 0.310188 + 0.310188i
\(685\) −430.392 + 745.462i −0.628310 + 1.08827i
\(686\) −42.7119 + 24.6597i −0.0622623 + 0.0359471i
\(687\) 435.066 1623.69i 0.633283 2.36345i
\(688\) 117.274i 0.170457i
\(689\) 0 0
\(690\) −1288.00 −1.86666
\(691\) −779.206 208.788i −1.12765 0.302153i −0.353674 0.935369i \(-0.615068\pi\)
−0.773975 + 0.633216i \(0.781735\pi\)
\(692\) 28.8293 + 49.9338i 0.0416608 + 0.0721586i
\(693\) 3.15619 + 1.82223i 0.00455439 + 0.00262948i
\(694\) 640.601 640.601i 0.923057 0.923057i
\(695\) −55.1425 205.795i −0.0793417 0.296107i
\(696\) 396.888 106.346i 0.570241 0.152796i
\(697\) −52.4857 52.4857i −0.0753023 0.0753023i
\(698\) −42.7706 + 74.0809i −0.0612759 + 0.106133i
\(699\) −1591.79 + 919.020i −2.27724 + 1.31476i
\(700\) 8.18563 30.5492i 0.0116938 0.0436417i
\(701\) 1080.31i 1.54110i −0.637378 0.770552i \(-0.719981\pi\)
0.637378 0.770552i \(-0.280019\pi\)
\(702\) 0 0
\(703\) 453.087 0.644505
\(704\) 5.72406 + 1.53376i 0.00813076 + 0.00217863i
\(705\) −596.320 1032.86i −0.845843 1.46504i
\(706\) −359.282 207.432i −0.508898 0.293813i
\(707\) 7.01040 7.01040i 0.00991570 0.00991570i
\(708\) 247.393 + 923.283i 0.349425 + 1.30407i
\(709\) 762.964 204.436i 1.07611 0.288343i 0.323110 0.946361i \(-0.395272\pi\)
0.753002 + 0.658018i \(0.228605\pi\)
\(710\) −812.365 812.365i −1.14418 1.14418i
\(711\) −731.679 + 1267.31i −1.02908 + 1.78243i
\(712\) 208.330 120.280i 0.292599 0.168932i
\(713\) 124.556 464.849i 0.174693 0.651962i
\(714\) 6.93240i 0.00970925i
\(715\) 0 0
\(716\) 424.196 0.592453
\(717\) −1374.10 368.188i −1.91645 0.513511i
\(718\) 118.752 + 205.684i 0.165393 + 0.286469i
\(719\) 700.700 + 404.550i 0.974548 + 0.562656i 0.900620 0.434608i \(-0.143113\pi\)
0.0739286 + 0.997264i \(0.476446\pi\)
\(720\) −325.300 + 325.300i −0.451805 + 0.451805i
\(721\) −6.27898 23.4335i −0.00870871 0.0325014i
\(722\) 331.868 88.9237i 0.459650 0.123163i
\(723\) −632.651 632.651i −0.875036 0.875036i
\(724\) 112.088 194.142i 0.154817 0.268152i
\(725\) −1169.11 + 674.983i −1.61256 + 0.931011i
\(726\) −210.554 + 785.799i −0.290019 + 1.08237i
\(727\) 1368.53i 1.88243i −0.337808 0.941215i \(-0.609685\pi\)
0.337808 0.941215i \(-0.390315\pi\)
\(728\) 0 0
\(729\) −1188.70 −1.63059
\(730\) −819.916 219.696i −1.12317 0.300953i
\(731\) 42.2280 + 73.1410i 0.0577674 + 0.100056i
\(732\) −127.916 73.8523i −0.174749 0.100891i
\(733\) −204.408 + 204.408i −0.278865 + 0.278865i −0.832656 0.553791i \(-0.813181\pi\)
0.553791 + 0.832656i \(0.313181\pi\)
\(734\) 37.4501 + 139.766i 0.0510220 + 0.190417i
\(735\) −1877.89 + 503.180i −2.55496 + 0.684598i
\(736\) −91.5805 91.5805i −0.124430 0.124430i
\(737\) 25.7792 44.6509i 0.0349786 0.0605846i
\(738\) 435.749 251.580i 0.590446 0.340894i
\(739\) 62.8090 234.406i 0.0849918 0.317194i −0.910321 0.413903i \(-0.864165\pi\)
0.995313 + 0.0967096i \(0.0308318\pi\)
\(740\) 694.678i 0.938755i
\(741\) 0 0
\(742\) −43.2564 −0.0582970
\(743\) 87.1920 + 23.3630i 0.117351 + 0.0314442i 0.317017 0.948420i \(-0.397319\pi\)
−0.199665 + 0.979864i \(0.563986\pi\)
\(744\) −141.965 245.891i −0.190813 0.330498i
\(745\) −194.067 112.045i −0.260493 0.150395i
\(746\) −604.616 + 604.616i −0.810477 + 0.810477i
\(747\) 137.580 + 513.454i 0.184176 + 0.687355i
\(748\) 4.12222 1.10455i 0.00551099 0.00147666i
\(749\) 32.4014 + 32.4014i 0.0432595 + 0.0432595i
\(750\) 545.119 944.174i 0.726826 1.25890i
\(751\) −339.714 + 196.134i −0.452349 + 0.261164i −0.708822 0.705387i \(-0.750773\pi\)
0.256473 + 0.966552i \(0.417440\pi\)
\(752\) 31.0390 115.839i 0.0412753 0.154041i
\(753\) 480.050i 0.637516i
\(754\) 0 0
\(755\) 1292.19 1.71150
\(756\) −15.8050 4.23494i −0.0209061 0.00560178i
\(757\) 178.827 + 309.738i 0.236232 + 0.409165i 0.959630 0.281266i \(-0.0907542\pi\)
−0.723398 + 0.690431i \(0.757421\pi\)
\(758\) −469.971 271.338i −0.620015 0.357966i
\(759\) −57.2715 + 57.2715i −0.0754566 + 0.0754566i
\(760\) −66.2524 247.257i −0.0871743 0.325339i
\(761\) −805.649 + 215.873i −1.05867 + 0.283670i −0.745831 0.666135i \(-0.767947\pi\)
−0.312841 + 0.949806i \(0.601281\pi\)
\(762\) −1101.52 1101.52i −1.44557 1.44557i
\(763\) 7.69493 13.3280i 0.0100851 0.0174679i
\(764\) −459.077 + 265.048i −0.600886 + 0.346922i
\(765\) −85.7476 + 320.015i −0.112088 + 0.418320i
\(766\) 579.385i 0.756377i
\(767\) 0 0
\(768\) −76.4119 −0.0994947
\(769\) 805.575 + 215.853i 1.04756 + 0.280693i 0.741244 0.671236i \(-0.234236\pi\)
0.306318 + 0.951929i \(0.400903\pi\)
\(770\) −1.55458 2.69260i −0.00201893 0.00349689i
\(771\) 287.466 + 165.969i 0.372849 + 0.215264i
\(772\) 225.137 225.137i 0.291628 0.291628i
\(773\) −231.816 865.148i −0.299891 1.11921i −0.937255 0.348645i \(-0.886642\pi\)
0.637364 0.770563i \(-0.280025\pi\)
\(774\) −552.999 + 148.176i −0.714469 + 0.191441i
\(775\) 659.623 + 659.623i 0.851126 + 0.851126i
\(776\) 28.7464 49.7901i 0.0370443 0.0641626i
\(777\) −61.4539 + 35.4804i −0.0790912 + 0.0456633i
\(778\) −15.9920 + 59.6828i −0.0205552 + 0.0767132i
\(779\) 279.971i 0.359398i
\(780\) 0 0
\(781\) −72.2445 −0.0925026
\(782\) −90.0925 24.1402i −0.115208 0.0308699i
\(783\) 349.212 + 604.852i 0.445992 + 0.772481i
\(784\) −169.301 97.7461i −0.215945 0.124676i
\(785\) −840.359 + 840.359i −1.07052 + 1.07052i
\(786\) 283.641 + 1058.56i 0.360867 + 1.34677i
\(787\) 915.976 245.435i 1.16388 0.311861i 0.375367 0.926876i \(-0.377517\pi\)
0.788516 + 0.615015i \(0.210850\pi\)
\(788\) 425.408 + 425.408i 0.539858 + 0.539858i
\(789\) 618.885 1071.94i 0.784391 1.35861i
\(790\) 1081.16 624.209i 1.36856 0.790138i
\(791\) −4.25526 + 15.8809i −0.00537960 + 0.0200769i
\(792\) 28.9293i 0.0365268i
\(793\) 0 0
\(794\) −387.569 −0.488122
\(795\) −3298.34 883.789i −4.14886 1.11168i
\(796\) 187.319 + 324.446i 0.235325 + 0.407595i
\(797\) 332.978 + 192.245i 0.417789 + 0.241210i 0.694131 0.719849i \(-0.255789\pi\)
−0.276342 + 0.961059i \(0.589122\pi\)
\(798\) 18.4895 18.4895i 0.0231698 0.0231698i
\(799\) −22.3530 83.4224i −0.0279762 0.104408i
\(800\) 242.496 64.9765i 0.303120 0.0812207i
\(801\) 830.394 + 830.394i 1.03670 + 1.03670i
\(802\) 63.0185 109.151i 0.0785767 0.136099i
\(803\) −46.2269 + 26.6891i −0.0575677 + 0.0332367i
\(804\) −172.067 + 642.161i −0.214013 + 0.798708i
\(805\) 67.9516i 0.0844119i
\(806\) 0 0
\(807\) −200.635 −0.248618
\(808\) 76.0162 + 20.3685i 0.0940794 + 0.0252085i
\(809\) −7.78898 13.4909i −0.00962791 0.0166760i 0.861171 0.508315i \(-0.169731\pi\)
−0.870799 + 0.491639i \(0.836398\pi\)
\(810\) 149.106 + 86.0865i 0.184082 + 0.106280i
\(811\) 488.921 488.921i 0.602861 0.602861i −0.338209 0.941071i \(-0.609821\pi\)
0.941071 + 0.338209i \(0.109821\pi\)
\(812\) −5.61054 20.9388i −0.00690953 0.0257867i
\(813\) −1453.50 + 389.464i −1.78782 + 0.479045i
\(814\) 30.8893 + 30.8893i 0.0379475 + 0.0379475i
\(815\) 110.632 191.620i 0.135744 0.235116i
\(816\) −47.6561 + 27.5143i −0.0584021 + 0.0337185i
\(817\) 82.4487 307.703i 0.100916 0.376625i
\(818\) 1032.55i 1.26229i
\(819\) 0 0
\(820\) −429.255 −0.523482
\(821\) −382.310 102.440i −0.465664 0.124774i 0.0183556 0.999832i \(-0.494157\pi\)
−0.484019 + 0.875057i \(0.660824\pi\)
\(822\) −348.983 604.456i −0.424553 0.735348i
\(823\) −397.982 229.775i −0.483575 0.279192i 0.238330 0.971184i \(-0.423400\pi\)
−0.721905 + 0.691992i \(0.756733\pi\)
\(824\) 136.170 136.170i 0.165255 0.165255i
\(825\) −40.6343 151.649i −0.0492537 0.183817i
\(826\) 48.7101 13.0518i 0.0589711 0.0158013i
\(827\) −1019.38 1019.38i −1.23263 1.23263i −0.962951 0.269678i \(-0.913083\pi\)
−0.269678 0.962951i \(-0.586917\pi\)
\(828\) 316.130 547.552i 0.381799 0.661295i
\(829\) 118.994 68.7010i 0.143539 0.0828722i −0.426511 0.904483i \(-0.640257\pi\)
0.570049 + 0.821610i \(0.306924\pi\)
\(830\) 117.372 438.037i 0.141412 0.527756i
\(831\) 905.828i 1.09005i
\(832\) 0 0
\(833\) −140.785 −0.169010
\(834\) 166.868 + 44.7122i 0.200082 + 0.0536118i
\(835\) −31.3426 54.2870i −0.0375361 0.0650144i
\(836\) −13.9404 8.04849i −0.0166751 0.00962738i
\(837\) 341.265 341.265i 0.407724 0.407724i
\(838\) −95.5233 356.498i −0.113990 0.425415i
\(839\) −522.627 + 140.038i −0.622917 + 0.166910i −0.556454 0.830879i \(-0.687838\pi\)
−0.0664636 + 0.997789i \(0.521172\pi\)
\(840\) 28.3484 + 28.3484i 0.0337480 + 0.0337480i
\(841\) −42.1426 + 72.9930i −0.0501101 + 0.0867932i
\(842\) 178.467 103.038i 0.211956 0.122373i
\(843\) −57.4514 + 214.412i −0.0681511 + 0.254344i
\(844\) 339.626i 0.402401i
\(845\) 0 0
\(846\) 585.449 0.692020
\(847\) 41.4568 + 11.1083i 0.0489454 + 0.0131149i
\(848\) −171.682 297.362i −0.202455 0.350663i
\(849\) −2179.48 1258.32i −2.56712 1.48213i
\(850\) 127.842 127.842i 0.150402 0.150402i
\(851\) −247.102 922.197i −0.290367 1.08366i
\(852\) 899.808 241.103i 1.05611 0.282984i
\(853\) 549.575 + 549.575i 0.644285 + 0.644285i 0.951606 0.307321i \(-0.0994325\pi\)
−0.307321 + 0.951606i \(0.599433\pi\)
\(854\) −3.89626 + 6.74853i −0.00456237 + 0.00790226i
\(855\) 1082.21 624.817i 1.26575 0.730780i
\(856\) −94.1411 + 351.339i −0.109978 + 0.410443i
\(857\) 908.454i 1.06004i 0.847985 + 0.530020i \(0.177816\pi\)
−0.847985 + 0.530020i \(0.822184\pi\)
\(858\) 0 0
\(859\) −383.134 −0.446023 −0.223012 0.974816i \(-0.571589\pi\)
−0.223012 + 0.974816i \(0.571589\pi\)
\(860\) 471.773 + 126.411i 0.548574 + 0.146990i
\(861\) −21.9240 37.9735i −0.0254634 0.0441040i
\(862\) −166.846 96.3288i −0.193557 0.111750i
\(863\) 320.195 320.195i 0.371026 0.371026i −0.496825 0.867851i \(-0.665501\pi\)
0.867851 + 0.496825i \(0.165501\pi\)
\(864\) −33.6165 125.458i −0.0389080 0.145207i
\(865\) 231.950 62.1508i 0.268150 0.0718506i
\(866\) −201.358 201.358i −0.232516 0.232516i
\(867\) 670.280 1160.96i 0.773103 1.33905i
\(868\) −12.9726 + 7.48972i −0.0149454 + 0.00862871i
\(869\) 20.3186 75.8302i 0.0233816 0.0872615i
\(870\) 1711.24i 1.96694i
\(871\) 0 0
\(872\) 122.163 0.140095
\(873\) 271.103 + 72.6417i 0.310541 + 0.0832093i
\(874\) 175.902 + 304.672i 0.201261 + 0.348595i
\(875\) −49.8123 28.7591i −0.0569283 0.0328676i
\(876\) 486.687 486.687i 0.555579 0.555579i
\(877\) −391.203 1459.99i −0.446069 1.66475i −0.713098 0.701064i \(-0.752709\pi\)
0.267029 0.963689i \(-0.413958\pi\)
\(878\) 101.566 27.2146i 0.115679 0.0309961i
\(879\) 462.452 + 462.452i 0.526111 + 0.526111i
\(880\) 12.3400 21.3736i 0.0140228 0.0242882i
\(881\) 1005.27 580.392i 1.14105 0.658788i 0.194363 0.980930i \(-0.437736\pi\)
0.946691 + 0.322142i \(0.104403\pi\)
\(882\) 247.003 921.829i 0.280049 1.04516i
\(883\) 1327.78i 1.50371i 0.659328 + 0.751856i \(0.270841\pi\)
−0.659328 + 0.751856i \(0.729159\pi\)
\(884\) 0 0
\(885\) 3980.87 4.49815
\(886\) 178.463 + 47.8191i 0.201426 + 0.0539719i
\(887\) −248.628 430.636i −0.280302 0.485497i 0.691157 0.722704i \(-0.257101\pi\)
−0.971459 + 0.237207i \(0.923768\pi\)
\(888\) −487.814 281.639i −0.549340 0.317161i
\(889\) −58.1135 + 58.1135i −0.0653695 + 0.0653695i
\(890\) −259.301 967.725i −0.291350 1.08733i
\(891\) 10.4580 2.80221i 0.0117373 0.00314501i
\(892\) −340.107 340.107i −0.381286 0.381286i
\(893\) −162.879 + 282.115i −0.182396 + 0.315918i
\(894\) 157.359 90.8512i 0.176017 0.101623i
\(895\) 457.246 1706.46i 0.510889 1.90666i
\(896\) 4.03130i 0.00449922i
\(897\) 0 0
\(898\) 1019.38 1.13517
\(899\) 617.599 + 165.485i 0.686985 + 0.184077i
\(900\) 612.784 + 1061.37i 0.680871 + 1.17930i
\(901\) −214.147 123.638i −0.237677 0.137223i
\(902\) −19.0871 + 19.0871i −0.0211608 + 0.0211608i
\(903\) 12.9128 + 48.1913i 0.0142999 + 0.0533680i
\(904\) −126.060 + 33.7778i −0.139447 + 0.0373648i
\(905\) −660.176 660.176i −0.729477 0.729477i
\(906\) −523.883 + 907.392i −0.578237 + 1.00154i
\(907\) 837.965 483.799i 0.923886 0.533406i 0.0390135 0.999239i \(-0.487578\pi\)
0.884873 + 0.465833i \(0.154245\pi\)
\(908\) −46.8360 + 174.794i −0.0515814 + 0.192505i
\(909\) 384.184i 0.422645i
\(910\) 0 0
\(911\) −760.079 −0.834335 −0.417168 0.908830i \(-0.636977\pi\)
−0.417168 + 0.908830i \(0.636977\pi\)
\(912\) 200.488 + 53.7207i 0.219834 + 0.0589042i
\(913\) −14.2586 24.6966i −0.0156173 0.0270499i
\(914\) −444.113 256.408i −0.485900 0.280534i
\(915\) −434.976 + 434.976i −0.475384 + 0.475384i
\(916\) −182.198 679.973i −0.198906 0.742328i
\(917\) 55.8472 14.9642i 0.0609020 0.0163187i
\(918\) −66.1406 66.1406i −0.0720486 0.0720486i
\(919\) −208.249 + 360.698i −0.226604 + 0.392490i −0.956800 0.290748i \(-0.906096\pi\)
0.730195 + 0.683238i \(0.239429\pi\)
\(920\) −467.127 + 269.696i −0.507747 + 0.293148i
\(921\) −534.967 + 1996.53i −0.580855 + 2.16778i
\(922\) 1223.62i 1.32713i
\(923\) 0 0
\(924\) 2.52105 0.00272841
\(925\) 1787.58 + 478.982i 1.93252 + 0.517818i
\(926\) −163.492 283.176i −0.176557 0.305806i
\(927\) 814.152 + 470.051i 0.878265 + 0.507067i
\(928\) 121.674 121.674i 0.131114 0.131114i
\(929\) 108.175 + 403.716i 0.116443 + 0.434571i 0.999391 0.0349002i \(-0.0111113\pi\)
−0.882948 + 0.469471i \(0.844445\pi\)
\(930\) −1142.20 + 306.051i −1.22817 + 0.329087i
\(931\) 375.490 + 375.490i 0.403319 + 0.403319i
\(932\) −384.870 + 666.614i −0.412950 + 0.715251i
\(933\) 571.890 330.181i 0.612958 0.353891i
\(934\) 88.8952 331.761i 0.0951769 0.355205i
\(935\) 17.7735i 0.0190091i
\(936\) 0 0
\(937\) −140.819 −0.150287 −0.0751436 0.997173i \(-0.523942\pi\)
−0.0751436 + 0.997173i \(0.523942\pi\)
\(938\) 33.8788 + 9.07781i 0.0361182 + 0.00967783i
\(939\) 1254.67 + 2173.15i 1.33618 + 2.31432i
\(940\) −432.542 249.728i −0.460151 0.265669i
\(941\) −1032.31 + 1032.31i −1.09704 + 1.09704i −0.102281 + 0.994756i \(0.532614\pi\)
−0.994756 + 0.102281i \(0.967386\pi\)
\(942\) −249.411 930.814i −0.264767 0.988125i
\(943\) 569.843 152.689i 0.604288 0.161918i
\(944\) 283.051 + 283.051i 0.299842 + 0.299842i
\(945\) −34.0728 + 59.0158i −0.0360559 + 0.0624506i
\(946\) 26.5986 15.3567i 0.0281169 0.0162333i
\(947\) 125.045 466.674i 0.132043 0.492792i −0.867949 0.496653i \(-0.834562\pi\)
0.999993 + 0.00386092i \(0.00122897\pi\)
\(948\) 1012.28i 1.06780i
\(949\) 0 0
\(950\) −681.937 −0.717829
\(951\) −159.114 42.6346i −0.167313 0.0448313i
\(952\) 1.45159 + 2.51422i 0.00152477 + 0.00264099i
\(953\) −742.996 428.969i −0.779639 0.450125i 0.0566633 0.998393i \(-0.481954\pi\)
−0.836302 + 0.548269i \(0.815287\pi\)
\(954\) 1185.27 1185.27i 1.24242 1.24242i
\(955\) 571.396 + 2132.48i 0.598321 + 2.23296i
\(956\) −575.448 + 154.191i −0.601933 + 0.161287i
\(957\) −76.0911 76.0911i −0.0795100 0.0795100i
\(958\) 158.062 273.772i 0.164992 0.285774i
\(959\) −31.8896 + 18.4115i −0.0332530 + 0.0191986i
\(960\) −82.3652 + 307.391i −0.0857971 + 0.320199i
\(961\) 519.175i 0.540244i
\(962\) 0 0
\(963\) −1775.66 −1.84389
\(964\) −361.919 96.9760i −0.375435 0.100598i
\(965\) −663.006 1148.36i −0.687053 1.19001i
\(966\) −47.7166 27.5492i −0.0493961 0.0285189i
\(967\) 911.551 911.551i 0.942658 0.942658i −0.0557845 0.998443i \(-0.517766\pi\)
0.998443 + 0.0557845i \(0.0177660\pi\)
\(968\) 88.1765 + 329.079i 0.0910914 + 0.339958i
\(969\) 144.383 38.6873i 0.149002 0.0399250i
\(970\) −169.311 169.311i −0.174547 0.174547i
\(971\) −537.004 + 930.119i −0.553043 + 0.957898i 0.445010 + 0.895525i \(0.353200\pi\)
−0.998053 + 0.0623725i \(0.980133\pi\)
\(972\) −478.821 + 276.447i −0.492614 + 0.284411i
\(973\) 2.35891 8.80355i 0.00242436 0.00904785i
\(974\) 30.5113i 0.0313258i
\(975\) 0 0
\(976\) −61.8562 −0.0633772
\(977\) −767.374 205.617i −0.785439 0.210458i −0.156258 0.987716i \(-0.549943\pi\)
−0.629181 + 0.777258i \(0.716610\pi\)
\(978\) 89.7055 + 155.375i 0.0917234 + 0.158870i
\(979\) −54.5604 31.5005i −0.0557307 0.0321762i
\(980\) −575.706 + 575.706i −0.587455 + 0.587455i
\(981\) 154.352 + 576.050i 0.157342 + 0.587207i
\(982\) 79.6518 21.3426i 0.0811118 0.0217339i
\(983\) 1275.63 + 1275.63i 1.29769 + 1.29769i 0.929916 + 0.367773i \(0.119880\pi\)
0.367773 + 0.929916i \(0.380120\pi\)
\(984\) 174.030 301.429i 0.176860 0.306331i
\(985\) 2169.89 1252.79i 2.20294 1.27187i
\(986\) 32.0728 119.697i 0.0325281 0.121397i
\(987\) 51.0191i 0.0516911i
\(988\) 0 0
\(989\) −671.253 −0.678719
\(990\) 116.377 + 31.1832i 0.117553 + 0.0314981i
\(991\) 564.667 + 978.032i 0.569795 + 0.986914i 0.996586 + 0.0825637i \(0.0263108\pi\)
−0.426791 + 0.904350i \(0.640356\pi\)
\(992\) −102.975 59.4525i −0.103805 0.0599320i
\(993\) 74.8840 74.8840i 0.0754119 0.0754119i
\(994\) −12.7200 47.4716i −0.0127968 0.0477582i
\(995\) 1507.10 403.826i 1.51467 0.405855i
\(996\) 260.011 + 260.011i 0.261055 + 0.261055i
\(997\) 3.57219 6.18721i 0.00358294 0.00620583i −0.864228 0.503100i \(-0.832193\pi\)
0.867811 + 0.496894i \(0.165526\pi\)
\(998\) −1083.39 + 625.494i −1.08556 + 0.626748i
\(999\) 247.808 924.830i 0.248056 0.925756i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.f.j.249.2 8
13.2 odd 12 338.3.d.g.99.1 8
13.3 even 3 338.3.d.f.239.1 8
13.4 even 6 26.3.f.b.19.2 yes 8
13.5 odd 4 26.3.f.b.11.2 8
13.6 odd 12 338.3.f.h.319.2 8
13.7 odd 12 inner 338.3.f.j.319.2 8
13.8 odd 4 338.3.f.i.89.2 8
13.9 even 3 338.3.f.i.19.2 8
13.10 even 6 338.3.d.g.239.1 8
13.11 odd 12 338.3.d.f.99.1 8
13.12 even 2 338.3.f.h.249.2 8
39.5 even 4 234.3.bb.f.37.2 8
39.17 odd 6 234.3.bb.f.19.2 8
52.31 even 4 208.3.bd.f.193.1 8
52.43 odd 6 208.3.bd.f.97.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.2 8 13.5 odd 4
26.3.f.b.19.2 yes 8 13.4 even 6
208.3.bd.f.97.1 8 52.43 odd 6
208.3.bd.f.193.1 8 52.31 even 4
234.3.bb.f.19.2 8 39.17 odd 6
234.3.bb.f.37.2 8 39.5 even 4
338.3.d.f.99.1 8 13.11 odd 12
338.3.d.f.239.1 8 13.3 even 3
338.3.d.g.99.1 8 13.2 odd 12
338.3.d.g.239.1 8 13.10 even 6
338.3.f.h.249.2 8 13.12 even 2
338.3.f.h.319.2 8 13.6 odd 12
338.3.f.i.19.2 8 13.9 even 3
338.3.f.i.89.2 8 13.8 odd 4
338.3.f.j.249.2 8 1.1 even 1 trivial
338.3.f.j.319.2 8 13.7 odd 12 inner