Properties

Label 338.3.f.h.319.2
Level $338$
Weight $3$
Character 338.319
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,0,6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 319.2
Root \(3.90972 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.319
Dual form 338.3.f.h.249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(2.38787 - 4.13592i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-5.88981 - 5.88981i) q^{5} +(-1.74804 + 6.52379i) q^{6} +(-0.344179 - 0.0922225i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-6.90386 - 11.9578i) q^{9} +(10.2015 + 5.88981i) q^{10} +(-0.191720 - 0.715507i) q^{11} -9.55149i q^{12} +0.503913 q^{14} +(-38.4239 + 10.2956i) q^{15} +(2.00000 - 3.46410i) q^{16} +(2.49470 - 1.44031i) q^{17} +(13.8077 + 13.8077i) q^{18} +(2.81216 - 10.4951i) q^{19} +(-16.0913 - 4.31164i) q^{20} +(-1.20328 + 1.20328i) q^{21} +(0.523787 + 0.907226i) q^{22} +(-19.8278 - 11.4476i) q^{23} +(3.49609 + 13.0476i) q^{24} +44.3798i q^{25} -22.9605 q^{27} +(-0.688358 + 0.184445i) q^{28} +(-15.2092 + 26.3432i) q^{29} +(48.7195 - 28.1282i) q^{30} +(14.8631 + 14.8631i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-3.41708 - 0.915603i) q^{33} +(-2.88063 + 2.88063i) q^{34} +(1.48398 + 2.57032i) q^{35} +(-23.9157 - 13.8077i) q^{36} +(10.7928 + 40.2792i) q^{37} +15.3659i q^{38} +23.5593 q^{40} +(24.8893 - 6.66907i) q^{41} +(1.20328 - 2.08414i) q^{42} +(25.3907 - 14.6593i) q^{43} +(-1.04757 - 1.04757i) q^{44} +(-29.7670 + 111.092i) q^{45} +(31.2753 + 8.38019i) q^{46} +(21.2000 - 21.2000i) q^{47} +(-9.55149 - 16.5437i) q^{48} +(-42.3253 - 24.4365i) q^{49} +(-16.2441 - 60.6239i) q^{50} -13.7571i q^{51} -85.8410 q^{53} +(31.3646 - 8.40412i) q^{54} +(-3.08501 + 5.34339i) q^{55} +(0.872803 - 0.503913i) q^{56} +(-36.6919 - 36.6919i) q^{57} +(11.1339 - 41.5524i) q^{58} +(-96.6638 - 25.9010i) q^{59} +(-56.2565 + 56.2565i) q^{60} +(-7.73202 - 13.3923i) q^{61} +(-25.7437 - 14.8631i) q^{62} +(1.27338 + 4.75233i) q^{63} -8.00000i q^{64} +5.00295 q^{66} +(-67.2315 + 18.0146i) q^{67} +(2.88063 - 4.98939i) q^{68} +(-94.6923 + 54.6706i) q^{69} +(-2.96795 - 2.96795i) q^{70} +(25.2424 - 94.2060i) q^{71} +(37.7234 + 10.1080i) q^{72} +(50.9541 - 50.9541i) q^{73} +(-29.4864 - 51.0720i) q^{74} +(183.551 + 105.973i) q^{75} +(-5.62432 - 20.9903i) q^{76} +0.263943i q^{77} +105.981 q^{79} +(-32.1825 + 8.62328i) q^{80} +(7.30809 - 12.6580i) q^{81} +(-31.5584 + 18.2202i) q^{82} +(-27.2221 - 27.2221i) q^{83} +(-0.880862 + 3.28742i) q^{84} +(-23.1765 - 6.21012i) q^{85} +(-29.3186 + 29.3186i) q^{86} +(72.6355 + 125.808i) q^{87} +(1.81445 + 1.04757i) q^{88} +(-22.0127 - 82.1525i) q^{89} -162.650i q^{90} -45.7902 q^{92} +(96.9639 - 25.9814i) q^{93} +(-21.2000 + 36.7195i) q^{94} +(-78.3775 + 45.2513i) q^{95} +(19.1030 + 19.1030i) q^{96} +(5.26095 - 19.6341i) q^{97} +(66.7618 + 17.8888i) q^{98} +(-7.23232 + 7.23232i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} - 6 q^{6} - 8 q^{7} - 16 q^{8} - 42 q^{9} + 18 q^{10} - 24 q^{11} + 20 q^{14} - 126 q^{15} + 16 q^{16} + 42 q^{17} + 84 q^{18} - 68 q^{19} - 12 q^{20} - 102 q^{21} - 42 q^{22} + 36 q^{23}+ \cdots + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 2.38787 4.13592i 0.795957 1.37864i −0.126272 0.991996i \(-0.540301\pi\)
0.922230 0.386643i \(-0.126365\pi\)
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −5.88981 5.88981i −1.17796 1.17796i −0.980263 0.197700i \(-0.936653\pi\)
−0.197700 0.980263i \(-0.563347\pi\)
\(6\) −1.74804 + 6.52379i −0.291341 + 1.08730i
\(7\) −0.344179 0.0922225i −0.0491684 0.0131746i 0.234151 0.972200i \(-0.424769\pi\)
−0.283319 + 0.959026i \(0.591436\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −6.90386 11.9578i −0.767096 1.32865i
\(10\) 10.2015 + 5.88981i 1.02015 + 0.588981i
\(11\) −0.191720 0.715507i −0.0174290 0.0650461i 0.956664 0.291195i \(-0.0940530\pi\)
−0.974093 + 0.226149i \(0.927386\pi\)
\(12\) 9.55149i 0.795957i
\(13\) 0 0
\(14\) 0.503913 0.0359938
\(15\) −38.4239 + 10.2956i −2.56159 + 0.686377i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 2.49470 1.44031i 0.146747 0.0847244i −0.424829 0.905274i \(-0.639666\pi\)
0.571576 + 0.820549i \(0.306332\pi\)
\(18\) 13.8077 + 13.8077i 0.767096 + 0.767096i
\(19\) 2.81216 10.4951i 0.148009 0.552375i −0.851594 0.524201i \(-0.824364\pi\)
0.999603 0.0281743i \(-0.00896933\pi\)
\(20\) −16.0913 4.31164i −0.804563 0.215582i
\(21\) −1.20328 + 1.20328i −0.0572990 + 0.0572990i
\(22\) 0.523787 + 0.907226i 0.0238085 + 0.0412376i
\(23\) −19.8278 11.4476i −0.862076 0.497720i 0.00263083 0.999997i \(-0.499163\pi\)
−0.864707 + 0.502277i \(0.832496\pi\)
\(24\) 3.49609 + 13.0476i 0.145670 + 0.543649i
\(25\) 44.3798i 1.77519i
\(26\) 0 0
\(27\) −22.9605 −0.850388
\(28\) −0.688358 + 0.184445i −0.0245842 + 0.00658732i
\(29\) −15.2092 + 26.3432i −0.524457 + 0.908386i 0.475138 + 0.879911i \(0.342398\pi\)
−0.999595 + 0.0284745i \(0.990935\pi\)
\(30\) 48.7195 28.1282i 1.62398 0.937608i
\(31\) 14.8631 + 14.8631i 0.479456 + 0.479456i 0.904958 0.425502i \(-0.139902\pi\)
−0.425502 + 0.904958i \(0.639902\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −3.41708 0.915603i −0.103548 0.0277456i
\(34\) −2.88063 + 2.88063i −0.0847244 + 0.0847244i
\(35\) 1.48398 + 2.57032i 0.0423993 + 0.0734378i
\(36\) −23.9157 13.8077i −0.664325 0.383548i
\(37\) 10.7928 + 40.2792i 0.291697 + 1.08863i 0.943805 + 0.330502i \(0.107218\pi\)
−0.652108 + 0.758126i \(0.726115\pi\)
\(38\) 15.3659i 0.404367i
\(39\) 0 0
\(40\) 23.5593 0.588981
\(41\) 24.8893 6.66907i 0.607056 0.162660i 0.0578194 0.998327i \(-0.481585\pi\)
0.549237 + 0.835667i \(0.314919\pi\)
\(42\) 1.20328 2.08414i 0.0286495 0.0496224i
\(43\) 25.3907 14.6593i 0.590480 0.340914i −0.174807 0.984603i \(-0.555930\pi\)
0.765287 + 0.643689i \(0.222597\pi\)
\(44\) −1.04757 1.04757i −0.0238085 0.0238085i
\(45\) −29.7670 + 111.092i −0.661489 + 2.46871i
\(46\) 31.2753 + 8.38019i 0.679898 + 0.182178i
\(47\) 21.2000 21.2000i 0.451065 0.451065i −0.444643 0.895708i \(-0.646670\pi\)
0.895708 + 0.444643i \(0.146670\pi\)
\(48\) −9.55149 16.5437i −0.198989 0.344660i
\(49\) −42.3253 24.4365i −0.863781 0.498704i
\(50\) −16.2441 60.6239i −0.324883 1.21248i
\(51\) 13.7571i 0.269748i
\(52\) 0 0
\(53\) −85.8410 −1.61964 −0.809821 0.586678i \(-0.800436\pi\)
−0.809821 + 0.586678i \(0.800436\pi\)
\(54\) 31.3646 8.40412i 0.580826 0.155632i
\(55\) −3.08501 + 5.34339i −0.0560911 + 0.0971526i
\(56\) 0.872803 0.503913i 0.0155858 0.00899844i
\(57\) −36.6919 36.6919i −0.643718 0.643718i
\(58\) 11.1339 41.5524i 0.191965 0.716421i
\(59\) −96.6638 25.9010i −1.63837 0.439000i −0.682046 0.731309i \(-0.738910\pi\)
−0.956324 + 0.292309i \(0.905576\pi\)
\(60\) −56.2565 + 56.2565i −0.937608 + 0.937608i
\(61\) −7.73202 13.3923i −0.126754 0.219545i 0.795663 0.605740i \(-0.207123\pi\)
−0.922417 + 0.386195i \(0.873789\pi\)
\(62\) −25.7437 14.8631i −0.415221 0.239728i
\(63\) 1.27338 + 4.75233i 0.0202124 + 0.0754338i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 5.00295 0.0758023
\(67\) −67.2315 + 18.0146i −1.00346 + 0.268875i −0.722893 0.690960i \(-0.757188\pi\)
−0.280563 + 0.959836i \(0.590521\pi\)
\(68\) 2.88063 4.98939i 0.0423622 0.0733735i
\(69\) −94.6923 + 54.6706i −1.37235 + 0.792328i
\(70\) −2.96795 2.96795i −0.0423993 0.0423993i
\(71\) 25.2424 94.2060i 0.355527 1.32685i −0.524293 0.851538i \(-0.675670\pi\)
0.879820 0.475307i \(-0.157663\pi\)
\(72\) 37.7234 + 10.1080i 0.523936 + 0.140388i
\(73\) 50.9541 50.9541i 0.698001 0.698001i −0.265978 0.963979i \(-0.585695\pi\)
0.963979 + 0.265978i \(0.0856949\pi\)
\(74\) −29.4864 51.0720i −0.398465 0.690162i
\(75\) 183.551 + 105.973i 2.44735 + 1.41298i
\(76\) −5.62432 20.9903i −0.0740043 0.276188i
\(77\) 0.263943i 0.00342783i
\(78\) 0 0
\(79\) 105.981 1.34153 0.670767 0.741669i \(-0.265965\pi\)
0.670767 + 0.741669i \(0.265965\pi\)
\(80\) −32.1825 + 8.62328i −0.402282 + 0.107791i
\(81\) 7.30809 12.6580i 0.0902233 0.156271i
\(82\) −31.5584 + 18.2202i −0.384858 + 0.222198i
\(83\) −27.2221 27.2221i −0.327977 0.327977i 0.523840 0.851817i \(-0.324499\pi\)
−0.851817 + 0.523840i \(0.824499\pi\)
\(84\) −0.880862 + 3.28742i −0.0104864 + 0.0391360i
\(85\) −23.1765 6.21012i −0.272664 0.0730602i
\(86\) −29.3186 + 29.3186i −0.340914 + 0.340914i
\(87\) 72.6355 + 125.808i 0.834891 + 1.44607i
\(88\) 1.81445 + 1.04757i 0.0206188 + 0.0119043i
\(89\) −22.0127 82.1525i −0.247334 0.923061i −0.972196 0.234168i \(-0.924763\pi\)
0.724863 0.688893i \(-0.241903\pi\)
\(90\) 162.650i 1.80722i
\(91\) 0 0
\(92\) −45.7902 −0.497720
\(93\) 96.9639 25.9814i 1.04262 0.279370i
\(94\) −21.2000 + 36.7195i −0.225532 + 0.390633i
\(95\) −78.3775 + 45.2513i −0.825026 + 0.476329i
\(96\) 19.1030 + 19.1030i 0.198989 + 0.198989i
\(97\) 5.26095 19.6341i 0.0542366 0.202414i −0.933491 0.358601i \(-0.883254\pi\)
0.987727 + 0.156188i \(0.0499204\pi\)
\(98\) 66.7618 + 17.8888i 0.681243 + 0.182538i
\(99\) −7.23232 + 7.23232i −0.0730537 + 0.0730537i
\(100\) 44.3798 + 76.8681i 0.443798 + 0.768681i
\(101\) 24.0962 + 13.9119i 0.238576 + 0.137742i 0.614522 0.788900i \(-0.289349\pi\)
−0.375946 + 0.926642i \(0.622682\pi\)
\(102\) 5.03546 + 18.7926i 0.0493673 + 0.184241i
\(103\) 68.0852i 0.661021i 0.943802 + 0.330511i \(0.107221\pi\)
−0.943802 + 0.330511i \(0.892779\pi\)
\(104\) 0 0
\(105\) 14.1742 0.134992
\(106\) 117.261 31.4200i 1.10624 0.296415i
\(107\) 64.2996 111.370i 0.600930 1.04084i −0.391750 0.920072i \(-0.628130\pi\)
0.992680 0.120770i \(-0.0385365\pi\)
\(108\) −39.7687 + 22.9605i −0.368229 + 0.212597i
\(109\) −30.5407 30.5407i −0.280190 0.280190i 0.552995 0.833185i \(-0.313485\pi\)
−0.833185 + 0.552995i \(0.813485\pi\)
\(110\) 2.25838 8.42840i 0.0205308 0.0766219i
\(111\) 192.363 + 51.5436i 1.73300 + 0.464357i
\(112\) −1.00783 + 1.00783i −0.00899844 + 0.00899844i
\(113\) −23.0706 39.9595i −0.204165 0.353624i 0.745701 0.666280i \(-0.232115\pi\)
−0.949866 + 0.312656i \(0.898781\pi\)
\(114\) 63.5522 + 36.6919i 0.557476 + 0.321859i
\(115\) 49.3578 + 184.206i 0.429198 + 1.60179i
\(116\) 60.8370i 0.524457i
\(117\) 0 0
\(118\) 141.526 1.19937
\(119\) −0.991451 + 0.265659i −0.00833152 + 0.00223243i
\(120\) 56.2565 97.4391i 0.468804 0.811992i
\(121\) 104.314 60.2256i 0.862098 0.497733i
\(122\) 15.4640 + 15.4640i 0.126754 + 0.126754i
\(123\) 31.8498 118.865i 0.258941 0.966381i
\(124\) 40.6068 + 10.8806i 0.327474 + 0.0877465i
\(125\) 114.143 114.143i 0.913147 0.913147i
\(126\) −3.47895 6.02571i −0.0276107 0.0478231i
\(127\) −199.748 115.325i −1.57282 0.908067i −0.995822 0.0913210i \(-0.970891\pi\)
−0.576997 0.816746i \(-0.695776\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 140.018i 1.08541i
\(130\) 0 0
\(131\) 162.262 1.23864 0.619321 0.785138i \(-0.287408\pi\)
0.619321 + 0.785138i \(0.287408\pi\)
\(132\) −6.83416 + 1.83121i −0.0517739 + 0.0138728i
\(133\) −1.93577 + 3.35286i −0.0145547 + 0.0252095i
\(134\) 85.2462 49.2169i 0.636165 0.367290i
\(135\) 135.233 + 135.233i 1.00173 + 1.00173i
\(136\) −2.10877 + 7.87002i −0.0155056 + 0.0578678i
\(137\) 99.8210 + 26.7470i 0.728620 + 0.195233i 0.604015 0.796973i \(-0.293567\pi\)
0.124606 + 0.992206i \(0.460233\pi\)
\(138\) 109.341 109.341i 0.792328 0.792328i
\(139\) 12.7892 + 22.1516i 0.0920087 + 0.159364i 0.908356 0.418197i \(-0.137338\pi\)
−0.816348 + 0.577561i \(0.804005\pi\)
\(140\) 5.14064 + 2.96795i 0.0367189 + 0.0211997i
\(141\) −37.0586 138.305i −0.262827 0.980883i
\(142\) 137.927i 0.971318i
\(143\) 0 0
\(144\) −55.2309 −0.383548
\(145\) 244.736 65.5768i 1.68784 0.452254i
\(146\) −50.9541 + 88.2551i −0.349001 + 0.604487i
\(147\) −202.135 + 116.703i −1.37507 + 0.793895i
\(148\) 58.9729 + 58.9729i 0.398465 + 0.398465i
\(149\) 6.96307 25.9865i 0.0467320 0.174406i −0.938615 0.344965i \(-0.887891\pi\)
0.985347 + 0.170559i \(0.0545574\pi\)
\(150\) −289.524 77.5778i −1.93016 0.517185i
\(151\) −109.697 + 109.697i −0.726468 + 0.726468i −0.969914 0.243446i \(-0.921722\pi\)
0.243446 + 0.969914i \(0.421722\pi\)
\(152\) 15.3659 + 26.6146i 0.101092 + 0.175096i
\(153\) −34.4461 19.8875i −0.225138 0.129983i
\(154\) −0.0966099 0.360553i −0.000627337 0.00234125i
\(155\) 175.082i 1.12956i
\(156\) 0 0
\(157\) −142.680 −0.908790 −0.454395 0.890800i \(-0.650145\pi\)
−0.454395 + 0.890800i \(0.650145\pi\)
\(158\) −144.773 + 38.7918i −0.916284 + 0.245518i
\(159\) −204.977 + 355.031i −1.28917 + 2.23290i
\(160\) 40.8058 23.5593i 0.255036 0.147245i
\(161\) 5.76857 + 5.76857i 0.0358296 + 0.0358296i
\(162\) −5.34989 + 19.9661i −0.0330240 + 0.123247i
\(163\) −25.6588 6.87526i −0.157416 0.0421795i 0.179250 0.983804i \(-0.442633\pi\)
−0.336666 + 0.941624i \(0.609299\pi\)
\(164\) 36.4405 36.4405i 0.222198 0.222198i
\(165\) 14.7332 + 25.5187i 0.0892922 + 0.154659i
\(166\) 47.1500 + 27.2221i 0.284036 + 0.163988i
\(167\) −1.94780 7.26931i −0.0116635 0.0435288i 0.959849 0.280518i \(-0.0905061\pi\)
−0.971512 + 0.236989i \(0.923839\pi\)
\(168\) 4.81312i 0.0286495i
\(169\) 0 0
\(170\) 33.9327 0.199604
\(171\) −144.914 + 38.8296i −0.847450 + 0.227074i
\(172\) 29.3186 50.7813i 0.170457 0.295240i
\(173\) 24.9669 14.4146i 0.144317 0.0833216i −0.426103 0.904675i \(-0.640114\pi\)
0.570420 + 0.821353i \(0.306780\pi\)
\(174\) −145.271 145.271i −0.834891 0.834891i
\(175\) 4.09281 15.2746i 0.0233875 0.0872834i
\(176\) −2.86203 0.766878i −0.0162615 0.00435726i
\(177\) −337.945 + 337.945i −1.90929 + 1.90929i
\(178\) 60.1398 + 104.165i 0.337864 + 0.585197i
\(179\) 183.682 + 106.049i 1.02616 + 0.592453i 0.915882 0.401448i \(-0.131493\pi\)
0.110277 + 0.993901i \(0.464826\pi\)
\(180\) 59.5340 + 222.184i 0.330744 + 1.23435i
\(181\) 112.088i 0.619270i 0.950856 + 0.309635i \(0.100207\pi\)
−0.950856 + 0.309635i \(0.899793\pi\)
\(182\) 0 0
\(183\) −73.8523 −0.403564
\(184\) 62.5506 16.7604i 0.339949 0.0910891i
\(185\) 173.670 300.805i 0.938755 1.62597i
\(186\) −122.945 + 70.9825i −0.660996 + 0.381626i
\(187\) −1.50884 1.50884i −0.00806865 0.00806865i
\(188\) 15.5195 57.9196i 0.0825505 0.308083i
\(189\) 7.90251 + 2.11747i 0.0418122 + 0.0112036i
\(190\) 90.5025 90.5025i 0.476329 0.476329i
\(191\) −132.524 229.538i −0.693843 1.20177i −0.970569 0.240823i \(-0.922583\pi\)
0.276726 0.960949i \(-0.410751\pi\)
\(192\) −33.0873 19.1030i −0.172330 0.0994947i
\(193\) −41.2029 153.771i −0.213486 0.796742i −0.986694 0.162589i \(-0.948016\pi\)
0.773208 0.634153i \(-0.218651\pi\)
\(194\) 28.7464i 0.148177i
\(195\) 0 0
\(196\) −97.7461 −0.498704
\(197\) −290.559 + 77.8551i −1.47492 + 0.395204i −0.904615 0.426230i \(-0.859842\pi\)
−0.570305 + 0.821433i \(0.693175\pi\)
\(198\) 7.23232 12.5267i 0.0365268 0.0632663i
\(199\) 162.223 93.6594i 0.815190 0.470650i −0.0335648 0.999437i \(-0.510686\pi\)
0.848755 + 0.528786i \(0.177353\pi\)
\(200\) −88.7596 88.7596i −0.443798 0.443798i
\(201\) −86.0333 + 321.081i −0.428026 + 1.59742i
\(202\) −38.0081 10.1842i −0.188159 0.0504170i
\(203\) 7.66414 7.66414i 0.0377544 0.0377544i
\(204\) −13.7571 23.8281i −0.0674370 0.116804i
\(205\) −185.873 107.314i −0.906697 0.523482i
\(206\) −24.9209 93.0061i −0.120975 0.451486i
\(207\) 316.130i 1.52720i
\(208\) 0 0
\(209\) −8.04849 −0.0385095
\(210\) −19.3623 + 5.18811i −0.0922014 + 0.0247053i
\(211\) −84.9065 + 147.062i −0.402401 + 0.696978i −0.994015 0.109243i \(-0.965157\pi\)
0.591614 + 0.806221i \(0.298491\pi\)
\(212\) −148.681 + 85.8410i −0.701325 + 0.404910i
\(213\) −329.353 329.353i −1.54626 1.54626i
\(214\) −47.0705 + 175.670i −0.219956 + 0.820886i
\(215\) −235.887 63.2057i −1.09715 0.293980i
\(216\) 45.9210 45.9210i 0.212597 0.212597i
\(217\) −3.74486 6.48629i −0.0172574 0.0298907i
\(218\) 52.8981 + 30.5407i 0.242652 + 0.140095i
\(219\) −89.0700 332.414i −0.406712 1.51787i
\(220\) 12.3400i 0.0560911i
\(221\) 0 0
\(222\) −281.639 −1.26865
\(223\) 232.297 62.2439i 1.04169 0.279121i 0.302878 0.953029i \(-0.402053\pi\)
0.738815 + 0.673909i \(0.235386\pi\)
\(224\) 1.00783 1.74561i 0.00449922 0.00779288i
\(225\) 530.687 306.392i 2.35861 1.36174i
\(226\) 46.1413 + 46.1413i 0.204165 + 0.204165i
\(227\) −23.4180 + 87.3971i −0.103163 + 0.385009i −0.998130 0.0611224i \(-0.980532\pi\)
0.894967 + 0.446132i \(0.147199\pi\)
\(228\) −100.244 26.8603i −0.439667 0.117808i
\(229\) 248.887 248.887i 1.08684 1.08684i 0.0909923 0.995852i \(-0.470996\pi\)
0.995852 0.0909923i \(-0.0290039\pi\)
\(230\) −134.848 233.563i −0.586295 1.01549i
\(231\) 1.09165 + 0.630263i 0.00472574 + 0.00272841i
\(232\) −22.2679 83.1049i −0.0959823 0.358211i
\(233\) 384.870i 1.65180i −0.563815 0.825901i \(-0.690667\pi\)
0.563815 0.825901i \(-0.309333\pi\)
\(234\) 0 0
\(235\) −249.728 −1.06267
\(236\) −193.328 + 51.8020i −0.819185 + 0.219500i
\(237\) 253.069 438.329i 1.06780 1.84949i
\(238\) 1.25711 0.725793i 0.00528198 0.00304955i
\(239\) 210.628 + 210.628i 0.881290 + 0.881290i 0.993666 0.112375i \(-0.0358459\pi\)
−0.112375 + 0.993666i \(0.535846\pi\)
\(240\) −41.1826 + 153.696i −0.171594 + 0.640398i
\(241\) 180.960 + 48.4880i 0.750870 + 0.201195i 0.613904 0.789381i \(-0.289598\pi\)
0.136966 + 0.990576i \(0.456265\pi\)
\(242\) −120.451 + 120.451i −0.497733 + 0.497733i
\(243\) −138.224 239.411i −0.568822 0.985228i
\(244\) −26.7845 15.4640i −0.109773 0.0633772i
\(245\) 105.362 + 393.215i 0.430047 + 1.60496i
\(246\) 174.030i 0.707440i
\(247\) 0 0
\(248\) −59.4525 −0.239728
\(249\) −177.591 + 47.5853i −0.713216 + 0.191106i
\(250\) −114.143 + 197.702i −0.456573 + 0.790808i
\(251\) 87.0514 50.2592i 0.346818 0.200236i −0.316465 0.948604i \(-0.602496\pi\)
0.663283 + 0.748369i \(0.269163\pi\)
\(252\) 6.95789 + 6.95789i 0.0276107 + 0.0276107i
\(253\) −4.38944 + 16.3816i −0.0173496 + 0.0647495i
\(254\) 315.073 + 84.4234i 1.24044 + 0.332376i
\(255\) −81.0270 + 81.0270i −0.317753 + 0.317753i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 60.1930 + 34.7524i 0.234214 + 0.135223i 0.612515 0.790459i \(-0.290158\pi\)
−0.378301 + 0.925683i \(0.623491\pi\)
\(258\) 51.2502 + 191.268i 0.198644 + 0.741350i
\(259\) 14.8586i 0.0573691i
\(260\) 0 0
\(261\) 420.010 1.60924
\(262\) −221.654 + 59.3920i −0.846008 + 0.226687i
\(263\) −129.589 + 224.455i −0.492735 + 0.853441i −0.999965 0.00836922i \(-0.997336\pi\)
0.507230 + 0.861810i \(0.330669\pi\)
\(264\) 8.66536 5.00295i 0.0328233 0.0189506i
\(265\) 505.587 + 505.587i 1.90788 + 1.90788i
\(266\) 1.41708 5.28863i 0.00532739 0.0198821i
\(267\) −392.339 105.127i −1.46943 0.393734i
\(268\) −98.4338 + 98.4338i −0.367290 + 0.367290i
\(269\) −21.0056 36.3828i −0.0780878 0.135252i 0.824337 0.566099i \(-0.191548\pi\)
−0.902425 + 0.430847i \(0.858215\pi\)
\(270\) −234.230 135.233i −0.867520 0.500863i
\(271\) 81.5504 + 304.350i 0.300924 + 1.12306i 0.936398 + 0.350941i \(0.114138\pi\)
−0.635474 + 0.772122i \(0.719195\pi\)
\(272\) 11.5225i 0.0423622i
\(273\) 0 0
\(274\) −146.148 −0.533387
\(275\) 31.7540 8.50847i 0.115469 0.0309399i
\(276\) −109.341 + 189.385i −0.396164 + 0.686176i
\(277\) 164.261 94.8364i 0.593001 0.342370i −0.173282 0.984872i \(-0.555437\pi\)
0.766283 + 0.642503i \(0.222104\pi\)
\(278\) −25.5784 25.5784i −0.0920087 0.0920087i
\(279\) 75.1180 280.344i 0.269240 1.00482i
\(280\) −8.10860 2.17269i −0.0289593 0.00775961i
\(281\) −32.8661 + 32.8661i −0.116961 + 0.116961i −0.763165 0.646204i \(-0.776356\pi\)
0.646204 + 0.763165i \(0.276356\pi\)
\(282\) 101.246 + 175.363i 0.359028 + 0.621855i
\(283\) −456.365 263.482i −1.61260 0.931033i −0.988766 0.149474i \(-0.952242\pi\)
−0.623831 0.781559i \(-0.714425\pi\)
\(284\) −50.4849 188.412i −0.177764 0.663423i
\(285\) 432.217i 1.51655i
\(286\) 0 0
\(287\) −9.18141 −0.0319910
\(288\) 75.4468 20.2159i 0.261968 0.0701942i
\(289\) −140.351 + 243.095i −0.485644 + 0.841159i
\(290\) −310.313 + 179.159i −1.07004 + 0.617791i
\(291\) −68.6426 68.6426i −0.235885 0.235885i
\(292\) 37.3010 139.209i 0.127743 0.476744i
\(293\) −132.277 35.4435i −0.451457 0.120968i 0.0259239 0.999664i \(-0.491747\pi\)
−0.477381 + 0.878696i \(0.658414\pi\)
\(294\) 233.405 233.405i 0.793895 0.793895i
\(295\) 416.780 + 721.884i 1.41281 + 2.44706i
\(296\) −102.144 58.9729i −0.345081 0.199233i
\(297\) 4.40197 + 16.4284i 0.0148215 + 0.0553144i
\(298\) 38.0469i 0.127674i
\(299\) 0 0
\(300\) 423.893 1.41298
\(301\) −10.0908 + 2.70383i −0.0335244 + 0.00898283i
\(302\) 109.697 190.000i 0.363234 0.629140i
\(303\) 115.077 66.4398i 0.379792 0.219273i
\(304\) −30.7319 30.7319i −0.101092 0.101092i
\(305\) −33.3377 + 124.418i −0.109304 + 0.407928i
\(306\) 54.3336 + 14.5586i 0.177561 + 0.0475772i
\(307\) −306.038 + 306.038i −0.996866 + 0.996866i −0.999995 0.00312957i \(-0.999004\pi\)
0.00312957 + 0.999995i \(0.499004\pi\)
\(308\) 0.263943 + 0.457163i 0.000856959 + 0.00148430i
\(309\) 281.595 + 162.579i 0.911309 + 0.526145i
\(310\) 64.0845 + 239.167i 0.206724 + 0.771505i
\(311\) 138.274i 0.444611i 0.974977 + 0.222305i \(0.0713582\pi\)
−0.974977 + 0.222305i \(0.928642\pi\)
\(312\) 0 0
\(313\) 525.434 1.67870 0.839352 0.543589i \(-0.182935\pi\)
0.839352 + 0.543589i \(0.182935\pi\)
\(314\) 194.905 52.2245i 0.620715 0.166320i
\(315\) 20.4903 35.4903i 0.0650487 0.112668i
\(316\) 183.565 105.981i 0.580901 0.335383i
\(317\) 24.3899 + 24.3899i 0.0769397 + 0.0769397i 0.744529 0.667590i \(-0.232674\pi\)
−0.667590 + 0.744529i \(0.732674\pi\)
\(318\) 150.054 560.008i 0.471867 1.76103i
\(319\) 21.7646 + 5.83182i 0.0682277 + 0.0182816i
\(320\) −47.1185 + 47.1185i −0.147245 + 0.147245i
\(321\) −307.078 531.875i −0.956630 1.65693i
\(322\) −9.99146 5.76857i −0.0310294 0.0179148i
\(323\) −8.10079 30.2326i −0.0250799 0.0935993i
\(324\) 29.2323i 0.0902233i
\(325\) 0 0
\(326\) 37.5671 0.115237
\(327\) −199.241 + 53.3865i −0.609300 + 0.163261i
\(328\) −36.4405 + 63.1167i −0.111099 + 0.192429i
\(329\) −9.25172 + 5.34148i −0.0281207 + 0.0162355i
\(330\) −29.4664 29.4664i −0.0892922 0.0892922i
\(331\) 5.73931 21.4194i 0.0173393 0.0647111i −0.956714 0.291029i \(-0.906002\pi\)
0.974053 + 0.226318i \(0.0726689\pi\)
\(332\) −74.3720 19.9279i −0.224012 0.0600239i
\(333\) 407.141 407.141i 1.22264 1.22264i
\(334\) 5.32150 + 9.21711i 0.0159326 + 0.0275961i
\(335\) 502.084 + 289.878i 1.49876 + 0.865308i
\(336\) 1.76172 + 6.57484i 0.00524322 + 0.0195680i
\(337\) 544.688i 1.61629i −0.588987 0.808143i \(-0.700473\pi\)
0.588987 0.808143i \(-0.299527\pi\)
\(338\) 0 0
\(339\) −220.359 −0.650026
\(340\) −46.3530 + 12.4202i −0.136332 + 0.0365301i
\(341\) 7.78512 13.4842i 0.0228303 0.0395432i
\(342\) 183.744 106.084i 0.537262 0.310188i
\(343\) 24.6597 + 24.6597i 0.0718943 + 0.0718943i
\(344\) −21.4627 + 80.0999i −0.0623916 + 0.232849i
\(345\) 879.719 + 235.720i 2.54991 + 0.683247i
\(346\) −28.8293 + 28.8293i −0.0833216 + 0.0833216i
\(347\) 320.301 + 554.777i 0.923057 + 1.59878i 0.794657 + 0.607059i \(0.207651\pi\)
0.128400 + 0.991722i \(0.459016\pi\)
\(348\) 251.617 + 145.271i 0.723036 + 0.417445i
\(349\) 15.6551 + 58.4257i 0.0448571 + 0.167409i 0.984721 0.174141i \(-0.0557148\pi\)
−0.939864 + 0.341550i \(0.889048\pi\)
\(350\) 22.3635i 0.0638958i
\(351\) 0 0
\(352\) 4.19030 0.0119043
\(353\) 283.357 75.9253i 0.802711 0.215086i 0.165937 0.986136i \(-0.446935\pi\)
0.636774 + 0.771051i \(0.280268\pi\)
\(354\) 337.945 585.338i 0.954647 1.65350i
\(355\) −703.529 + 406.183i −1.98177 + 1.14418i
\(356\) −120.280 120.280i −0.337864 0.337864i
\(357\) −1.26872 + 4.73492i −0.00355383 + 0.0132631i
\(358\) −289.732 77.6333i −0.809306 0.216853i
\(359\) −118.752 + 118.752i −0.330785 + 0.330785i −0.852885 0.522099i \(-0.825149\pi\)
0.522099 + 0.852885i \(0.325149\pi\)
\(360\) −162.650 281.718i −0.451805 0.782550i
\(361\) 210.396 + 121.472i 0.582813 + 0.336487i
\(362\) −41.0270 153.115i −0.113334 0.422969i
\(363\) 575.245i 1.58470i
\(364\) 0 0
\(365\) −600.220 −1.64444
\(366\) 100.884 27.0318i 0.275640 0.0738574i
\(367\) 51.1578 88.6080i 0.139395 0.241439i −0.787873 0.615838i \(-0.788818\pi\)
0.927268 + 0.374399i \(0.122151\pi\)
\(368\) −79.3110 + 45.7902i −0.215519 + 0.124430i
\(369\) −251.580 251.580i −0.681789 0.681789i
\(370\) −127.135 + 474.474i −0.343608 + 1.28236i
\(371\) 29.5447 + 7.91647i 0.0796352 + 0.0213382i
\(372\) 141.965 141.965i 0.381626 0.381626i
\(373\) −302.308 523.613i −0.810477 1.40379i −0.912530 0.409009i \(-0.865875\pi\)
0.102053 0.994779i \(-0.467459\pi\)
\(374\) 2.61338 + 1.50884i 0.00698765 + 0.00403432i
\(375\) −199.528 744.647i −0.532073 1.98573i
\(376\) 84.8001i 0.225532i
\(377\) 0 0
\(378\) −11.5701 −0.0306087
\(379\) 370.655 99.3166i 0.977980 0.262049i 0.265787 0.964032i \(-0.414368\pi\)
0.712194 + 0.701983i \(0.247702\pi\)
\(380\) −90.5025 + 156.755i −0.238165 + 0.412513i
\(381\) −953.945 + 550.760i −2.50379 + 1.44557i
\(382\) 265.048 + 265.048i 0.693843 + 0.693843i
\(383\) −106.035 + 395.727i −0.276853 + 1.03323i 0.677736 + 0.735305i \(0.262961\pi\)
−0.954589 + 0.297925i \(0.903706\pi\)
\(384\) 52.1903 + 13.9843i 0.135912 + 0.0364176i
\(385\) 1.55458 1.55458i 0.00403786 0.00403786i
\(386\) 112.568 + 194.974i 0.291628 + 0.505114i
\(387\) −350.587 202.412i −0.905910 0.523027i
\(388\) −10.5219 39.2682i −0.0271183 0.101207i
\(389\) 43.6909i 0.112316i −0.998422 0.0561579i \(-0.982115\pi\)
0.998422 0.0561579i \(-0.0178850\pi\)
\(390\) 0 0
\(391\) −65.9523 −0.168676
\(392\) 133.524 35.7775i 0.340621 0.0912692i
\(393\) 387.461 671.102i 0.985906 1.70764i
\(394\) 368.414 212.704i 0.935062 0.539858i
\(395\) −624.209 624.209i −1.58028 1.58028i
\(396\) −5.29442 + 19.7591i −0.0133698 + 0.0498966i
\(397\) 264.715 + 70.9301i 0.666788 + 0.178665i 0.576307 0.817233i \(-0.304493\pi\)
0.0904803 + 0.995898i \(0.471160\pi\)
\(398\) −187.319 + 187.319i −0.470650 + 0.470650i
\(399\) 9.24476 + 16.0124i 0.0231698 + 0.0401313i
\(400\) 153.736 + 88.7596i 0.384340 + 0.221899i
\(401\) −23.0664 86.0849i −0.0575222 0.214676i 0.931182 0.364554i \(-0.118779\pi\)
−0.988704 + 0.149878i \(0.952112\pi\)
\(402\) 470.095i 1.16939i
\(403\) 0 0
\(404\) 55.6477 0.137742
\(405\) −117.596 + 31.5099i −0.290361 + 0.0778021i
\(406\) −7.66414 + 13.2747i −0.0188772 + 0.0326962i
\(407\) 26.7509 15.4446i 0.0657270 0.0379475i
\(408\) 27.5143 + 27.5143i 0.0674370 + 0.0674370i
\(409\) 188.970 705.246i 0.462030 1.72432i −0.204525 0.978861i \(-0.565565\pi\)
0.666554 0.745456i \(-0.267768\pi\)
\(410\) 293.187 + 78.5591i 0.715089 + 0.191608i
\(411\) 348.983 348.983i 0.849107 0.849107i
\(412\) 68.0852 + 117.927i 0.165255 + 0.286231i
\(413\) 30.8810 + 17.8291i 0.0747724 + 0.0431699i
\(414\) −115.711 431.841i −0.279496 1.04309i
\(415\) 320.666i 0.772688i
\(416\) 0 0
\(417\) 122.156 0.292940
\(418\) 10.9944 2.94595i 0.0263025 0.00704773i
\(419\) −130.487 + 226.011i −0.311426 + 0.539405i −0.978671 0.205433i \(-0.934140\pi\)
0.667246 + 0.744838i \(0.267473\pi\)
\(420\) 24.5504 14.1742i 0.0584533 0.0337480i
\(421\) −103.038 103.038i −0.244745 0.244745i 0.574065 0.818810i \(-0.305366\pi\)
−0.818810 + 0.574065i \(0.805366\pi\)
\(422\) 62.1559 231.969i 0.147289 0.549690i
\(423\) −399.869 107.145i −0.945316 0.253297i
\(424\) 171.682 171.682i 0.404910 0.404910i
\(425\) 63.9208 + 110.714i 0.150402 + 0.260504i
\(426\) 570.455 + 329.353i 1.33910 + 0.773128i
\(427\) 1.42613 + 5.32240i 0.00333989 + 0.0124646i
\(428\) 257.198i 0.600930i
\(429\) 0 0
\(430\) 345.362 0.803168
\(431\) 131.588 35.2588i 0.305308 0.0818069i −0.102913 0.994690i \(-0.532816\pi\)
0.408220 + 0.912883i \(0.366150\pi\)
\(432\) −45.9210 + 79.5375i −0.106299 + 0.184114i
\(433\) −174.382 + 100.679i −0.402729 + 0.232516i −0.687661 0.726032i \(-0.741362\pi\)
0.284932 + 0.958548i \(0.408029\pi\)
\(434\) 7.48972 + 7.48972i 0.0172574 + 0.0172574i
\(435\) 313.178 1168.80i 0.719950 2.68689i
\(436\) −83.4388 22.3574i −0.191373 0.0512783i
\(437\) −175.902 + 175.902i −0.402523 + 0.402523i
\(438\) 243.344 + 421.484i 0.555579 + 0.962291i
\(439\) 64.3905 + 37.1759i 0.146675 + 0.0846830i 0.571542 0.820573i \(-0.306346\pi\)
−0.424866 + 0.905256i \(0.639679\pi\)
\(440\) −4.51677 16.8568i −0.0102654 0.0383109i
\(441\) 674.826i 1.53022i
\(442\) 0 0
\(443\) 130.644 0.294908 0.147454 0.989069i \(-0.452892\pi\)
0.147454 + 0.989069i \(0.452892\pi\)
\(444\) 384.726 103.087i 0.866501 0.232178i
\(445\) −354.212 + 613.513i −0.795982 + 1.37868i
\(446\) −294.541 + 170.054i −0.660407 + 0.381286i
\(447\) −90.8512 90.8512i −0.203246 0.203246i
\(448\) −0.737780 + 2.75343i −0.00164683 + 0.00614605i
\(449\) −696.251 186.560i −1.55067 0.415501i −0.620975 0.783831i \(-0.713263\pi\)
−0.929695 + 0.368330i \(0.879930\pi\)
\(450\) −612.784 + 612.784i −1.36174 + 1.36174i
\(451\) −9.54353 16.5299i −0.0211608 0.0366516i
\(452\) −79.9190 46.1413i −0.176812 0.102082i
\(453\) 191.755 + 715.638i 0.423299 + 1.57977i
\(454\) 127.958i 0.281846i
\(455\) 0 0
\(456\) 146.768 0.321859
\(457\) 350.261 93.8520i 0.766434 0.205365i 0.145639 0.989338i \(-0.453476\pi\)
0.620796 + 0.783972i \(0.286810\pi\)
\(458\) −248.887 + 431.085i −0.543422 + 0.941234i
\(459\) −57.2795 + 33.0703i −0.124792 + 0.0720486i
\(460\) 269.696 + 269.696i 0.586295 + 0.586295i
\(461\) −223.937 + 835.746i −0.485765 + 1.81290i 0.0908282 + 0.995867i \(0.471049\pi\)
−0.576593 + 0.817032i \(0.695618\pi\)
\(462\) −1.72191 0.461384i −0.00372708 0.000998667i
\(463\) 163.492 163.492i 0.353114 0.353114i −0.508153 0.861267i \(-0.669672\pi\)
0.861267 + 0.508153i \(0.169672\pi\)
\(464\) 60.8370 + 105.373i 0.131114 + 0.227096i
\(465\) −724.125 418.074i −1.55726 0.899083i
\(466\) 140.872 + 525.742i 0.302301 + 1.12820i
\(467\) 242.866i 0.520056i 0.965601 + 0.260028i \(0.0837318\pi\)
−0.965601 + 0.260028i \(0.916268\pi\)
\(468\) 0 0
\(469\) 24.8010 0.0528807
\(470\) 341.135 91.4070i 0.725820 0.194483i
\(471\) −340.702 + 590.113i −0.723358 + 1.25289i
\(472\) 245.130 141.526i 0.519342 0.299842i
\(473\) −15.3567 15.3567i −0.0324666 0.0324666i
\(474\) −185.260 + 691.398i −0.390843 + 1.45865i
\(475\) 465.772 + 124.803i 0.980572 + 0.262744i
\(476\) −1.45159 + 1.45159i −0.00304955 + 0.00304955i
\(477\) 592.635 + 1026.47i 1.24242 + 2.15194i
\(478\) −364.819 210.628i −0.763220 0.440645i
\(479\) −57.8547 215.917i −0.120782 0.450766i 0.878872 0.477058i \(-0.158297\pi\)
−0.999654 + 0.0262919i \(0.991630\pi\)
\(480\) 225.026i 0.468804i
\(481\) 0 0
\(482\) −264.943 −0.549675
\(483\) 37.6329 10.0837i 0.0779150 0.0208773i
\(484\) 120.451 208.628i 0.248866 0.431049i
\(485\) −146.627 + 84.6553i −0.302324 + 0.174547i
\(486\) 276.447 + 276.447i 0.568822 + 0.568822i
\(487\) −5.58396 + 20.8396i −0.0114660 + 0.0427918i −0.971422 0.237360i \(-0.923718\pi\)
0.959956 + 0.280151i \(0.0903847\pi\)
\(488\) 42.2485 + 11.3205i 0.0865749 + 0.0231977i
\(489\) −89.7055 + 89.7055i −0.183447 + 0.183447i
\(490\) −287.853 498.576i −0.587455 1.01750i
\(491\) 50.4972 + 29.1546i 0.102846 + 0.0593780i 0.550541 0.834808i \(-0.314422\pi\)
−0.447695 + 0.894186i \(0.647755\pi\)
\(492\) −63.6995 237.730i −0.129471 0.483191i
\(493\) 87.6244i 0.177737i
\(494\) 0 0
\(495\) 85.1940 0.172109
\(496\) 81.2137 21.7611i 0.163737 0.0438733i
\(497\) −17.3758 + 30.0958i −0.0349614 + 0.0605549i
\(498\) 225.176 130.006i 0.452161 0.261055i
\(499\) 625.494 + 625.494i 1.25350 + 1.25350i 0.954142 + 0.299353i \(0.0967709\pi\)
0.299353 + 0.954142i \(0.403229\pi\)
\(500\) 83.5587 311.845i 0.167117 0.623691i
\(501\) −34.7163 9.30221i −0.0692941 0.0185673i
\(502\) −100.518 + 100.518i −0.200236 + 0.200236i
\(503\) 5.25707 + 9.10551i 0.0104514 + 0.0181024i 0.871204 0.490921i \(-0.163340\pi\)
−0.860752 + 0.509024i \(0.830006\pi\)
\(504\) −12.0514 6.95789i −0.0239116 0.0138053i
\(505\) −59.9832 223.860i −0.118779 0.443288i
\(506\) 23.9843i 0.0473999i
\(507\) 0 0
\(508\) −461.298 −0.908067
\(509\) −98.4183 + 26.3711i −0.193356 + 0.0518097i −0.354198 0.935171i \(-0.615246\pi\)
0.160841 + 0.986980i \(0.448579\pi\)
\(510\) 81.0270 140.343i 0.158876 0.275182i
\(511\) −22.2364 + 12.8382i −0.0435155 + 0.0251237i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −64.5686 + 240.973i −0.125865 + 0.469734i
\(514\) −94.9454 25.4405i −0.184719 0.0494952i
\(515\) 401.009 401.009i 0.778658 0.778658i
\(516\) −140.018 242.518i −0.271353 0.469997i
\(517\) −19.2332 11.1043i −0.0372016 0.0214784i
\(518\) 5.43862 + 20.2972i 0.0104993 + 0.0391838i
\(519\) 137.681i 0.265282i
\(520\) 0 0
\(521\) 170.985 0.328185 0.164093 0.986445i \(-0.447530\pi\)
0.164093 + 0.986445i \(0.447530\pi\)
\(522\) −573.745 + 153.734i −1.09913 + 0.294510i
\(523\) 417.695 723.469i 0.798652 1.38331i −0.121842 0.992549i \(-0.538880\pi\)
0.920494 0.390756i \(-0.127786\pi\)
\(524\) 281.046 162.262i 0.536347 0.309660i
\(525\) −53.4013 53.4013i −0.101717 0.101717i
\(526\) 94.8659 354.044i 0.180353 0.673088i
\(527\) 58.4866 + 15.6714i 0.110980 + 0.0297371i
\(528\) −10.0059 + 10.0059i −0.0189506 + 0.0189506i
\(529\) −2.40684 4.16878i −0.00454980 0.00788048i
\(530\) −875.703 505.587i −1.65227 0.953938i
\(531\) 357.634 + 1334.71i 0.673510 + 2.51357i
\(532\) 7.74309i 0.0145547i
\(533\) 0 0
\(534\) 574.424 1.07570
\(535\) −1034.66 + 277.237i −1.93395 + 0.518199i
\(536\) 98.4338 170.492i 0.183645 0.318083i
\(537\) 877.220 506.463i 1.63356 0.943135i
\(538\) 42.0112 + 42.0112i 0.0780878 + 0.0780878i
\(539\) −9.36991 + 34.9690i −0.0173839 + 0.0648775i
\(540\) 369.463 + 98.9974i 0.684191 + 0.183329i
\(541\) 503.966 503.966i 0.931545 0.931545i −0.0662572 0.997803i \(-0.521106\pi\)
0.997803 + 0.0662572i \(0.0211058\pi\)
\(542\) −222.800 385.900i −0.411070 0.711993i
\(543\) 463.586 + 267.651i 0.853749 + 0.492912i
\(544\) 4.21753 + 15.7400i 0.00775282 + 0.0289339i
\(545\) 359.758i 0.660107i
\(546\) 0 0
\(547\) −249.081 −0.455359 −0.227680 0.973736i \(-0.573114\pi\)
−0.227680 + 0.973736i \(0.573114\pi\)
\(548\) 199.642 53.4939i 0.364310 0.0976166i
\(549\) −106.762 + 184.917i −0.194466 + 0.336824i
\(550\) −40.2625 + 23.2456i −0.0732046 + 0.0422647i
\(551\) 233.704 + 233.704i 0.424146 + 0.424146i
\(552\) 80.0433 298.726i 0.145006 0.541170i
\(553\) −36.4765 9.77384i −0.0659611 0.0176742i
\(554\) −189.673 + 189.673i −0.342370 + 0.342370i
\(555\) −829.402 1436.57i −1.49442 2.58841i
\(556\) 44.3031 + 25.5784i 0.0796819 + 0.0460044i
\(557\) −169.408 632.239i −0.304144 1.13508i −0.933680 0.358109i \(-0.883422\pi\)
0.629536 0.776971i \(-0.283245\pi\)
\(558\) 410.452i 0.735577i
\(559\) 0 0
\(560\) 11.8718 0.0211997
\(561\) −9.84333 + 2.63751i −0.0175460 + 0.00470145i
\(562\) 32.8661 56.9258i 0.0584806 0.101291i
\(563\) 828.273 478.204i 1.47118 0.849385i 0.471702 0.881758i \(-0.343640\pi\)
0.999476 + 0.0323732i \(0.0103065\pi\)
\(564\) −202.492 202.492i −0.359028 0.359028i
\(565\) −99.4723 + 371.236i −0.176057 + 0.657055i
\(566\) 719.847 + 192.883i 1.27182 + 0.340782i
\(567\) −3.68264 + 3.68264i −0.00649495 + 0.00649495i
\(568\) 137.927 + 238.897i 0.242830 + 0.420593i
\(569\) 281.681 + 162.629i 0.495046 + 0.285815i 0.726666 0.686991i \(-0.241069\pi\)
−0.231619 + 0.972807i \(0.574402\pi\)
\(570\) −158.202 590.419i −0.277548 1.03582i
\(571\) 218.946i 0.383442i 0.981449 + 0.191721i \(0.0614069\pi\)
−0.981449 + 0.191721i \(0.938593\pi\)
\(572\) 0 0
\(573\) −1265.80 −2.20908
\(574\) 12.5420 3.36063i 0.0218502 0.00585475i
\(575\) 508.040 879.951i 0.883548 1.53035i
\(576\) −95.6628 + 55.2309i −0.166081 + 0.0958870i
\(577\) −478.578 478.578i −0.829425 0.829425i 0.158012 0.987437i \(-0.449492\pi\)
−0.987437 + 0.158012i \(0.949492\pi\)
\(578\) 102.744 383.446i 0.177758 0.663401i
\(579\) −734.372 196.774i −1.26834 0.339852i
\(580\) 358.319 358.319i 0.617791 0.617791i
\(581\) 6.85877 + 11.8797i 0.0118051 + 0.0204471i
\(582\) 118.892 + 68.6426i 0.204283 + 0.117943i
\(583\) 16.4574 + 61.4198i 0.0282288 + 0.105351i
\(584\) 203.816i 0.349001i
\(585\) 0 0
\(586\) 193.667 0.330490
\(587\) −239.510 + 64.1765i −0.408024 + 0.109330i −0.456992 0.889471i \(-0.651073\pi\)
0.0489685 + 0.998800i \(0.484407\pi\)
\(588\) −233.405 + 404.269i −0.396947 + 0.687533i
\(589\) 197.788 114.193i 0.335803 0.193876i
\(590\) −833.560 833.560i −1.41281 1.41281i
\(591\) −371.816 + 1387.64i −0.629130 + 2.34795i
\(592\) 161.117 + 43.1711i 0.272157 + 0.0729242i
\(593\) −107.905 + 107.905i −0.181964 + 0.181964i −0.792211 0.610247i \(-0.791070\pi\)
0.610247 + 0.792211i \(0.291070\pi\)
\(594\) −12.0264 20.8304i −0.0202465 0.0350679i
\(595\) 7.40414 + 4.27478i 0.0124439 + 0.00718451i
\(596\) −13.9261 51.9730i −0.0233660 0.0872031i
\(597\) 894.587i 1.49847i
\(598\) 0 0
\(599\) 788.030 1.31558 0.657788 0.753203i \(-0.271492\pi\)
0.657788 + 0.753203i \(0.271492\pi\)
\(600\) −579.049 + 155.156i −0.965081 + 0.258593i
\(601\) −191.526 + 331.733i −0.318679 + 0.551968i −0.980213 0.197947i \(-0.936573\pi\)
0.661534 + 0.749915i \(0.269906\pi\)
\(602\) 12.7947 7.38701i 0.0212536 0.0122708i
\(603\) 679.574 + 679.574i 1.12699 + 1.12699i
\(604\) −80.3035 + 299.697i −0.132953 + 0.496187i
\(605\) −969.107 259.671i −1.60183 0.429209i
\(606\) −132.880 + 132.880i −0.219273 + 0.219273i
\(607\) −118.890 205.923i −0.195865 0.339248i 0.751319 0.659939i \(-0.229418\pi\)
−0.947184 + 0.320692i \(0.896085\pi\)
\(608\) 53.2292 + 30.7319i 0.0875480 + 0.0505459i
\(609\) −13.3972 49.9992i −0.0219988 0.0821005i
\(610\) 182.161i 0.298624i
\(611\) 0 0
\(612\) −79.5499 −0.129983
\(613\) −423.210 + 113.399i −0.690391 + 0.184990i −0.586923 0.809643i \(-0.699661\pi\)
−0.103468 + 0.994633i \(0.532994\pi\)
\(614\) 306.038 530.073i 0.498433 0.863311i
\(615\) −887.681 + 512.503i −1.44338 + 0.833338i
\(616\) −0.527886 0.527886i −0.000856959 0.000856959i
\(617\) 29.9483 111.769i 0.0485386 0.181149i −0.937401 0.348253i \(-0.886775\pi\)
0.985939 + 0.167104i \(0.0534417\pi\)
\(618\) −444.173 119.016i −0.718727 0.192582i
\(619\) −471.622 + 471.622i −0.761910 + 0.761910i −0.976667 0.214757i \(-0.931104\pi\)
0.214757 + 0.976667i \(0.431104\pi\)
\(620\) −175.082 303.251i −0.282390 0.489115i
\(621\) 455.255 + 262.841i 0.733099 + 0.423255i
\(622\) −50.6118 188.886i −0.0813694 0.303675i
\(623\) 30.3052i 0.0486440i
\(624\) 0 0
\(625\) −235.071 −0.376114
\(626\) −717.756 + 192.322i −1.14658 + 0.307224i
\(627\) −19.2188 + 33.2879i −0.0306519 + 0.0530907i
\(628\) −247.129 + 142.680i −0.393518 + 0.227197i
\(629\) 84.9395 + 84.9395i 0.135039 + 0.135039i
\(630\) −15.0000 + 55.9807i −0.0238095 + 0.0888582i
\(631\) 822.277 + 220.328i 1.30313 + 0.349173i 0.842634 0.538487i \(-0.181004\pi\)
0.460499 + 0.887660i \(0.347670\pi\)
\(632\) −211.962 + 211.962i −0.335383 + 0.335383i
\(633\) 405.492 + 702.333i 0.640588 + 1.10953i
\(634\) −42.2445 24.3899i −0.0666318 0.0384699i
\(635\) 497.238 + 1855.72i 0.783052 + 2.92239i
\(636\) 819.909i 1.28917i
\(637\) 0 0
\(638\) −31.8657 −0.0499462
\(639\) −1300.77 + 348.541i −2.03564 + 0.545447i
\(640\) 47.1185 81.6116i 0.0736227 0.127518i
\(641\) −25.2926 + 14.6027i −0.0394580 + 0.0227811i −0.519599 0.854410i \(-0.673919\pi\)
0.480141 + 0.877191i \(0.340585\pi\)
\(642\) 614.156 + 614.156i 0.956630 + 0.956630i
\(643\) −52.8962 + 197.411i −0.0822648 + 0.307016i −0.994782 0.102022i \(-0.967469\pi\)
0.912517 + 0.409038i \(0.134136\pi\)
\(644\) 15.7600 + 4.22289i 0.0244721 + 0.00655728i
\(645\) −824.681 + 824.681i −1.27857 + 1.27857i
\(646\) 22.1318 + 38.3334i 0.0342597 + 0.0593396i
\(647\) 915.647 + 528.649i 1.41522 + 0.817077i 0.995874 0.0907495i \(-0.0289263\pi\)
0.419345 + 0.907827i \(0.362260\pi\)
\(648\) 10.6998 + 39.9321i 0.0165120 + 0.0616237i
\(649\) 74.1294i 0.114221i
\(650\) 0 0
\(651\) −35.7690 −0.0549447
\(652\) −51.3177 + 13.7505i −0.0787081 + 0.0210898i
\(653\) −38.0505 + 65.9054i −0.0582703 + 0.100927i −0.893689 0.448687i \(-0.851892\pi\)
0.835419 + 0.549614i \(0.185225\pi\)
\(654\) 252.628 145.855i 0.386281 0.223019i
\(655\) −955.693 955.693i −1.45907 1.45907i
\(656\) 26.6763 99.5572i 0.0406650 0.151764i
\(657\) −961.081 257.521i −1.46283 0.391965i
\(658\) 10.6830 10.6830i 0.0162355 0.0162355i
\(659\) 421.818 + 730.610i 0.640087 + 1.10866i 0.985413 + 0.170181i \(0.0544352\pi\)
−0.345325 + 0.938483i \(0.612231\pi\)
\(660\) 51.0374 + 29.4664i 0.0773293 + 0.0446461i
\(661\) −216.792 809.079i −0.327976 1.22402i −0.911286 0.411773i \(-0.864910\pi\)
0.583311 0.812249i \(-0.301757\pi\)
\(662\) 31.3602i 0.0473718i
\(663\) 0 0
\(664\) 108.888 0.163988
\(665\) 31.1491 8.34636i 0.0468407 0.0125509i
\(666\) −407.141 + 705.188i −0.611322 + 1.05884i
\(667\) 603.130 348.218i 0.904244 0.522065i
\(668\) −10.6430 10.6430i −0.0159326 0.0159326i
\(669\) 297.261 1109.39i 0.444336 1.65829i
\(670\) −791.962 212.206i −1.18203 0.316725i
\(671\) −8.09987 + 8.09987i −0.0120713 + 0.0120713i
\(672\) −4.81312 8.33656i −0.00716238 0.0124056i
\(673\) −334.718 193.250i −0.497353 0.287147i 0.230267 0.973128i \(-0.426040\pi\)
−0.727620 + 0.685981i \(0.759373\pi\)
\(674\) 199.370 + 744.058i 0.295801 + 1.10394i
\(675\) 1018.98i 1.50960i
\(676\) 0 0
\(677\) 328.683 0.485500 0.242750 0.970089i \(-0.421951\pi\)
0.242750 + 0.970089i \(0.421951\pi\)
\(678\) 301.016 80.6570i 0.443976 0.118963i
\(679\) −3.62141 + 6.27247i −0.00533345 + 0.00923781i
\(680\) 58.7732 33.9327i 0.0864312 0.0499011i
\(681\) 305.548 + 305.548i 0.448675 + 0.448675i
\(682\) −5.69910 + 21.2693i −0.00835646 + 0.0311867i
\(683\) 780.775 + 209.208i 1.14316 + 0.306308i 0.780219 0.625506i \(-0.215108\pi\)
0.362936 + 0.931814i \(0.381774\pi\)
\(684\) −212.169 + 212.169i −0.310188 + 0.310188i
\(685\) −430.392 745.462i −0.628310 1.08827i
\(686\) −42.7119 24.6597i −0.0622623 0.0359471i
\(687\) −435.066 1623.69i −0.633283 2.36345i
\(688\) 117.274i 0.170457i
\(689\) 0 0
\(690\) −1288.00 −1.86666
\(691\) 779.206 208.788i 1.12765 0.302153i 0.353674 0.935369i \(-0.384932\pi\)
0.773975 + 0.633216i \(0.218265\pi\)
\(692\) 28.8293 49.9338i 0.0416608 0.0721586i
\(693\) 3.15619 1.82223i 0.00455439 0.00262948i
\(694\) −640.601 640.601i −0.923057 0.923057i
\(695\) 55.1425 205.795i 0.0793417 0.296107i
\(696\) −396.888 106.346i −0.570241 0.152796i
\(697\) 52.4857 52.4857i 0.0753023 0.0753023i
\(698\) −42.7706 74.0809i −0.0612759 0.106133i
\(699\) −1591.79 919.020i −2.27724 1.31476i
\(700\) −8.18563 30.5492i −0.0116938 0.0436417i
\(701\) 1080.31i 1.54110i 0.637378 + 0.770552i \(0.280019\pi\)
−0.637378 + 0.770552i \(0.719981\pi\)
\(702\) 0 0
\(703\) 453.087 0.644505
\(704\) −5.72406 + 1.53376i −0.00813076 + 0.00217863i
\(705\) −596.320 + 1032.86i −0.845843 + 1.46504i
\(706\) −359.282 + 207.432i −0.508898 + 0.293813i
\(707\) −7.01040 7.01040i −0.00991570 0.00991570i
\(708\) −247.393 + 923.283i −0.349425 + 1.30407i
\(709\) −762.964 204.436i −1.07611 0.288343i −0.323110 0.946361i \(-0.604728\pi\)
−0.753002 + 0.658018i \(0.771395\pi\)
\(710\) 812.365 812.365i 1.14418 1.14418i
\(711\) −731.679 1267.31i −1.02908 1.78243i
\(712\) 208.330 + 120.280i 0.292599 + 0.168932i
\(713\) −124.556 464.849i −0.174693 0.651962i
\(714\) 6.93240i 0.00970925i
\(715\) 0 0
\(716\) 424.196 0.592453
\(717\) 1374.10 368.188i 1.91645 0.513511i
\(718\) 118.752 205.684i 0.165393 0.286469i
\(719\) 700.700 404.550i 0.974548 0.562656i 0.0739286 0.997264i \(-0.476446\pi\)
0.900620 + 0.434608i \(0.143113\pi\)
\(720\) 325.300 + 325.300i 0.451805 + 0.451805i
\(721\) 6.27898 23.4335i 0.00870871 0.0325014i
\(722\) −331.868 88.9237i −0.459650 0.123163i
\(723\) 632.651 632.651i 0.875036 0.875036i
\(724\) 112.088 + 194.142i 0.154817 + 0.268152i
\(725\) −1169.11 674.983i −1.61256 0.931011i
\(726\) 210.554 + 785.799i 0.290019 + 1.08237i
\(727\) 1368.53i 1.88243i 0.337808 + 0.941215i \(0.390315\pi\)
−0.337808 + 0.941215i \(0.609685\pi\)
\(728\) 0 0
\(729\) −1188.70 −1.63059
\(730\) 819.916 219.696i 1.12317 0.300953i
\(731\) 42.2280 73.1410i 0.0577674 0.100056i
\(732\) −127.916 + 73.8523i −0.174749 + 0.100891i
\(733\) 204.408 + 204.408i 0.278865 + 0.278865i 0.832656 0.553791i \(-0.186819\pi\)
−0.553791 + 0.832656i \(0.686819\pi\)
\(734\) −37.4501 + 139.766i −0.0510220 + 0.190417i
\(735\) 1877.89 + 503.180i 2.55496 + 0.684598i
\(736\) 91.5805 91.5805i 0.124430 0.124430i
\(737\) 25.7792 + 44.6509i 0.0349786 + 0.0605846i
\(738\) 435.749 + 251.580i 0.590446 + 0.340894i
\(739\) −62.8090 234.406i −0.0849918 0.317194i 0.910321 0.413903i \(-0.135835\pi\)
−0.995313 + 0.0967096i \(0.969168\pi\)
\(740\) 694.678i 0.938755i
\(741\) 0 0
\(742\) −43.2564 −0.0582970
\(743\) −87.1920 + 23.3630i −0.117351 + 0.0314442i −0.317017 0.948420i \(-0.602681\pi\)
0.199665 + 0.979864i \(0.436014\pi\)
\(744\) −141.965 + 245.891i −0.190813 + 0.330498i
\(745\) −194.067 + 112.045i −0.260493 + 0.150395i
\(746\) 604.616 + 604.616i 0.810477 + 0.810477i
\(747\) −137.580 + 513.454i −0.184176 + 0.687355i
\(748\) −4.12222 1.10455i −0.00551099 0.00147666i
\(749\) −32.4014 + 32.4014i −0.0432595 + 0.0432595i
\(750\) 545.119 + 944.174i 0.726826 + 1.25890i
\(751\) −339.714 196.134i −0.452349 0.261164i 0.256473 0.966552i \(-0.417440\pi\)
−0.708822 + 0.705387i \(0.750773\pi\)
\(752\) −31.0390 115.839i −0.0412753 0.154041i
\(753\) 480.050i 0.637516i
\(754\) 0 0
\(755\) 1292.19 1.71150
\(756\) 15.8050 4.23494i 0.0209061 0.00560178i
\(757\) 178.827 309.738i 0.236232 0.409165i −0.723398 0.690431i \(-0.757421\pi\)
0.959630 + 0.281266i \(0.0907542\pi\)
\(758\) −469.971 + 271.338i −0.620015 + 0.357966i
\(759\) 57.2715 + 57.2715i 0.0754566 + 0.0754566i
\(760\) 66.2524 247.257i 0.0871743 0.325339i
\(761\) 805.649 + 215.873i 1.05867 + 0.283670i 0.745831 0.666135i \(-0.232053\pi\)
0.312841 + 0.949806i \(0.398719\pi\)
\(762\) 1101.52 1101.52i 1.44557 1.44557i
\(763\) 7.69493 + 13.3280i 0.0100851 + 0.0174679i
\(764\) −459.077 265.048i −0.600886 0.346922i
\(765\) 85.7476 + 320.015i 0.112088 + 0.418320i
\(766\) 579.385i 0.756377i
\(767\) 0 0
\(768\) −76.4119 −0.0994947
\(769\) −805.575 + 215.853i −1.04756 + 0.280693i −0.741244 0.671236i \(-0.765764\pi\)
−0.306318 + 0.951929i \(0.599097\pi\)
\(770\) −1.55458 + 2.69260i −0.00201893 + 0.00349689i
\(771\) 287.466 165.969i 0.372849 0.215264i
\(772\) −225.137 225.137i −0.291628 0.291628i
\(773\) 231.816 865.148i 0.299891 1.11921i −0.637364 0.770563i \(-0.719975\pi\)
0.937255 0.348645i \(-0.113358\pi\)
\(774\) 552.999 + 148.176i 0.714469 + 0.191441i
\(775\) −659.623 + 659.623i −0.851126 + 0.851126i
\(776\) 28.7464 + 49.7901i 0.0370443 + 0.0641626i
\(777\) −61.4539 35.4804i −0.0790912 0.0456633i
\(778\) 15.9920 + 59.6828i 0.0205552 + 0.0767132i
\(779\) 279.971i 0.359398i
\(780\) 0 0
\(781\) −72.2445 −0.0925026
\(782\) 90.0925 24.1402i 0.115208 0.0308699i
\(783\) 349.212 604.852i 0.445992 0.772481i
\(784\) −169.301 + 97.7461i −0.215945 + 0.124676i
\(785\) 840.359 + 840.359i 1.07052 + 1.07052i
\(786\) −283.641 + 1058.56i −0.360867 + 1.34677i
\(787\) −915.976 245.435i −1.16388 0.311861i −0.375367 0.926876i \(-0.622483\pi\)
−0.788516 + 0.615015i \(0.789150\pi\)
\(788\) −425.408 + 425.408i −0.539858 + 0.539858i
\(789\) 618.885 + 1071.94i 0.784391 + 1.35861i
\(790\) 1081.16 + 624.209i 1.36856 + 0.790138i
\(791\) 4.25526 + 15.8809i 0.00537960 + 0.0200769i
\(792\) 28.9293i 0.0365268i
\(793\) 0 0
\(794\) −387.569 −0.488122
\(795\) 3298.34 883.789i 4.14886 1.11168i
\(796\) 187.319 324.446i 0.235325 0.407595i
\(797\) 332.978 192.245i 0.417789 0.241210i −0.276342 0.961059i \(-0.589122\pi\)
0.694131 + 0.719849i \(0.255789\pi\)
\(798\) −18.4895 18.4895i −0.0231698 0.0231698i
\(799\) 22.3530 83.4224i 0.0279762 0.104408i
\(800\) −242.496 64.9765i −0.303120 0.0812207i
\(801\) −830.394 + 830.394i −1.03670 + 1.03670i
\(802\) 63.0185 + 109.151i 0.0785767 + 0.136099i
\(803\) −46.2269 26.6891i −0.0575677 0.0332367i
\(804\) 172.067 + 642.161i 0.214013 + 0.798708i
\(805\) 67.9516i 0.0844119i
\(806\) 0 0
\(807\) −200.635 −0.248618
\(808\) −76.0162 + 20.3685i −0.0940794 + 0.0252085i
\(809\) −7.78898 + 13.4909i −0.00962791 + 0.0166760i −0.870799 0.491639i \(-0.836398\pi\)
0.861171 + 0.508315i \(0.169731\pi\)
\(810\) 149.106 86.0865i 0.184082 0.106280i
\(811\) −488.921 488.921i −0.602861 0.602861i 0.338209 0.941071i \(-0.390179\pi\)
−0.941071 + 0.338209i \(0.890179\pi\)
\(812\) 5.61054 20.9388i 0.00690953 0.0257867i
\(813\) 1453.50 + 389.464i 1.78782 + 0.479045i
\(814\) −30.8893 + 30.8893i −0.0379475 + 0.0379475i
\(815\) 110.632 + 191.620i 0.135744 + 0.235116i
\(816\) −47.6561 27.5143i −0.0584021 0.0337185i
\(817\) −82.4487 307.703i −0.100916 0.376625i
\(818\) 1032.55i 1.26229i
\(819\) 0 0
\(820\) −429.255 −0.523482
\(821\) 382.310 102.440i 0.465664 0.124774i −0.0183556 0.999832i \(-0.505843\pi\)
0.484019 + 0.875057i \(0.339176\pi\)
\(822\) −348.983 + 604.456i −0.424553 + 0.735348i
\(823\) −397.982 + 229.775i −0.483575 + 0.279192i −0.721905 0.691992i \(-0.756733\pi\)
0.238330 + 0.971184i \(0.423400\pi\)
\(824\) −136.170 136.170i −0.165255 0.165255i
\(825\) 40.6343 151.649i 0.0492537 0.183817i
\(826\) −48.7101 13.0518i −0.0589711 0.0158013i
\(827\) 1019.38 1019.38i 1.23263 1.23263i 0.269678 0.962951i \(-0.413083\pi\)
0.962951 0.269678i \(-0.0869172\pi\)
\(828\) 316.130 + 547.552i 0.381799 + 0.661295i
\(829\) 118.994 + 68.7010i 0.143539 + 0.0828722i 0.570049 0.821610i \(-0.306924\pi\)
−0.426511 + 0.904483i \(0.640257\pi\)
\(830\) −117.372 438.037i −0.141412 0.527756i
\(831\) 905.828i 1.09005i
\(832\) 0 0
\(833\) −140.785 −0.169010
\(834\) −166.868 + 44.7122i −0.200082 + 0.0536118i
\(835\) −31.3426 + 54.2870i −0.0375361 + 0.0650144i
\(836\) −13.9404 + 8.04849i −0.0166751 + 0.00962738i
\(837\) −341.265 341.265i −0.407724 0.407724i
\(838\) 95.5233 356.498i 0.113990 0.425415i
\(839\) 522.627 + 140.038i 0.622917 + 0.166910i 0.556454 0.830879i \(-0.312162\pi\)
0.0664636 + 0.997789i \(0.478828\pi\)
\(840\) −28.3484 + 28.3484i −0.0337480 + 0.0337480i
\(841\) −42.1426 72.9930i −0.0501101 0.0867932i
\(842\) 178.467 + 103.038i 0.211956 + 0.122373i
\(843\) 57.4514 + 214.412i 0.0681511 + 0.254344i
\(844\) 339.626i 0.402401i
\(845\) 0 0
\(846\) 585.449 0.692020
\(847\) −41.4568 + 11.1083i −0.0489454 + 0.0131149i
\(848\) −171.682 + 297.362i −0.202455 + 0.350663i
\(849\) −2179.48 + 1258.32i −2.56712 + 1.48213i
\(850\) −127.842 127.842i −0.150402 0.150402i
\(851\) 247.102 922.197i 0.290367 1.08366i
\(852\) −899.808 241.103i −1.05611 0.282984i
\(853\) −549.575 + 549.575i −0.644285 + 0.644285i −0.951606 0.307321i \(-0.900567\pi\)
0.307321 + 0.951606i \(0.400567\pi\)
\(854\) −3.89626 6.74853i −0.00456237 0.00790226i
\(855\) 1082.21 + 624.817i 1.26575 + 0.730780i
\(856\) 94.1411 + 351.339i 0.109978 + 0.410443i
\(857\) 908.454i 1.06004i −0.847985 0.530020i \(-0.822184\pi\)
0.847985 0.530020i \(-0.177816\pi\)
\(858\) 0 0
\(859\) −383.134 −0.446023 −0.223012 0.974816i \(-0.571589\pi\)
−0.223012 + 0.974816i \(0.571589\pi\)
\(860\) −471.773 + 126.411i −0.548574 + 0.146990i
\(861\) −21.9240 + 37.9735i −0.0254634 + 0.0441040i
\(862\) −166.846 + 96.3288i −0.193557 + 0.111750i
\(863\) −320.195 320.195i −0.371026 0.371026i 0.496825 0.867851i \(-0.334499\pi\)
−0.867851 + 0.496825i \(0.834499\pi\)
\(864\) 33.6165 125.458i 0.0389080 0.145207i
\(865\) −231.950 62.1508i −0.268150 0.0718506i
\(866\) 201.358 201.358i 0.232516 0.232516i
\(867\) 670.280 + 1160.96i 0.773103 + 1.33905i
\(868\) −12.9726 7.48972i −0.0149454 0.00862871i
\(869\) −20.3186 75.8302i −0.0233816 0.0872615i
\(870\) 1711.24i 1.96694i
\(871\) 0 0
\(872\) 122.163 0.140095
\(873\) −271.103 + 72.6417i −0.310541 + 0.0832093i
\(874\) 175.902 304.672i 0.201261 0.348595i
\(875\) −49.8123 + 28.7591i −0.0569283 + 0.0328676i
\(876\) −486.687 486.687i −0.555579 0.555579i
\(877\) 391.203 1459.99i 0.446069 1.66475i −0.267029 0.963689i \(-0.586042\pi\)
0.713098 0.701064i \(-0.247291\pi\)
\(878\) −101.566 27.2146i −0.115679 0.0309961i
\(879\) −462.452 + 462.452i −0.526111 + 0.526111i
\(880\) 12.3400 + 21.3736i 0.0140228 + 0.0242882i
\(881\) 1005.27 + 580.392i 1.14105 + 0.658788i 0.946691 0.322142i \(-0.104403\pi\)
0.194363 + 0.980930i \(0.437736\pi\)
\(882\) −247.003 921.829i −0.280049 1.04516i
\(883\) 1327.78i 1.50371i −0.659328 0.751856i \(-0.729159\pi\)
0.659328 0.751856i \(-0.270841\pi\)
\(884\) 0 0
\(885\) 3980.87 4.49815
\(886\) −178.463 + 47.8191i −0.201426 + 0.0539719i
\(887\) −248.628 + 430.636i −0.280302 + 0.485497i −0.971459 0.237207i \(-0.923768\pi\)
0.691157 + 0.722704i \(0.257101\pi\)
\(888\) −487.814 + 281.639i −0.549340 + 0.317161i
\(889\) 58.1135 + 58.1135i 0.0653695 + 0.0653695i
\(890\) 259.301 967.725i 0.291350 1.08733i
\(891\) −10.4580 2.80221i −0.0117373 0.00314501i
\(892\) 340.107 340.107i 0.381286 0.381286i
\(893\) −162.879 282.115i −0.182396 0.315918i
\(894\) 157.359 + 90.8512i 0.176017 + 0.101623i
\(895\) −457.246 1706.46i −0.510889 1.90666i
\(896\) 4.03130i 0.00449922i
\(897\) 0 0
\(898\) 1019.38 1.13517
\(899\) −617.599 + 165.485i −0.686985 + 0.184077i
\(900\) 612.784 1061.37i 0.680871 1.17930i
\(901\) −214.147 + 123.638i −0.237677 + 0.137223i
\(902\) 19.0871 + 19.0871i 0.0211608 + 0.0211608i
\(903\) −12.9128 + 48.1913i −0.0142999 + 0.0533680i
\(904\) 126.060 + 33.7778i 0.139447 + 0.0373648i
\(905\) 660.176 660.176i 0.729477 0.729477i
\(906\) −523.883 907.392i −0.578237 1.00154i
\(907\) 837.965 + 483.799i 0.923886 + 0.533406i 0.884873 0.465833i \(-0.154245\pi\)
0.0390135 + 0.999239i \(0.487578\pi\)
\(908\) 46.8360 + 174.794i 0.0515814 + 0.192505i
\(909\) 384.184i 0.422645i
\(910\) 0 0
\(911\) −760.079 −0.834335 −0.417168 0.908830i \(-0.636977\pi\)
−0.417168 + 0.908830i \(0.636977\pi\)
\(912\) −200.488 + 53.7207i −0.219834 + 0.0589042i
\(913\) −14.2586 + 24.6966i −0.0156173 + 0.0270499i
\(914\) −444.113 + 256.408i −0.485900 + 0.280534i
\(915\) 434.976 + 434.976i 0.475384 + 0.475384i
\(916\) 182.198 679.973i 0.198906 0.742328i
\(917\) −55.8472 14.9642i −0.0609020 0.0163187i
\(918\) 66.1406 66.1406i 0.0720486 0.0720486i
\(919\) −208.249 360.698i −0.226604 0.392490i 0.730195 0.683238i \(-0.239429\pi\)
−0.956800 + 0.290748i \(0.906096\pi\)
\(920\) −467.127 269.696i −0.507747 0.293148i
\(921\) 534.967 + 1996.53i 0.580855 + 2.16778i
\(922\) 1223.62i 1.32713i
\(923\) 0 0
\(924\) 2.52105 0.00272841
\(925\) −1787.58 + 478.982i −1.93252 + 0.517818i
\(926\) −163.492 + 283.176i −0.176557 + 0.305806i
\(927\) 814.152 470.051i 0.878265 0.507067i
\(928\) −121.674 121.674i −0.131114 0.131114i
\(929\) −108.175 + 403.716i −0.116443 + 0.434571i −0.999391 0.0349002i \(-0.988889\pi\)
0.882948 + 0.469471i \(0.155555\pi\)
\(930\) 1142.20 + 306.051i 1.22817 + 0.329087i
\(931\) −375.490 + 375.490i −0.403319 + 0.403319i
\(932\) −384.870 666.614i −0.412950 0.715251i
\(933\) 571.890 + 330.181i 0.612958 + 0.353891i
\(934\) −88.8952 331.761i −0.0951769 0.355205i
\(935\) 17.7735i 0.0190091i
\(936\) 0 0
\(937\) −140.819 −0.150287 −0.0751436 0.997173i \(-0.523942\pi\)
−0.0751436 + 0.997173i \(0.523942\pi\)
\(938\) −33.8788 + 9.07781i −0.0361182 + 0.00967783i
\(939\) 1254.67 2173.15i 1.33618 2.31432i
\(940\) −432.542 + 249.728i −0.460151 + 0.265669i
\(941\) 1032.31 + 1032.31i 1.09704 + 1.09704i 0.994756 + 0.102281i \(0.0326142\pi\)
0.102281 + 0.994756i \(0.467386\pi\)
\(942\) 249.411 930.814i 0.264767 0.988125i
\(943\) −569.843 152.689i −0.604288 0.161918i
\(944\) −283.051 + 283.051i −0.299842 + 0.299842i
\(945\) −34.0728 59.0158i −0.0360559 0.0624506i
\(946\) 26.5986 + 15.3567i 0.0281169 + 0.0162333i
\(947\) −125.045 466.674i −0.132043 0.492792i 0.867949 0.496653i \(-0.165438\pi\)
−0.999993 + 0.00386092i \(0.998771\pi\)
\(948\) 1012.28i 1.06780i
\(949\) 0 0
\(950\) −681.937 −0.717829
\(951\) 159.114 42.6346i 0.167313 0.0448313i
\(952\) 1.45159 2.51422i 0.00152477 0.00264099i
\(953\) −742.996 + 428.969i −0.779639 + 0.450125i −0.836302 0.548269i \(-0.815287\pi\)
0.0566633 + 0.998393i \(0.481954\pi\)
\(954\) −1185.27 1185.27i −1.24242 1.24242i
\(955\) −571.396 + 2132.48i −0.598321 + 2.23296i
\(956\) 575.448 + 154.191i 0.601933 + 0.161287i
\(957\) 76.0911 76.0911i 0.0795100 0.0795100i
\(958\) 158.062 + 273.772i 0.164992 + 0.285774i
\(959\) −31.8896 18.4115i −0.0332530 0.0191986i
\(960\) 82.3652 + 307.391i 0.0857971 + 0.320199i
\(961\) 519.175i 0.540244i
\(962\) 0 0
\(963\) −1775.66 −1.84389
\(964\) 361.919 96.9760i 0.375435 0.100598i
\(965\) −663.006 + 1148.36i −0.687053 + 1.19001i
\(966\) −47.7166 + 27.5492i −0.0493961 + 0.0285189i
\(967\) −911.551 911.551i −0.942658 0.942658i 0.0557845 0.998443i \(-0.482234\pi\)
−0.998443 + 0.0557845i \(0.982234\pi\)
\(968\) −88.1765 + 329.079i −0.0910914 + 0.339958i
\(969\) −144.383 38.6873i −0.149002 0.0399250i
\(970\) 169.311 169.311i 0.174547 0.174547i
\(971\) −537.004 930.119i −0.553043 0.957898i −0.998053 0.0623725i \(-0.980133\pi\)
0.445010 0.895525i \(-0.353200\pi\)
\(972\) −478.821 276.447i −0.492614 0.284411i
\(973\) −2.35891 8.80355i −0.00242436 0.00904785i
\(974\) 30.5113i 0.0313258i
\(975\) 0 0
\(976\) −61.8562 −0.0633772
\(977\) 767.374 205.617i 0.785439 0.210458i 0.156258 0.987716i \(-0.450057\pi\)
0.629181 + 0.777258i \(0.283390\pi\)
\(978\) 89.7055 155.375i 0.0917234 0.158870i
\(979\) −54.5604 + 31.5005i −0.0557307 + 0.0321762i
\(980\) 575.706 + 575.706i 0.587455 + 0.587455i
\(981\) −154.352 + 576.050i −0.157342 + 0.587207i
\(982\) −79.6518 21.3426i −0.0811118 0.0217339i
\(983\) −1275.63 + 1275.63i −1.29769 + 1.29769i −0.367773 + 0.929916i \(0.619880\pi\)
−0.929916 + 0.367773i \(0.880120\pi\)
\(984\) 174.030 + 301.429i 0.176860 + 0.306331i
\(985\) 2169.89 + 1252.79i 2.20294 + 1.27187i
\(986\) −32.0728 119.697i −0.0325281 0.121397i
\(987\) 51.0191i 0.0516911i
\(988\) 0 0
\(989\) −671.253 −0.678719
\(990\) −116.377 + 31.1832i −0.117553 + 0.0314981i
\(991\) 564.667 978.032i 0.569795 0.986914i −0.426791 0.904350i \(-0.640356\pi\)
0.996586 0.0825637i \(-0.0263108\pi\)
\(992\) −102.975 + 59.4525i −0.103805 + 0.0599320i
\(993\) −74.8840 74.8840i −0.0754119 0.0754119i
\(994\) 12.7200 47.4716i 0.0127968 0.0477582i
\(995\) −1507.10 403.826i −1.51467 0.405855i
\(996\) −260.011 + 260.011i −0.261055 + 0.261055i
\(997\) 3.57219 + 6.18721i 0.00358294 + 0.00620583i 0.867811 0.496894i \(-0.165526\pi\)
−0.864228 + 0.503100i \(0.832193\pi\)
\(998\) −1083.39 625.494i −1.08556 0.626748i
\(999\) −247.808 924.830i −0.248056 0.925756i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.f.h.319.2 8
13.2 odd 12 inner 338.3.f.h.249.2 8
13.3 even 3 26.3.f.b.11.2 8
13.4 even 6 338.3.d.f.99.1 8
13.5 odd 4 26.3.f.b.19.2 yes 8
13.6 odd 12 338.3.d.g.239.1 8
13.7 odd 12 338.3.d.f.239.1 8
13.8 odd 4 338.3.f.i.19.2 8
13.9 even 3 338.3.d.g.99.1 8
13.10 even 6 338.3.f.i.89.2 8
13.11 odd 12 338.3.f.j.249.2 8
13.12 even 2 338.3.f.j.319.2 8
39.5 even 4 234.3.bb.f.19.2 8
39.29 odd 6 234.3.bb.f.37.2 8
52.3 odd 6 208.3.bd.f.193.1 8
52.31 even 4 208.3.bd.f.97.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.2 8 13.3 even 3
26.3.f.b.19.2 yes 8 13.5 odd 4
208.3.bd.f.97.1 8 52.31 even 4
208.3.bd.f.193.1 8 52.3 odd 6
234.3.bb.f.19.2 8 39.5 even 4
234.3.bb.f.37.2 8 39.29 odd 6
338.3.d.f.99.1 8 13.4 even 6
338.3.d.f.239.1 8 13.7 odd 12
338.3.d.g.99.1 8 13.9 even 3
338.3.d.g.239.1 8 13.6 odd 12
338.3.f.h.249.2 8 13.2 odd 12 inner
338.3.f.h.319.2 8 1.1 even 1 trivial
338.3.f.i.19.2 8 13.8 odd 4
338.3.f.i.89.2 8 13.10 even 6
338.3.f.j.249.2 8 13.11 odd 12
338.3.f.j.319.2 8 13.12 even 2