Properties

Label 338.3.f.c.249.1
Level $338$
Weight $3$
Character 338.249
Analytic conductor $9.210$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 249.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.249
Dual form 338.3.f.c.319.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.73205 + 1.73205i) q^{5} +(-0.633975 - 2.36603i) q^{6} +(-7.59808 + 2.03590i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(3.00000 - 5.19615i) q^{9} +(3.00000 - 1.73205i) q^{10} +(-1.33013 + 4.96410i) q^{11} +3.46410i q^{12} +11.1244 q^{14} +(-4.09808 - 1.09808i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-24.6962 - 14.2583i) q^{17} +(-6.00000 + 6.00000i) q^{18} +(-6.66987 - 24.8923i) q^{19} +(-4.73205 + 1.26795i) q^{20} +(-9.63397 - 9.63397i) q^{21} +(3.63397 - 6.29423i) q^{22} +(15.1865 - 8.76795i) q^{23} +(1.26795 - 4.73205i) q^{24} +19.0000i q^{25} +25.9808 q^{27} +(-15.1962 - 4.07180i) q^{28} +(0.356406 + 0.617314i) q^{29} +(5.19615 + 3.00000i) q^{30} +(23.3397 - 23.3397i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-8.59808 + 2.30385i) q^{33} +(28.5167 + 28.5167i) q^{34} +(9.63397 - 16.6865i) q^{35} +(10.3923 - 6.00000i) q^{36} +(5.69615 - 21.2583i) q^{37} +36.4449i q^{38} +6.92820 q^{40} +(-42.0167 - 11.2583i) q^{41} +(9.63397 + 16.6865i) q^{42} +(-63.7750 - 36.8205i) q^{43} +(-7.26795 + 7.26795i) q^{44} +(3.80385 + 14.1962i) q^{45} +(-23.9545 + 6.41858i) q^{46} +(-33.0000 - 33.0000i) q^{47} +(-3.46410 + 6.00000i) q^{48} +(11.1506 - 6.43782i) q^{49} +(6.95448 - 25.9545i) q^{50} -49.3923i q^{51} -80.1051 q^{53} +(-35.4904 - 9.50962i) q^{54} +(-6.29423 - 10.9019i) q^{55} +(19.2679 + 11.1244i) q^{56} +(31.5622 - 31.5622i) q^{57} +(-0.260908 - 0.973721i) q^{58} +(37.9186 - 10.1603i) q^{59} +(-6.00000 - 6.00000i) q^{60} +(14.3038 - 24.7750i) q^{61} +(-40.4256 + 23.3397i) q^{62} +(-12.2154 + 45.5885i) q^{63} +8.00000i q^{64} +12.5885 q^{66} +(47.9186 + 12.8397i) q^{67} +(-28.5167 - 49.3923i) q^{68} +(26.3038 + 15.1865i) q^{69} +(-19.2679 + 19.2679i) q^{70} +(1.88526 + 7.03590i) q^{71} +(-16.3923 + 4.39230i) q^{72} +(-12.7654 - 12.7654i) q^{73} +(-15.5622 + 26.9545i) q^{74} +(-28.5000 + 16.4545i) q^{75} +(13.3397 - 49.7846i) q^{76} -40.4256i q^{77} -14.3538 q^{79} +(-9.46410 - 2.53590i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(53.2750 + 30.7583i) q^{82} +(-87.8372 + 87.8372i) q^{83} +(-7.05256 - 26.3205i) q^{84} +(67.4711 - 18.0788i) q^{85} +(73.6410 + 73.6410i) q^{86} +(-0.617314 + 1.06922i) q^{87} +(12.5885 - 7.26795i) q^{88} +(-13.9974 + 52.2391i) q^{89} -20.7846i q^{90} +35.0718 q^{92} +(55.2224 + 14.7968i) q^{93} +(33.0000 + 57.1577i) q^{94} +(54.6673 + 31.5622i) q^{95} +(6.92820 - 6.92820i) q^{96} +(35.2321 + 131.488i) q^{97} +(-17.5885 + 4.71281i) q^{98} +(21.8038 + 21.8038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{6} - 20 q^{7} - 8 q^{8} + 12 q^{9} + 12 q^{10} + 12 q^{11} - 4 q^{14} - 6 q^{15} + 8 q^{16} - 78 q^{17} - 24 q^{18} - 44 q^{19} - 12 q^{20} - 42 q^{21} + 18 q^{22} - 12 q^{23} + 12 q^{24}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 0.866025 + 1.50000i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −1.73205 + 1.73205i −0.346410 + 0.346410i −0.858771 0.512360i \(-0.828771\pi\)
0.512360 + 0.858771i \(0.328771\pi\)
\(6\) −0.633975 2.36603i −0.105662 0.394338i
\(7\) −7.59808 + 2.03590i −1.08544 + 0.290843i −0.756822 0.653621i \(-0.773249\pi\)
−0.328617 + 0.944463i \(0.606583\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 3.00000 5.19615i 0.333333 0.577350i
\(10\) 3.00000 1.73205i 0.300000 0.173205i
\(11\) −1.33013 + 4.96410i −0.120921 + 0.451282i −0.999661 0.0260172i \(-0.991718\pi\)
0.878741 + 0.477299i \(0.158384\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 0 0
\(14\) 11.1244 0.794597
\(15\) −4.09808 1.09808i −0.273205 0.0732051i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −24.6962 14.2583i −1.45271 0.838725i −0.454080 0.890961i \(-0.650032\pi\)
−0.998635 + 0.0522356i \(0.983365\pi\)
\(18\) −6.00000 + 6.00000i −0.333333 + 0.333333i
\(19\) −6.66987 24.8923i −0.351046 1.31012i −0.885388 0.464853i \(-0.846107\pi\)
0.534342 0.845268i \(-0.320559\pi\)
\(20\) −4.73205 + 1.26795i −0.236603 + 0.0633975i
\(21\) −9.63397 9.63397i −0.458761 0.458761i
\(22\) 3.63397 6.29423i 0.165181 0.286101i
\(23\) 15.1865 8.76795i 0.660284 0.381215i −0.132101 0.991236i \(-0.542172\pi\)
0.792385 + 0.610021i \(0.208839\pi\)
\(24\) 1.26795 4.73205i 0.0528312 0.197169i
\(25\) 19.0000i 0.760000i
\(26\) 0 0
\(27\) 25.9808 0.962250
\(28\) −15.1962 4.07180i −0.542720 0.145421i
\(29\) 0.356406 + 0.617314i 0.0122899 + 0.0212867i 0.872105 0.489319i \(-0.162755\pi\)
−0.859815 + 0.510606i \(0.829421\pi\)
\(30\) 5.19615 + 3.00000i 0.173205 + 0.100000i
\(31\) 23.3397 23.3397i 0.752895 0.752895i −0.222124 0.975019i \(-0.571299\pi\)
0.975019 + 0.222124i \(0.0712988\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −8.59808 + 2.30385i −0.260548 + 0.0698136i
\(34\) 28.5167 + 28.5167i 0.838725 + 0.838725i
\(35\) 9.63397 16.6865i 0.275256 0.476758i
\(36\) 10.3923 6.00000i 0.288675 0.166667i
\(37\) 5.69615 21.2583i 0.153950 0.574549i −0.845243 0.534382i \(-0.820544\pi\)
0.999193 0.0401672i \(-0.0127891\pi\)
\(38\) 36.4449i 0.959075i
\(39\) 0 0
\(40\) 6.92820 0.173205
\(41\) −42.0167 11.2583i −1.02480 0.274593i −0.292997 0.956113i \(-0.594653\pi\)
−0.731800 + 0.681520i \(0.761319\pi\)
\(42\) 9.63397 + 16.6865i 0.229380 + 0.397298i
\(43\) −63.7750 36.8205i −1.48314 0.856291i −0.483323 0.875442i \(-0.660570\pi\)
−0.999817 + 0.0191514i \(0.993904\pi\)
\(44\) −7.26795 + 7.26795i −0.165181 + 0.165181i
\(45\) 3.80385 + 14.1962i 0.0845299 + 0.315470i
\(46\) −23.9545 + 6.41858i −0.520750 + 0.139534i
\(47\) −33.0000 33.0000i −0.702128 0.702128i 0.262739 0.964867i \(-0.415374\pi\)
−0.964867 + 0.262739i \(0.915374\pi\)
\(48\) −3.46410 + 6.00000i −0.0721688 + 0.125000i
\(49\) 11.1506 6.43782i 0.227564 0.131384i
\(50\) 6.95448 25.9545i 0.139090 0.519090i
\(51\) 49.3923i 0.968477i
\(52\) 0 0
\(53\) −80.1051 −1.51142 −0.755709 0.654908i \(-0.772707\pi\)
−0.755709 + 0.654908i \(0.772707\pi\)
\(54\) −35.4904 9.50962i −0.657229 0.176104i
\(55\) −6.29423 10.9019i −0.114441 0.198217i
\(56\) 19.2679 + 11.1244i 0.344071 + 0.198649i
\(57\) 31.5622 31.5622i 0.553722 0.553722i
\(58\) −0.260908 0.973721i −0.00449841 0.0167883i
\(59\) 37.9186 10.1603i 0.642688 0.172208i 0.0772673 0.997010i \(-0.475381\pi\)
0.565421 + 0.824803i \(0.308714\pi\)
\(60\) −6.00000 6.00000i −0.100000 0.100000i
\(61\) 14.3038 24.7750i 0.234489 0.406147i −0.724635 0.689133i \(-0.757992\pi\)
0.959124 + 0.282986i \(0.0913249\pi\)
\(62\) −40.4256 + 23.3397i −0.652026 + 0.376448i
\(63\) −12.2154 + 45.5885i −0.193895 + 0.723626i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 12.5885 0.190734
\(67\) 47.9186 + 12.8397i 0.715203 + 0.191638i 0.598030 0.801474i \(-0.295950\pi\)
0.117173 + 0.993112i \(0.462617\pi\)
\(68\) −28.5167 49.3923i −0.419363 0.726357i
\(69\) 26.3038 + 15.1865i 0.381215 + 0.220095i
\(70\) −19.2679 + 19.2679i −0.275256 + 0.275256i
\(71\) 1.88526 + 7.03590i 0.0265530 + 0.0990972i 0.977931 0.208930i \(-0.0669980\pi\)
−0.951378 + 0.308027i \(0.900331\pi\)
\(72\) −16.3923 + 4.39230i −0.227671 + 0.0610042i
\(73\) −12.7654 12.7654i −0.174868 0.174868i 0.614246 0.789114i \(-0.289460\pi\)
−0.789114 + 0.614246i \(0.789460\pi\)
\(74\) −15.5622 + 26.9545i −0.210300 + 0.364250i
\(75\) −28.5000 + 16.4545i −0.380000 + 0.219393i
\(76\) 13.3397 49.7846i 0.175523 0.655061i
\(77\) 40.4256i 0.525008i
\(78\) 0 0
\(79\) −14.3538 −0.181694 −0.0908470 0.995865i \(-0.528957\pi\)
−0.0908470 + 0.995865i \(0.528957\pi\)
\(80\) −9.46410 2.53590i −0.118301 0.0316987i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 53.2750 + 30.7583i 0.649695 + 0.375102i
\(83\) −87.8372 + 87.8372i −1.05828 + 1.05828i −0.0600859 + 0.998193i \(0.519137\pi\)
−0.998193 + 0.0600859i \(0.980863\pi\)
\(84\) −7.05256 26.3205i −0.0839590 0.313339i
\(85\) 67.4711 18.0788i 0.793778 0.212692i
\(86\) 73.6410 + 73.6410i 0.856291 + 0.856291i
\(87\) −0.617314 + 1.06922i −0.00709556 + 0.0122899i
\(88\) 12.5885 7.26795i 0.143051 0.0825903i
\(89\) −13.9974 + 52.2391i −0.157274 + 0.586956i 0.841625 + 0.540062i \(0.181599\pi\)
−0.998900 + 0.0468944i \(0.985068\pi\)
\(90\) 20.7846i 0.230940i
\(91\) 0 0
\(92\) 35.0718 0.381215
\(93\) 55.2224 + 14.7968i 0.593790 + 0.159105i
\(94\) 33.0000 + 57.1577i 0.351064 + 0.608060i
\(95\) 54.6673 + 31.5622i 0.575445 + 0.332233i
\(96\) 6.92820 6.92820i 0.0721688 0.0721688i
\(97\) 35.2321 + 131.488i 0.363217 + 1.35554i 0.869822 + 0.493366i \(0.164234\pi\)
−0.506605 + 0.862178i \(0.669100\pi\)
\(98\) −17.5885 + 4.71281i −0.179474 + 0.0480899i
\(99\) 21.8038 + 21.8038i 0.220241 + 0.220241i
\(100\) −19.0000 + 32.9090i −0.190000 + 0.329090i
\(101\) −53.2461 + 30.7417i −0.527189 + 0.304373i −0.739871 0.672749i \(-0.765114\pi\)
0.212682 + 0.977122i \(0.431780\pi\)
\(102\) −18.0788 + 67.4711i −0.177244 + 0.661482i
\(103\) 23.3205i 0.226413i 0.993571 + 0.113206i \(0.0361121\pi\)
−0.993571 + 0.113206i \(0.963888\pi\)
\(104\) 0 0
\(105\) 33.3731 0.317839
\(106\) 109.426 + 29.3205i 1.03232 + 0.276609i
\(107\) −39.8660 69.0500i −0.372580 0.645327i 0.617382 0.786664i \(-0.288193\pi\)
−0.989962 + 0.141337i \(0.954860\pi\)
\(108\) 45.0000 + 25.9808i 0.416667 + 0.240563i
\(109\) 103.655 103.655i 0.950964 0.950964i −0.0478885 0.998853i \(-0.515249\pi\)
0.998853 + 0.0478885i \(0.0152492\pi\)
\(110\) 4.60770 + 17.1962i 0.0418881 + 0.156329i
\(111\) 36.8205 9.86603i 0.331716 0.0888831i
\(112\) −22.2487 22.2487i −0.198649 0.198649i
\(113\) −88.5000 + 153.286i −0.783186 + 1.35652i 0.146891 + 0.989153i \(0.453073\pi\)
−0.930077 + 0.367365i \(0.880260\pi\)
\(114\) −54.6673 + 31.5622i −0.479538 + 0.276861i
\(115\) −11.1173 + 41.4904i −0.0966723 + 0.360786i
\(116\) 1.42563i 0.0122899i
\(117\) 0 0
\(118\) −55.5167 −0.470480
\(119\) 216.672 + 58.0570i 1.82077 + 0.487874i
\(120\) 6.00000 + 10.3923i 0.0500000 + 0.0866025i
\(121\) 81.9160 + 47.2942i 0.676992 + 0.390861i
\(122\) −28.6077 + 28.6077i −0.234489 + 0.234489i
\(123\) −19.5000 72.7750i −0.158537 0.591667i
\(124\) 63.7654 17.0859i 0.514237 0.137789i
\(125\) −76.2102 76.2102i −0.609682 0.609682i
\(126\) 33.3731 57.8038i 0.264866 0.458761i
\(127\) 147.651 85.2461i 1.16260 0.671229i 0.210677 0.977556i \(-0.432433\pi\)
0.951927 + 0.306326i \(0.0990999\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 127.550i 0.988760i
\(130\) 0 0
\(131\) −44.8513 −0.342376 −0.171188 0.985238i \(-0.554761\pi\)
−0.171188 + 0.985238i \(0.554761\pi\)
\(132\) −17.1962 4.60770i −0.130274 0.0349068i
\(133\) 101.356 + 175.554i 0.762078 + 1.31996i
\(134\) −60.7583 35.0788i −0.453420 0.261782i
\(135\) −45.0000 + 45.0000i −0.333333 + 0.333333i
\(136\) 20.8756 + 77.9090i 0.153497 + 0.572860i
\(137\) −90.9782 + 24.3775i −0.664074 + 0.177938i −0.575084 0.818094i \(-0.695031\pi\)
−0.0889903 + 0.996032i \(0.528364\pi\)
\(138\) −30.3731 30.3731i −0.220095 0.220095i
\(139\) −9.59808 + 16.6244i −0.0690509 + 0.119600i −0.898484 0.439007i \(-0.855330\pi\)
0.829433 + 0.558606i \(0.188664\pi\)
\(140\) 33.3731 19.2679i 0.238379 0.137628i
\(141\) 20.9212 78.0788i 0.148377 0.553751i
\(142\) 10.3013i 0.0725442i
\(143\) 0 0
\(144\) 24.0000 0.166667
\(145\) −1.68653 0.451905i −0.0116313 0.00311659i
\(146\) 12.7654 + 22.1103i 0.0874341 + 0.151440i
\(147\) 19.3135 + 11.1506i 0.131384 + 0.0758547i
\(148\) 31.1244 31.1244i 0.210300 0.210300i
\(149\) 9.66283 + 36.0622i 0.0648512 + 0.242028i 0.990741 0.135766i \(-0.0433495\pi\)
−0.925890 + 0.377794i \(0.876683\pi\)
\(150\) 44.9545 12.0455i 0.299697 0.0803034i
\(151\) 161.406 + 161.406i 1.06892 + 1.06892i 0.997442 + 0.0714740i \(0.0227703\pi\)
0.0714740 + 0.997442i \(0.477230\pi\)
\(152\) −36.4449 + 63.1244i −0.239769 + 0.415292i
\(153\) −148.177 + 85.5500i −0.968477 + 0.559150i
\(154\) −14.7968 + 55.2224i −0.0960832 + 0.358587i
\(155\) 80.8513i 0.521621i
\(156\) 0 0
\(157\) −14.4308 −0.0919158 −0.0459579 0.998943i \(-0.514634\pi\)
−0.0459579 + 0.998943i \(0.514634\pi\)
\(158\) 19.6077 + 5.25387i 0.124099 + 0.0332523i
\(159\) −69.3731 120.158i −0.436309 0.755709i
\(160\) 12.0000 + 6.92820i 0.0750000 + 0.0433013i
\(161\) −97.5378 + 97.5378i −0.605825 + 0.605825i
\(162\) 3.29423 + 12.2942i 0.0203347 + 0.0758903i
\(163\) 23.8993 6.40381i 0.146622 0.0392872i −0.184762 0.982783i \(-0.559151\pi\)
0.331383 + 0.943496i \(0.392485\pi\)
\(164\) −61.5167 61.5167i −0.375102 0.375102i
\(165\) 10.9019 18.8827i 0.0660723 0.114441i
\(166\) 152.138 87.8372i 0.916497 0.529140i
\(167\) 15.1865 56.6769i 0.0909373 0.339383i −0.905435 0.424485i \(-0.860455\pi\)
0.996372 + 0.0851025i \(0.0271218\pi\)
\(168\) 38.5359i 0.229380i
\(169\) 0 0
\(170\) −98.7846 −0.581086
\(171\) −149.354 40.0192i −0.873414 0.234031i
\(172\) −73.6410 127.550i −0.428145 0.741570i
\(173\) 62.1462 + 35.8801i 0.359226 + 0.207399i 0.668741 0.743495i \(-0.266833\pi\)
−0.309515 + 0.950895i \(0.600167\pi\)
\(174\) 1.23463 1.23463i 0.00709556 0.00709556i
\(175\) −38.6821 144.363i −0.221040 0.824934i
\(176\) −19.8564 + 5.32051i −0.112820 + 0.0302302i
\(177\) 48.0788 + 48.0788i 0.271632 + 0.271632i
\(178\) 38.2417 66.2365i 0.214841 0.372115i
\(179\) −139.148 + 80.3372i −0.777363 + 0.448811i −0.835495 0.549498i \(-0.814819\pi\)
0.0581316 + 0.998309i \(0.481486\pi\)
\(180\) −7.60770 + 28.3923i −0.0422650 + 0.157735i
\(181\) 143.072i 0.790452i 0.918584 + 0.395226i \(0.129334\pi\)
−0.918584 + 0.395226i \(0.870666\pi\)
\(182\) 0 0
\(183\) 49.5500 0.270765
\(184\) −47.9090 12.8372i −0.260375 0.0697672i
\(185\) 26.9545 + 46.6865i 0.145700 + 0.252360i
\(186\) −70.0192 40.4256i −0.376448 0.217342i
\(187\) 103.629 103.629i 0.554165 0.554165i
\(188\) −24.1577 90.1577i −0.128498 0.479562i
\(189\) −197.404 + 52.8942i −1.04446 + 0.279863i
\(190\) −63.1244 63.1244i −0.332233 0.332233i
\(191\) 142.703 247.169i 0.747137 1.29408i −0.202052 0.979375i \(-0.564761\pi\)
0.949190 0.314705i \(-0.101906\pi\)
\(192\) −12.0000 + 6.92820i −0.0625000 + 0.0360844i
\(193\) 22.9115 85.5070i 0.118713 0.443042i −0.880825 0.473442i \(-0.843011\pi\)
0.999538 + 0.0304000i \(0.00967812\pi\)
\(194\) 192.512i 0.992327i
\(195\) 0 0
\(196\) 25.7513 0.131384
\(197\) −362.653 97.1725i −1.84088 0.493261i −0.841948 0.539559i \(-0.818591\pi\)
−0.998928 + 0.0462974i \(0.985258\pi\)
\(198\) −21.8038 37.7654i −0.110120 0.190734i
\(199\) −257.789 148.835i −1.29542 0.747913i −0.315813 0.948822i \(-0.602277\pi\)
−0.979610 + 0.200909i \(0.935610\pi\)
\(200\) 38.0000 38.0000i 0.190000 0.190000i
\(201\) 22.2391 + 82.9974i 0.110642 + 0.412923i
\(202\) 83.9878 22.5045i 0.415781 0.111408i
\(203\) −3.96479 3.96479i −0.0195310 0.0195310i
\(204\) 49.3923 85.5500i 0.242119 0.419363i
\(205\) 92.2750 53.2750i 0.450122 0.259878i
\(206\) 8.53590 31.8564i 0.0414364 0.154643i
\(207\) 105.215i 0.508287i
\(208\) 0 0
\(209\) 132.440 0.633683
\(210\) −45.5885 12.2154i −0.217088 0.0581685i
\(211\) −27.2532 47.2039i −0.129162 0.223715i 0.794190 0.607669i \(-0.207895\pi\)
−0.923352 + 0.383954i \(0.874562\pi\)
\(212\) −138.746 80.1051i −0.654463 0.377854i
\(213\) −8.92116 + 8.92116i −0.0418834 + 0.0418834i
\(214\) 29.1840 + 108.916i 0.136374 + 0.508953i
\(215\) 174.237 46.6865i 0.810402 0.217147i
\(216\) −51.9615 51.9615i −0.240563 0.240563i
\(217\) −129.820 + 224.855i −0.598248 + 1.03620i
\(218\) −179.536 + 103.655i −0.823559 + 0.475482i
\(219\) 8.09292 30.2032i 0.0369540 0.137914i
\(220\) 25.1769i 0.114441i
\(221\) 0 0
\(222\) −53.9090 −0.242833
\(223\) −147.024 39.3949i −0.659299 0.176659i −0.0863694 0.996263i \(-0.527527\pi\)
−0.572930 + 0.819605i \(0.694193\pi\)
\(224\) 22.2487 + 38.5359i 0.0993246 + 0.172035i
\(225\) 98.7269 + 57.0000i 0.438786 + 0.253333i
\(226\) 177.000 177.000i 0.783186 0.783186i
\(227\) −55.7276 207.978i −0.245496 0.916203i −0.973133 0.230242i \(-0.926048\pi\)
0.727638 0.685962i \(-0.240618\pi\)
\(228\) 86.2295 23.1051i 0.378199 0.101338i
\(229\) −9.23463 9.23463i −0.0403259 0.0403259i 0.686656 0.726982i \(-0.259078\pi\)
−0.726982 + 0.686656i \(0.759078\pi\)
\(230\) 30.3731 52.6077i 0.132057 0.228729i
\(231\) 60.6384 35.0096i 0.262504 0.151557i
\(232\) 0.521815 1.94744i 0.00224920 0.00839414i
\(233\) 397.061i 1.70413i 0.523439 + 0.852063i \(0.324649\pi\)
−0.523439 + 0.852063i \(0.675351\pi\)
\(234\) 0 0
\(235\) 114.315 0.486448
\(236\) 75.8372 + 20.3205i 0.321344 + 0.0861038i
\(237\) −12.4308 21.5307i −0.0524506 0.0908470i
\(238\) −274.729 158.615i −1.15432 0.666448i
\(239\) −198.688 + 198.688i −0.831332 + 0.831332i −0.987699 0.156367i \(-0.950022\pi\)
0.156367 + 0.987699i \(0.450022\pi\)
\(240\) −4.39230 16.3923i −0.0183013 0.0683013i
\(241\) −315.992 + 84.6699i −1.31117 + 0.351327i −0.845663 0.533717i \(-0.820795\pi\)
−0.465508 + 0.885044i \(0.654128\pi\)
\(242\) −94.5885 94.5885i −0.390861 0.390861i
\(243\) 124.708 216.000i 0.513200 0.888889i
\(244\) 49.5500 28.6077i 0.203074 0.117245i
\(245\) −8.16283 + 30.4641i −0.0333177 + 0.124343i
\(246\) 106.550i 0.433130i
\(247\) 0 0
\(248\) −93.3590 −0.376448
\(249\) −207.825 55.6865i −0.834638 0.223641i
\(250\) 76.2102 + 132.000i 0.304841 + 0.528000i
\(251\) 134.267 + 77.5192i 0.534929 + 0.308842i 0.743021 0.669268i \(-0.233392\pi\)
−0.208092 + 0.978109i \(0.566725\pi\)
\(252\) −66.7461 + 66.7461i −0.264866 + 0.264866i
\(253\) 23.3250 + 87.0500i 0.0921936 + 0.344071i
\(254\) −232.897 + 62.4045i −0.916916 + 0.245687i
\(255\) 85.5500 + 85.5500i 0.335490 + 0.335490i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 262.012 151.272i 1.01950 0.588609i 0.105541 0.994415i \(-0.466343\pi\)
0.913959 + 0.405806i \(0.133009\pi\)
\(258\) −46.6865 + 174.237i −0.180956 + 0.675335i
\(259\) 173.119i 0.668414i
\(260\) 0 0
\(261\) 4.27688 0.0163865
\(262\) 61.2679 + 16.4167i 0.233847 + 0.0626592i
\(263\) −25.2968 43.8154i −0.0961856 0.166598i 0.813917 0.580981i \(-0.197331\pi\)
−0.910103 + 0.414383i \(0.863998\pi\)
\(264\) 21.8038 + 12.5885i 0.0825903 + 0.0476836i
\(265\) 138.746 138.746i 0.523570 0.523570i
\(266\) −74.1980 276.911i −0.278940 1.04102i
\(267\) −90.4808 + 24.2442i −0.338879 + 0.0908024i
\(268\) 70.1577 + 70.1577i 0.261782 + 0.261782i
\(269\) 21.4474 37.1481i 0.0797303 0.138097i −0.823403 0.567457i \(-0.807927\pi\)
0.903134 + 0.429360i \(0.141261\pi\)
\(270\) 77.9423 45.0000i 0.288675 0.166667i
\(271\) 128.244 478.614i 0.473226 1.76610i −0.154836 0.987940i \(-0.549485\pi\)
0.628062 0.778163i \(-0.283848\pi\)
\(272\) 114.067i 0.419363i
\(273\) 0 0
\(274\) 133.201 0.486136
\(275\) −94.3179 25.2724i −0.342974 0.0918997i
\(276\) 30.3731 + 52.6077i 0.110047 + 0.190608i
\(277\) −184.227 106.363i −0.665079 0.383984i 0.129130 0.991628i \(-0.458781\pi\)
−0.794209 + 0.607644i \(0.792115\pi\)
\(278\) 19.1962 19.1962i 0.0690509 0.0690509i
\(279\) −51.2576 191.296i −0.183719 0.685649i
\(280\) −52.6410 + 14.1051i −0.188004 + 0.0503754i
\(281\) −27.2243 27.2243i −0.0968837 0.0968837i 0.657004 0.753887i \(-0.271824\pi\)
−0.753887 + 0.657004i \(0.771824\pi\)
\(282\) −57.1577 + 99.0000i −0.202687 + 0.351064i
\(283\) 126.526 73.0500i 0.447089 0.258127i −0.259511 0.965740i \(-0.583561\pi\)
0.706600 + 0.707613i \(0.250228\pi\)
\(284\) −3.77053 + 14.0718i −0.0132765 + 0.0495486i
\(285\) 109.335i 0.383630i
\(286\) 0 0
\(287\) 342.167 1.19222
\(288\) −32.7846 8.78461i −0.113835 0.0305021i
\(289\) 262.100 + 453.970i 0.906920 + 1.57083i
\(290\) 2.13844 + 1.23463i 0.00737393 + 0.00425734i
\(291\) −166.720 + 166.720i −0.572920 + 0.572920i
\(292\) −9.34490 34.8756i −0.0320031 0.119437i
\(293\) 94.5000 25.3212i 0.322526 0.0864205i −0.0939237 0.995579i \(-0.529941\pi\)
0.416449 + 0.909159i \(0.363274\pi\)
\(294\) −22.3013 22.3013i −0.0758547 0.0758547i
\(295\) −48.0788 + 83.2750i −0.162979 + 0.282288i
\(296\) −53.9090 + 31.1244i −0.182125 + 0.105150i
\(297\) −34.5577 + 128.971i −0.116356 + 0.434246i
\(298\) 52.7987i 0.177177i
\(299\) 0 0
\(300\) −65.8179 −0.219393
\(301\) 559.530 + 149.926i 1.85890 + 0.498092i
\(302\) −161.406 279.564i −0.534458 0.925709i
\(303\) −92.2250 53.2461i −0.304373 0.175730i
\(304\) 72.8897 72.8897i 0.239769 0.239769i
\(305\) 18.1366 + 67.6865i 0.0594641 + 0.221923i
\(306\) 233.727 62.6269i 0.763813 0.204663i
\(307\) 2.62178 + 2.62178i 0.00853999 + 0.00853999i 0.711364 0.702824i \(-0.248078\pi\)
−0.702824 + 0.711364i \(0.748078\pi\)
\(308\) 40.4256 70.0192i 0.131252 0.227335i
\(309\) −34.9808 + 20.1962i −0.113206 + 0.0653597i
\(310\) 29.5936 110.445i 0.0954633 0.356274i
\(311\) 386.038i 1.24128i −0.784095 0.620641i \(-0.786873\pi\)
0.784095 0.620641i \(-0.213127\pi\)
\(312\) 0 0
\(313\) −35.1384 −0.112263 −0.0561317 0.998423i \(-0.517877\pi\)
−0.0561317 + 0.998423i \(0.517877\pi\)
\(314\) 19.7128 + 5.28203i 0.0627797 + 0.0168218i
\(315\) −57.8038 100.119i −0.183504 0.317839i
\(316\) −24.8616 14.3538i −0.0786758 0.0454235i
\(317\) 12.5307 12.5307i 0.0395292 0.0395292i −0.687066 0.726595i \(-0.741102\pi\)
0.726595 + 0.687066i \(0.241102\pi\)
\(318\) 50.7846 + 189.531i 0.159700 + 0.596009i
\(319\) −3.53848 + 0.948132i −0.0110924 + 0.00297220i
\(320\) −13.8564 13.8564i −0.0433013 0.0433013i
\(321\) 69.0500 119.598i 0.215109 0.372580i
\(322\) 168.940 97.5378i 0.524660 0.302912i
\(323\) −190.203 + 709.845i −0.588862 + 2.19766i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) −34.9911 −0.107335
\(327\) 245.251 + 65.7147i 0.750002 + 0.200962i
\(328\) 61.5167 + 106.550i 0.187551 + 0.324848i
\(329\) 317.921 + 183.552i 0.966326 + 0.557908i
\(330\) −21.8038 + 21.8038i −0.0660723 + 0.0660723i
\(331\) −66.9763 249.959i −0.202345 0.755163i −0.990242 0.139356i \(-0.955497\pi\)
0.787897 0.615807i \(-0.211170\pi\)
\(332\) −239.976 + 64.3013i −0.722818 + 0.193679i
\(333\) −93.3731 93.3731i −0.280400 0.280400i
\(334\) −41.4904 + 71.8634i −0.124223 + 0.215160i
\(335\) −105.237 + 60.7583i −0.314139 + 0.181368i
\(336\) 14.1051 52.6410i 0.0419795 0.156670i
\(337\) 94.9461i 0.281739i −0.990028 0.140870i \(-0.955010\pi\)
0.990028 0.140870i \(-0.0449898\pi\)
\(338\) 0 0
\(339\) −306.573 −0.904345
\(340\) 134.942 + 36.1577i 0.396889 + 0.106346i
\(341\) 84.8160 + 146.906i 0.248727 + 0.430808i
\(342\) 189.373 + 109.335i 0.553722 + 0.319692i
\(343\) 200.930 200.930i 0.585802 0.585802i
\(344\) 53.9090 + 201.191i 0.156712 + 0.584858i
\(345\) −71.8634 + 19.2558i −0.208300 + 0.0558138i
\(346\) −71.7602 71.7602i −0.207399 0.207399i
\(347\) −52.2302 + 90.4653i −0.150519 + 0.260707i −0.931418 0.363950i \(-0.881428\pi\)
0.780899 + 0.624657i \(0.214761\pi\)
\(348\) −2.13844 + 1.23463i −0.00614494 + 0.00354778i
\(349\) −20.9205 + 78.0763i −0.0599440 + 0.223714i −0.989399 0.145221i \(-0.953611\pi\)
0.929455 + 0.368935i \(0.120277\pi\)
\(350\) 211.363i 0.603894i
\(351\) 0 0
\(352\) 29.0718 0.0825903
\(353\) −164.744 44.1429i −0.466696 0.125051i 0.0178053 0.999841i \(-0.494332\pi\)
−0.484501 + 0.874791i \(0.660999\pi\)
\(354\) −48.0788 83.2750i −0.135816 0.235240i
\(355\) −15.4519 8.92116i −0.0435265 0.0251300i
\(356\) −76.4833 + 76.4833i −0.214841 + 0.214841i
\(357\) 100.558 + 375.286i 0.281674 + 1.05122i
\(358\) 219.485 58.8109i 0.613087 0.164276i
\(359\) 102.058 + 102.058i 0.284283 + 0.284283i 0.834815 0.550531i \(-0.185575\pi\)
−0.550531 + 0.834815i \(0.685575\pi\)
\(360\) 20.7846 36.0000i 0.0577350 0.100000i
\(361\) −262.504 + 151.557i −0.727159 + 0.419826i
\(362\) 52.3679 195.440i 0.144663 0.539889i
\(363\) 163.832i 0.451328i
\(364\) 0 0
\(365\) 44.2205 0.121152
\(366\) −67.6865 18.1366i −0.184936 0.0495534i
\(367\) −238.856 413.710i −0.650833 1.12728i −0.982921 0.184027i \(-0.941086\pi\)
0.332088 0.943248i \(-0.392247\pi\)
\(368\) 60.7461 + 35.0718i 0.165071 + 0.0953038i
\(369\) −184.550 + 184.550i −0.500135 + 0.500135i
\(370\) −19.7321 73.6410i −0.0533299 0.199030i
\(371\) 608.645 163.086i 1.64055 0.439585i
\(372\) 80.8513 + 80.8513i 0.217342 + 0.217342i
\(373\) −257.744 + 446.425i −0.691001 + 1.19685i 0.280509 + 0.959852i \(0.409497\pi\)
−0.971510 + 0.236998i \(0.923836\pi\)
\(374\) −179.490 + 103.629i −0.479921 + 0.277082i
\(375\) 48.3154 180.315i 0.128841 0.480841i
\(376\) 132.000i 0.351064i
\(377\) 0 0
\(378\) 289.019 0.764601
\(379\) 264.397 + 70.8449i 0.697617 + 0.186926i 0.590163 0.807284i \(-0.299064\pi\)
0.107454 + 0.994210i \(0.465730\pi\)
\(380\) 63.1244 + 109.335i 0.166117 + 0.287723i
\(381\) 255.738 + 147.651i 0.671229 + 0.387534i
\(382\) −285.406 + 285.406i −0.747137 + 0.747137i
\(383\) 121.057 + 451.791i 0.316076 + 1.17961i 0.922984 + 0.384839i \(0.125743\pi\)
−0.606908 + 0.794772i \(0.707590\pi\)
\(384\) 18.9282 5.07180i 0.0492922 0.0132078i
\(385\) 70.0192 + 70.0192i 0.181868 + 0.181868i
\(386\) −62.5955 + 108.419i −0.162165 + 0.280877i
\(387\) −382.650 + 220.923i −0.988760 + 0.570861i
\(388\) −70.4641 + 262.976i −0.181609 + 0.677772i
\(389\) 572.687i 1.47220i −0.676871 0.736102i \(-0.736665\pi\)
0.676871 0.736102i \(-0.263335\pi\)
\(390\) 0 0
\(391\) −500.065 −1.27894
\(392\) −35.1769 9.42563i −0.0897370 0.0240450i
\(393\) −38.8423 67.2769i −0.0988354 0.171188i
\(394\) 459.825 + 265.480i 1.16707 + 0.673807i
\(395\) 24.8616 24.8616i 0.0629407 0.0629407i
\(396\) 15.9615 + 59.5692i 0.0403069 + 0.150427i
\(397\) 59.0692 15.8275i 0.148789 0.0398679i −0.183656 0.982991i \(-0.558793\pi\)
0.332445 + 0.943123i \(0.392127\pi\)
\(398\) 297.669 + 297.669i 0.747913 + 0.747913i
\(399\) −175.554 + 304.069i −0.439986 + 0.762078i
\(400\) −65.8179 + 38.0000i −0.164545 + 0.0950000i
\(401\) 139.815 521.798i 0.348667 1.30124i −0.539603 0.841920i \(-0.681426\pi\)
0.888270 0.459322i \(-0.151908\pi\)
\(402\) 121.517i 0.302280i
\(403\) 0 0
\(404\) −122.967 −0.304373
\(405\) 21.2942 + 5.70577i 0.0525783 + 0.0140883i
\(406\) 3.96479 + 6.86722i 0.00976550 + 0.0169143i
\(407\) 97.9519 + 56.5526i 0.240668 + 0.138950i
\(408\) −98.7846 + 98.7846i −0.242119 + 0.242119i
\(409\) −5.36533 20.0237i −0.0131182 0.0489577i 0.959057 0.283215i \(-0.0914009\pi\)
−0.972175 + 0.234257i \(0.924734\pi\)
\(410\) −145.550 + 39.0000i −0.355000 + 0.0951220i
\(411\) −115.356 115.356i −0.280671 0.280671i
\(412\) −23.3205 + 40.3923i −0.0566032 + 0.0980396i
\(413\) −267.423 + 154.397i −0.647513 + 0.373842i
\(414\) −38.5115 + 143.727i −0.0930230 + 0.347166i
\(415\) 304.277i 0.733197i
\(416\) 0 0
\(417\) −33.2487 −0.0797331
\(418\) −180.916 48.4763i −0.432813 0.115972i
\(419\) −173.598 300.681i −0.414315 0.717615i 0.581041 0.813874i \(-0.302646\pi\)
−0.995356 + 0.0962592i \(0.969312\pi\)
\(420\) 57.8038 + 33.3731i 0.137628 + 0.0794597i
\(421\) 286.555 286.555i 0.680654 0.680654i −0.279494 0.960147i \(-0.590167\pi\)
0.960147 + 0.279494i \(0.0901667\pi\)
\(422\) 19.9507 + 74.4571i 0.0472766 + 0.176439i
\(423\) −270.473 + 72.4730i −0.639416 + 0.171331i
\(424\) 160.210 + 160.210i 0.377854 + 0.377854i
\(425\) 270.908 469.227i 0.637431 1.10406i
\(426\) 15.4519 8.92116i 0.0362721 0.0209417i
\(427\) −58.2424 + 217.363i −0.136399 + 0.509048i
\(428\) 159.464i 0.372580i
\(429\) 0 0
\(430\) −255.100 −0.593256
\(431\) 296.176 + 79.3602i 0.687184 + 0.184130i 0.585483 0.810685i \(-0.300905\pi\)
0.101701 + 0.994815i \(0.467572\pi\)
\(432\) 51.9615 + 90.0000i 0.120281 + 0.208333i
\(433\) 73.2757 + 42.3057i 0.169228 + 0.0977038i 0.582222 0.813030i \(-0.302184\pi\)
−0.412994 + 0.910734i \(0.635517\pi\)
\(434\) 259.640 259.640i 0.598248 0.598248i
\(435\) −0.782723 2.92116i −0.00179936 0.00671531i
\(436\) 283.191 75.8808i 0.649521 0.174039i
\(437\) −319.547 319.547i −0.731228 0.731228i
\(438\) −22.1103 + 38.2961i −0.0504801 + 0.0874341i
\(439\) 379.794 219.274i 0.865135 0.499486i −0.000593556 1.00000i \(-0.500189\pi\)
0.865728 + 0.500514i \(0.166856\pi\)
\(440\) −9.21539 + 34.3923i −0.0209441 + 0.0781643i
\(441\) 77.2539i 0.175179i
\(442\) 0 0
\(443\) −323.836 −0.731006 −0.365503 0.930810i \(-0.619103\pi\)
−0.365503 + 0.930810i \(0.619103\pi\)
\(444\) 73.6410 + 19.7321i 0.165858 + 0.0444416i
\(445\) −66.2365 114.725i −0.148846 0.257809i
\(446\) 186.419 + 107.629i 0.417979 + 0.241320i
\(447\) −45.7250 + 45.7250i −0.102293 + 0.102293i
\(448\) −16.2872 60.7846i −0.0363553 0.135680i
\(449\) 341.528 91.5122i 0.760642 0.203813i 0.142408 0.989808i \(-0.454515\pi\)
0.618233 + 0.785995i \(0.287849\pi\)
\(450\) −114.000 114.000i −0.253333 0.253333i
\(451\) 111.775 193.600i 0.247838 0.429268i
\(452\) −306.573 + 177.000i −0.678259 + 0.391593i
\(453\) −102.328 + 381.892i −0.225889 + 0.843028i
\(454\) 304.501i 0.670707i
\(455\) 0 0
\(456\) −126.249 −0.276861
\(457\) 257.050 + 68.8763i 0.562473 + 0.150714i 0.528842 0.848720i \(-0.322626\pi\)
0.0336305 + 0.999434i \(0.489293\pi\)
\(458\) 9.23463 + 15.9948i 0.0201629 + 0.0349232i
\(459\) −641.625 370.442i −1.39788 0.807064i
\(460\) −60.7461 + 60.7461i −0.132057 + 0.132057i
\(461\) 38.9923 + 145.521i 0.0845819 + 0.315664i 0.995235 0.0975085i \(-0.0310873\pi\)
−0.910653 + 0.413173i \(0.864421\pi\)
\(462\) −95.6481 + 25.6288i −0.207030 + 0.0554736i
\(463\) −48.4115 48.4115i −0.104561 0.104561i 0.652891 0.757452i \(-0.273556\pi\)
−0.757452 + 0.652891i \(0.773556\pi\)
\(464\) −1.42563 + 2.46926i −0.00307247 + 0.00532167i
\(465\) −121.277 + 70.0192i −0.260810 + 0.150579i
\(466\) 145.335 542.396i 0.311877 1.16394i
\(467\) 138.764i 0.297139i −0.988902 0.148570i \(-0.952533\pi\)
0.988902 0.148570i \(-0.0474669\pi\)
\(468\) 0 0
\(469\) −390.229 −0.832046
\(470\) −156.158 41.8423i −0.332250 0.0890262i
\(471\) −12.4974 21.6462i −0.0265338 0.0459579i
\(472\) −96.1577 55.5167i −0.203724 0.117620i
\(473\) 267.610 267.610i 0.565771 0.565771i
\(474\) 9.09996 + 33.9615i 0.0191982 + 0.0716488i
\(475\) 472.954 126.728i 0.995692 0.266795i
\(476\) 317.229 + 317.229i 0.666448 + 0.666448i
\(477\) −240.315 + 416.238i −0.503806 + 0.872617i
\(478\) 344.138 198.688i 0.719955 0.415666i
\(479\) −59.4737 + 221.959i −0.124162 + 0.463380i −0.999808 0.0195733i \(-0.993769\pi\)
0.875646 + 0.482953i \(0.160436\pi\)
\(480\) 24.0000i 0.0500000i
\(481\) 0 0
\(482\) 462.645 0.959844
\(483\) −230.777 61.8365i −0.477799 0.128026i
\(484\) 94.5885 + 163.832i 0.195431 + 0.338496i
\(485\) −288.767 166.720i −0.595396 0.343752i
\(486\) −249.415 + 249.415i −0.513200 + 0.513200i
\(487\) 126.221 + 471.064i 0.259181 + 0.967277i 0.965716 + 0.259599i \(0.0835905\pi\)
−0.706535 + 0.707678i \(0.749743\pi\)
\(488\) −78.1577 + 20.9423i −0.160159 + 0.0429145i
\(489\) 30.3032 + 30.3032i 0.0619696 + 0.0619696i
\(490\) 22.3013 38.6269i 0.0455128 0.0788305i
\(491\) 453.156 261.630i 0.922924 0.532850i 0.0383572 0.999264i \(-0.487788\pi\)
0.884567 + 0.466414i \(0.154454\pi\)
\(492\) 39.0000 145.550i 0.0792683 0.295833i
\(493\) 20.3270i 0.0412313i
\(494\) 0 0
\(495\) −75.5307 −0.152587
\(496\) 127.531 + 34.1718i 0.257118 + 0.0688947i
\(497\) −28.6487 49.6211i −0.0576434 0.0998412i
\(498\) 263.512 + 152.138i 0.529140 + 0.305499i
\(499\) −108.412 + 108.412i −0.217258 + 0.217258i −0.807342 0.590084i \(-0.799095\pi\)
0.590084 + 0.807342i \(0.299095\pi\)
\(500\) −55.7898 208.210i −0.111580 0.416420i
\(501\) 98.1673 26.3038i 0.195943 0.0525027i
\(502\) −155.038 155.038i −0.308842 0.308842i
\(503\) 202.861 351.365i 0.403302 0.698539i −0.590820 0.806803i \(-0.701196\pi\)
0.994122 + 0.108264i \(0.0345291\pi\)
\(504\) 115.608 66.7461i 0.229380 0.132433i
\(505\) 38.9789 145.471i 0.0771859 0.288062i
\(506\) 127.450i 0.251878i
\(507\) 0 0
\(508\) 340.985 0.671229
\(509\) −149.586 40.0814i −0.293882 0.0787454i 0.108866 0.994056i \(-0.465278\pi\)
−0.402748 + 0.915311i \(0.631945\pi\)
\(510\) −85.5500 148.177i −0.167745 0.290543i
\(511\) 122.981 + 71.0033i 0.240668 + 0.138950i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −173.288 646.721i −0.337794 1.26066i
\(514\) −413.284 + 110.739i −0.804054 + 0.215446i
\(515\) −40.3923 40.3923i −0.0784317 0.0784317i
\(516\) 127.550 220.923i 0.247190 0.428145i
\(517\) 207.710 119.921i 0.401759 0.231956i
\(518\) 63.3660 236.485i 0.122328 0.456535i
\(519\) 124.292i 0.239484i
\(520\) 0 0
\(521\) −239.636 −0.459954 −0.229977 0.973196i \(-0.573865\pi\)
−0.229977 + 0.973196i \(0.573865\pi\)
\(522\) −5.84232 1.56545i −0.0111922 0.00299894i
\(523\) 497.663 + 861.978i 0.951555 + 1.64814i 0.742061 + 0.670332i \(0.233848\pi\)
0.209494 + 0.977810i \(0.432818\pi\)
\(524\) −77.6846 44.8513i −0.148253 0.0855940i
\(525\) 183.046 183.046i 0.348658 0.348658i
\(526\) 18.5185 + 69.1122i 0.0352064 + 0.131392i
\(527\) −909.188 + 243.616i −1.72521 + 0.462270i
\(528\) −25.1769 25.1769i −0.0476836 0.0476836i
\(529\) −110.746 + 191.818i −0.209350 + 0.362605i
\(530\) −240.315 + 138.746i −0.453425 + 0.261785i
\(531\) 60.9615 227.512i 0.114805 0.428459i
\(532\) 405.426i 0.762078i
\(533\) 0 0
\(534\) 132.473 0.248077
\(535\) 188.648 + 50.5481i 0.352613 + 0.0944824i
\(536\) −70.1577 121.517i −0.130891 0.226710i
\(537\) −241.012 139.148i −0.448811 0.259121i
\(538\) −42.8949 + 42.8949i −0.0797303 + 0.0797303i
\(539\) 17.1262 + 63.9160i 0.0317741 + 0.118583i
\(540\) −122.942 + 32.9423i −0.227671 + 0.0610042i
\(541\) −74.1000 74.1000i −0.136969 0.136969i 0.635298 0.772267i \(-0.280877\pi\)
−0.772267 + 0.635298i \(0.780877\pi\)
\(542\) −350.370 + 606.858i −0.646439 + 1.11966i
\(543\) −214.608 + 123.904i −0.395226 + 0.228184i
\(544\) −41.7513 + 155.818i −0.0767487 + 0.286430i
\(545\) 359.072i 0.658847i
\(546\) 0 0
\(547\) 961.854 1.75842 0.879208 0.476438i \(-0.158072\pi\)
0.879208 + 0.476438i \(0.158072\pi\)
\(548\) −181.956 48.7551i −0.332037 0.0889691i
\(549\) −85.8231 148.650i −0.156326 0.270765i
\(550\) 119.590 + 69.0455i 0.217437 + 0.125537i
\(551\) 12.9892 12.9892i 0.0235738 0.0235738i
\(552\) −22.2346 82.9808i −0.0402801 0.150327i
\(553\) 109.061 29.2229i 0.197218 0.0528444i
\(554\) 212.727 + 212.727i 0.383984 + 0.383984i
\(555\) −46.6865 + 80.8634i −0.0841199 + 0.145700i
\(556\) −33.2487 + 19.1962i −0.0597998 + 0.0345255i
\(557\) −195.581 + 729.917i −0.351132 + 1.31044i 0.534150 + 0.845390i \(0.320632\pi\)
−0.885282 + 0.465054i \(0.846035\pi\)
\(558\) 280.077i 0.501930i
\(559\) 0 0
\(560\) 77.0718 0.137628
\(561\) 245.188 + 65.6980i 0.437056 + 0.117109i
\(562\) 27.2243 + 47.1539i 0.0484418 + 0.0839037i
\(563\) 26.1250 + 15.0833i 0.0464033 + 0.0267909i 0.523022 0.852319i \(-0.324804\pi\)
−0.476619 + 0.879110i \(0.658138\pi\)
\(564\) 114.315 114.315i 0.202687 0.202687i
\(565\) −112.214 418.786i −0.198608 0.741215i
\(566\) −199.576 + 53.4763i −0.352608 + 0.0944811i
\(567\) 50.0596 + 50.0596i 0.0882885 + 0.0882885i
\(568\) 10.3013 17.8423i 0.0181360 0.0314125i
\(569\) 447.092 258.129i 0.785751 0.453653i −0.0527137 0.998610i \(-0.516787\pi\)
0.838465 + 0.544956i \(0.183454\pi\)
\(570\) 40.0192 149.354i 0.0702092 0.262024i
\(571\) 813.423i 1.42456i 0.701896 + 0.712279i \(0.252337\pi\)
−0.701896 + 0.712279i \(0.747663\pi\)
\(572\) 0 0
\(573\) 494.338 0.862720
\(574\) −467.408 125.242i −0.814300 0.218191i
\(575\) 166.591 + 288.544i 0.289724 + 0.501816i
\(576\) 41.5692 + 24.0000i 0.0721688 + 0.0416667i
\(577\) −336.660 + 336.660i −0.583467 + 0.583467i −0.935854 0.352388i \(-0.885370\pi\)
0.352388 + 0.935854i \(0.385370\pi\)
\(578\) −191.870 716.070i −0.331956 1.23888i
\(579\) 148.103 39.6840i 0.255790 0.0685388i
\(580\) −2.46926 2.46926i −0.00425734 0.00425734i
\(581\) 488.566 846.221i 0.840905 1.45649i
\(582\) 288.767 166.720i 0.496164 0.286460i
\(583\) 106.550 397.650i 0.182762 0.682075i
\(584\) 51.0615i 0.0874341i
\(585\) 0 0
\(586\) −138.358 −0.236105
\(587\) −576.386 154.442i −0.981919 0.263104i −0.268066 0.963400i \(-0.586385\pi\)
−0.713853 + 0.700296i \(0.753051\pi\)
\(588\) 22.3013 + 38.6269i 0.0379273 + 0.0656921i
\(589\) −736.653 425.307i −1.25068 0.722083i
\(590\) 96.1577 96.1577i 0.162979 0.162979i
\(591\) −168.308 628.133i −0.284784 1.06283i
\(592\) 85.0333 22.7846i 0.143637 0.0384875i
\(593\) −297.953 297.953i −0.502450 0.502450i 0.409749 0.912198i \(-0.365616\pi\)
−0.912198 + 0.409749i \(0.865616\pi\)
\(594\) 94.4134 163.529i 0.158945 0.275301i
\(595\) −475.844 + 274.729i −0.799738 + 0.461729i
\(596\) −19.3257 + 72.1244i −0.0324256 + 0.121014i
\(597\) 515.578i 0.863615i
\(598\) 0 0
\(599\) 996.169 1.66305 0.831527 0.555485i \(-0.187467\pi\)
0.831527 + 0.555485i \(0.187467\pi\)
\(600\) 89.9090 + 24.0910i 0.149848 + 0.0401517i
\(601\) −126.265 218.698i −0.210092 0.363890i 0.741651 0.670786i \(-0.234043\pi\)
−0.951743 + 0.306896i \(0.900710\pi\)
\(602\) −709.456 409.604i −1.17850 0.680406i
\(603\) 210.473 210.473i 0.349043 0.349043i
\(604\) 118.158 + 440.970i 0.195625 + 0.730084i
\(605\) −223.799 + 59.9667i −0.369915 + 0.0991185i
\(606\) 106.492 + 106.492i 0.175730 + 0.175730i
\(607\) 245.321 424.909i 0.404154 0.700014i −0.590069 0.807353i \(-0.700899\pi\)
0.994223 + 0.107338i \(0.0342328\pi\)
\(608\) −126.249 + 72.8897i −0.207646 + 0.119884i
\(609\) 2.51358 9.38080i 0.00412739 0.0154036i
\(610\) 99.1000i 0.162459i
\(611\) 0 0
\(612\) −342.200 −0.559150
\(613\) −512.451 137.311i −0.835973 0.223998i −0.184655 0.982803i \(-0.559117\pi\)
−0.651318 + 0.758805i \(0.725783\pi\)
\(614\) −2.62178 4.54105i −0.00427000 0.00739585i
\(615\) 159.825 + 92.2750i 0.259878 + 0.150041i
\(616\) −80.8513 + 80.8513i −0.131252 + 0.131252i
\(617\) 143.670 + 536.185i 0.232853 + 0.869020i 0.979105 + 0.203356i \(0.0651848\pi\)
−0.746252 + 0.665664i \(0.768148\pi\)
\(618\) 55.1769 14.7846i 0.0892830 0.0239233i
\(619\) −501.483 501.483i −0.810151 0.810151i 0.174505 0.984656i \(-0.444167\pi\)
−0.984656 + 0.174505i \(0.944167\pi\)
\(620\) −80.8513 + 140.038i −0.130405 + 0.225869i
\(621\) 394.558 227.798i 0.635359 0.366824i
\(622\) −141.300 + 527.338i −0.227170 + 0.847811i
\(623\) 425.414i 0.682847i
\(624\) 0 0
\(625\) −211.000 −0.337600
\(626\) 48.0000 + 12.8616i 0.0766773 + 0.0205456i
\(627\) 114.696 + 198.660i 0.182928 + 0.316841i
\(628\) −24.9948 14.4308i −0.0398007 0.0229790i
\(629\) −443.781 + 443.781i −0.705535 + 0.705535i
\(630\) 42.3154 + 157.923i 0.0671672 + 0.250672i
\(631\) −205.085 + 54.9524i −0.325016 + 0.0870878i −0.417638 0.908614i \(-0.637142\pi\)
0.0926217 + 0.995701i \(0.470475\pi\)
\(632\) 28.7077 + 28.7077i 0.0454235 + 0.0454235i
\(633\) 47.2039 81.7595i 0.0745717 0.129162i
\(634\) −21.7039 + 12.5307i −0.0342333 + 0.0197646i
\(635\) −108.088 + 403.389i −0.170217 + 0.635258i
\(636\) 277.492i 0.436309i
\(637\) 0 0
\(638\) 5.18069 0.00812020
\(639\) 42.2154 + 11.3116i 0.0660648 + 0.0177020i
\(640\) 13.8564 + 24.0000i 0.0216506 + 0.0375000i
\(641\) 69.3499 + 40.0392i 0.108190 + 0.0624636i 0.553119 0.833102i \(-0.313438\pi\)
−0.444929 + 0.895566i \(0.646771\pi\)
\(642\) −138.100 + 138.100i −0.215109 + 0.215109i
\(643\) −145.589 543.346i −0.226422 0.845017i −0.981830 0.189763i \(-0.939228\pi\)
0.755408 0.655254i \(-0.227439\pi\)
\(644\) −266.478 + 71.4026i −0.413786 + 0.110874i
\(645\) 220.923 + 220.923i 0.342516 + 0.342516i
\(646\) 519.643 900.048i 0.804401 1.39326i
\(647\) 1005.44 580.493i 1.55401 0.897208i 0.556200 0.831048i \(-0.312259\pi\)
0.997809 0.0661597i \(-0.0210747\pi\)
\(648\) −6.58846 + 24.5885i −0.0101674 + 0.0379452i
\(649\) 201.746i 0.310857i
\(650\) 0 0
\(651\) −449.709 −0.690797
\(652\) 47.7987 + 12.8076i 0.0733109 + 0.0196436i
\(653\) −220.045 381.129i −0.336975 0.583658i 0.646887 0.762586i \(-0.276071\pi\)
−0.983862 + 0.178928i \(0.942737\pi\)
\(654\) −310.965 179.536i −0.475482 0.274520i
\(655\) 77.6846 77.6846i 0.118603 0.118603i
\(656\) −45.0333 168.067i −0.0686484 0.256199i
\(657\) −104.627 + 28.0347i −0.159250 + 0.0426708i
\(658\) −367.104 367.104i −0.557908 0.557908i
\(659\) −274.521 + 475.485i −0.416572 + 0.721524i −0.995592 0.0937891i \(-0.970102\pi\)
0.579020 + 0.815313i \(0.303435\pi\)
\(660\) 37.7654 21.8038i 0.0572203 0.0330361i
\(661\) 210.187 784.429i 0.317983 1.18673i −0.603196 0.797593i \(-0.706106\pi\)
0.921180 0.389137i \(-0.127227\pi\)
\(662\) 365.965i 0.552818i
\(663\) 0 0
\(664\) 351.349 0.529140
\(665\) −479.624 128.515i −0.721239 0.193255i
\(666\) 93.3731 + 161.727i 0.140200 + 0.242833i
\(667\) 10.8252 + 6.24991i 0.0162296 + 0.00937018i
\(668\) 82.9808 82.9808i 0.124223 0.124223i
\(669\) −68.2339 254.653i −0.101994 0.380647i
\(670\) 165.995 44.4782i 0.247754 0.0663854i
\(671\) 103.960 + 103.960i 0.154932 + 0.154932i
\(672\) −38.5359 + 66.7461i −0.0573451 + 0.0993246i
\(673\) −367.385 + 212.110i −0.545891 + 0.315170i −0.747463 0.664303i \(-0.768728\pi\)
0.201572 + 0.979474i \(0.435395\pi\)
\(674\) −34.7527 + 129.699i −0.0515618 + 0.192431i
\(675\) 493.634i 0.731310i
\(676\) 0 0
\(677\) 124.308 0.183616 0.0918078 0.995777i \(-0.470735\pi\)
0.0918078 + 0.995777i \(0.470735\pi\)
\(678\) 418.786 + 112.214i 0.617679 + 0.165507i
\(679\) −535.392 927.325i −0.788500 1.36572i
\(680\) −171.100 98.7846i −0.251618 0.145271i
\(681\) 263.706 263.706i 0.387233 0.387233i
\(682\) −62.0897 231.722i −0.0910405 0.339768i
\(683\) −42.0045 + 11.2551i −0.0614999 + 0.0164789i −0.289438 0.957197i \(-0.593468\pi\)
0.227938 + 0.973676i \(0.426802\pi\)
\(684\) −218.669 218.669i −0.319692 0.319692i
\(685\) 115.356 199.802i 0.168403 0.291682i
\(686\) −348.021 + 200.930i −0.507319 + 0.292901i
\(687\) 5.85452 21.8494i 0.00852186 0.0318040i
\(688\) 294.564i 0.428145i
\(689\) 0 0
\(690\) 105.215 0.152486
\(691\) −728.970 195.327i −1.05495 0.282673i −0.310654 0.950523i \(-0.600548\pi\)
−0.744295 + 0.667850i \(0.767215\pi\)
\(692\) 71.7602 + 124.292i 0.103700 + 0.179613i
\(693\) −210.058 121.277i −0.303114 0.175003i
\(694\) 104.460 104.460i 0.150519 0.150519i
\(695\) −12.1699 45.4186i −0.0175106 0.0653505i
\(696\) 3.37307 0.903811i 0.00484636 0.00129858i
\(697\) 877.125 + 877.125i 1.25843 + 1.25843i
\(698\) 57.1558 98.9967i 0.0818851 0.141829i
\(699\) −595.592 + 343.865i −0.852063 + 0.491939i
\(700\) 77.3641 288.727i 0.110520 0.412467i
\(701\) 847.213i 1.20858i 0.796766 + 0.604289i \(0.206543\pi\)
−0.796766 + 0.604289i \(0.793457\pi\)
\(702\) 0 0
\(703\) −567.161 −0.806773
\(704\) −39.7128 10.6410i −0.0564102 0.0151151i
\(705\) 99.0000 + 171.473i 0.140426 + 0.243224i
\(706\) 208.886 + 120.601i 0.295873 + 0.170822i
\(707\) 341.981 341.981i 0.483708 0.483708i
\(708\) 35.1962 + 131.354i 0.0497121 + 0.185528i
\(709\) −781.996 + 209.535i −1.10296 + 0.295536i −0.763968 0.645254i \(-0.776751\pi\)
−0.338988 + 0.940791i \(0.610085\pi\)
\(710\) 17.8423 + 17.8423i 0.0251300 + 0.0251300i
\(711\) −43.0615 + 74.5847i −0.0605647 + 0.104901i
\(712\) 132.473 76.4833i 0.186058 0.107420i
\(713\) 149.808 559.092i 0.210110 0.784140i
\(714\) 549.458i 0.769548i
\(715\) 0 0
\(716\) −321.349 −0.448811
\(717\) −470.102 125.963i −0.655651 0.175681i
\(718\) −102.058 176.769i −0.142142 0.246197i
\(719\) 685.421 + 395.728i 0.953298 + 0.550387i 0.894104 0.447860i \(-0.147814\pi\)
0.0591940 + 0.998246i \(0.481147\pi\)
\(720\) −41.5692 + 41.5692i −0.0577350 + 0.0577350i
\(721\) −47.4782 177.191i −0.0658505 0.245757i
\(722\) 414.061 110.947i 0.573492 0.153667i
\(723\) −400.662 400.662i −0.554166 0.554166i
\(724\) −143.072 + 247.808i −0.197613 + 0.342276i
\(725\) −11.7290 + 6.77172i −0.0161779 + 0.00934031i
\(726\) 59.9667 223.799i 0.0825987 0.308263i
\(727\) 1014.52i 1.39549i −0.716345 0.697746i \(-0.754186\pi\)
0.716345 0.697746i \(-0.245814\pi\)
\(728\) 0 0
\(729\) 351.000 0.481481
\(730\) −60.4064 16.1858i −0.0827485 0.0221724i
\(731\) 1050.00 + 1818.65i 1.43639 + 2.48789i
\(732\) 85.8231 + 49.5500i 0.117245 + 0.0676912i
\(733\) −769.697 + 769.697i −1.05006 + 1.05006i −0.0513857 + 0.998679i \(0.516364\pi\)
−0.998679 + 0.0513857i \(0.983636\pi\)
\(734\) 174.855 + 652.566i 0.238221 + 0.889054i
\(735\) −52.7654 + 14.1384i −0.0717896 + 0.0192360i
\(736\) −70.1436 70.1436i −0.0953038 0.0953038i
\(737\) −127.476 + 220.794i −0.172966 + 0.299585i
\(738\) 319.650 184.550i 0.433130 0.250068i
\(739\) −68.3686 + 255.155i −0.0925150 + 0.345271i −0.996631 0.0820164i \(-0.973864\pi\)
0.904116 + 0.427287i \(0.140531\pi\)
\(740\) 107.818i 0.145700i
\(741\) 0 0
\(742\) −891.118 −1.20097
\(743\) 755.161 + 202.345i 1.01637 + 0.272335i 0.728287 0.685272i \(-0.240317\pi\)
0.288080 + 0.957606i \(0.406983\pi\)
\(744\) −80.8513 140.038i −0.108671 0.188224i
\(745\) −79.1980 45.7250i −0.106306 0.0613759i
\(746\) 515.487 515.487i 0.691001 0.691001i
\(747\) 192.904 + 719.927i 0.258238 + 0.963757i
\(748\) 283.119 75.8616i 0.378502 0.101419i
\(749\) 443.484 + 443.484i 0.592101 + 0.592101i
\(750\) −132.000 + 228.631i −0.176000 + 0.304841i
\(751\) −640.663 + 369.887i −0.853080 + 0.492526i −0.861689 0.507437i \(-0.830593\pi\)
0.00860865 + 0.999963i \(0.497260\pi\)
\(752\) 48.3154 180.315i 0.0642491 0.239781i
\(753\) 268.535i 0.356620i
\(754\) 0 0
\(755\) −559.128 −0.740567
\(756\) −394.808 105.788i −0.522232 0.139932i
\(757\) −368.437 638.152i −0.486707 0.843001i 0.513176 0.858283i \(-0.328469\pi\)
−0.999883 + 0.0152821i \(0.995135\pi\)
\(758\) −335.242 193.552i −0.442271 0.255345i
\(759\) −110.375 + 110.375i −0.145422 + 0.145422i
\(760\) −46.2102 172.459i −0.0608029 0.226920i
\(761\) 1383.33 370.661i 1.81777 0.487071i 0.821264 0.570549i \(-0.193269\pi\)
0.996510 + 0.0834780i \(0.0266028\pi\)
\(762\) −295.301 295.301i −0.387534 0.387534i
\(763\) −576.548 + 998.611i −0.755633 + 1.30880i
\(764\) 494.338 285.406i 0.647040 0.373569i
\(765\) 108.473 404.827i 0.141795 0.529185i
\(766\) 661.468i 0.863535i
\(767\) 0 0
\(768\) −27.7128 −0.0360844
\(769\) 248.001 + 66.4517i 0.322498 + 0.0864132i 0.416436 0.909165i \(-0.363279\pi\)
−0.0939380 + 0.995578i \(0.529946\pi\)
\(770\) −70.0192 121.277i −0.0909341 0.157502i
\(771\) 453.817 + 262.012i 0.588609 + 0.339833i
\(772\) 125.191 125.191i 0.162165 0.162165i
\(773\) 120.863 + 451.066i 0.156355 + 0.583526i 0.998985 + 0.0450335i \(0.0143395\pi\)
−0.842630 + 0.538493i \(0.818994\pi\)
\(774\) 603.573 161.727i 0.779810 0.208949i
\(775\) 443.455 + 443.455i 0.572200 + 0.572200i
\(776\) 192.512 333.440i 0.248082 0.429690i
\(777\) −259.679 + 149.926i −0.334207 + 0.192954i
\(778\) −209.618 + 782.305i −0.269432 + 1.00553i
\(779\) 1120.98i 1.43900i
\(780\) 0 0
\(781\) −37.4346 −0.0479316
\(782\) 683.102 + 183.037i 0.873532 + 0.234062i
\(783\) 9.25971 + 16.0383i 0.0118259 + 0.0204831i
\(784\) 44.6025 + 25.7513i 0.0568910 + 0.0328460i
\(785\) 24.9948 24.9948i 0.0318406 0.0318406i
\(786\) 28.4346 + 106.119i 0.0361763 + 0.135012i
\(787\) −1148.83 + 307.828i −1.45976 + 0.391141i −0.899406 0.437113i \(-0.856001\pi\)
−0.560352 + 0.828255i \(0.689334\pi\)
\(788\) −530.960 530.960i −0.673807 0.673807i
\(789\) 43.8154 75.8904i 0.0555328 0.0961856i
\(790\) −43.0615 + 24.8616i −0.0545082 + 0.0314703i
\(791\) 360.354 1344.86i 0.455568 1.70020i
\(792\) 87.2154i 0.110120i
\(793\) 0 0
\(794\) −86.4833 −0.108921
\(795\) 328.277 + 87.9615i 0.412927 + 0.110643i
\(796\) −297.669 515.578i −0.373956 0.647711i
\(797\) 70.6886 + 40.8121i 0.0886934 + 0.0512071i 0.543691 0.839286i \(-0.317026\pi\)
−0.454997 + 0.890493i \(0.650360\pi\)
\(798\) 351.109 351.109i 0.439986 0.439986i
\(799\) 344.448 + 1285.50i 0.431099 + 1.60888i
\(800\) 103.818 27.8179i 0.129772 0.0347724i
\(801\) 229.450 + 229.450i 0.286454 + 0.286454i
\(802\) −381.983 + 661.613i −0.476288 + 0.824954i
\(803\) 80.3482 46.3890i 0.100060 0.0577697i
\(804\) −44.4782 + 165.995i −0.0553211 + 0.206461i
\(805\) 337.881i 0.419728i
\(806\) 0 0
\(807\) 74.2961 0.0920646
\(808\) 167.976 + 45.0089i 0.207891 + 0.0557041i
\(809\) −637.684 1104.50i −0.788238 1.36527i −0.927046 0.374949i \(-0.877660\pi\)
0.138808 0.990319i \(-0.455673\pi\)
\(810\) −27.0000 15.5885i −0.0333333 0.0192450i
\(811\) 553.018 553.018i 0.681896 0.681896i −0.278531 0.960427i \(-0.589847\pi\)
0.960427 + 0.278531i \(0.0898475\pi\)
\(812\) −2.90243 10.8320i −0.00357442 0.0133399i
\(813\) 828.984 222.126i 1.01966 0.273217i
\(814\) −113.105 113.105i −0.138950 0.138950i
\(815\) −30.3032 + 52.4866i −0.0371818 + 0.0644007i
\(816\) 171.100 98.7846i 0.209681 0.121060i
\(817\) −491.176 + 1833.09i −0.601195 + 2.24369i
\(818\) 29.3167i 0.0358395i
\(819\) 0 0
\(820\) 213.100 0.259878
\(821\) 1190.43 + 318.975i 1.44998 + 0.388520i 0.896016 0.444023i \(-0.146449\pi\)
0.553961 + 0.832543i \(0.313116\pi\)
\(822\) 115.356 + 199.802i 0.140335 + 0.243068i
\(823\) 557.525 + 321.887i 0.677430 + 0.391114i 0.798886 0.601482i \(-0.205423\pi\)
−0.121456 + 0.992597i \(0.538756\pi\)
\(824\) 46.6410 46.6410i 0.0566032 0.0566032i
\(825\) −43.7731 163.363i −0.0530583 0.198016i
\(826\) 421.820 113.026i 0.510678 0.136836i
\(827\) 349.617 + 349.617i 0.422753 + 0.422753i 0.886150 0.463398i \(-0.153370\pi\)
−0.463398 + 0.886150i \(0.653370\pi\)
\(828\) 105.215 182.238i 0.127072 0.220095i
\(829\) −385.172 + 222.379i −0.464622 + 0.268250i −0.713986 0.700160i \(-0.753112\pi\)
0.249364 + 0.968410i \(0.419779\pi\)
\(830\) −111.373 + 415.650i −0.134184 + 0.500783i
\(831\) 368.454i 0.443386i
\(832\) 0 0
\(833\) −367.170 −0.440781
\(834\) 45.4186 + 12.1699i 0.0544587 + 0.0145922i
\(835\) 71.8634 + 124.471i 0.0860640 + 0.149067i
\(836\) 229.392 + 132.440i 0.274393 + 0.158421i
\(837\) 606.384 606.384i 0.724474 0.724474i
\(838\) 127.083 + 474.279i 0.151650 + 0.565965i
\(839\) 341.076 91.3911i 0.406527 0.108929i −0.0497600 0.998761i \(-0.515846\pi\)
0.456287 + 0.889833i \(0.349179\pi\)
\(840\) −66.7461 66.7461i −0.0794597 0.0794597i
\(841\) 420.246 727.887i 0.499698 0.865502i
\(842\) −496.328 + 286.555i −0.589463 + 0.340327i
\(843\) 17.2595 64.4134i 0.0204739 0.0764098i
\(844\) 109.013i 0.129162i
\(845\) 0 0
\(846\) 396.000 0.468085
\(847\) −718.690 192.572i −0.848513 0.227358i
\(848\) −160.210 277.492i −0.188927 0.327231i
\(849\) 219.150 + 126.526i 0.258127 + 0.149030i
\(850\) −541.817 + 541.817i −0.637431 + 0.637431i
\(851\) −99.8872 372.784i −0.117376 0.438054i
\(852\) −24.3731 + 6.53074i −0.0286069 + 0.00766519i
\(853\) 260.191 + 260.191i 0.305030 + 0.305030i 0.842978 0.537948i \(-0.180800\pi\)
−0.537948 + 0.842978i \(0.680800\pi\)
\(854\) 159.121 275.606i 0.186324 0.322723i
\(855\) 328.004 189.373i 0.383630 0.221489i
\(856\) −58.3679 + 217.832i −0.0681868 + 0.254477i
\(857\) 1647.00i 1.92182i −0.276856 0.960912i \(-0.589292\pi\)
0.276856 0.960912i \(-0.410708\pi\)
\(858\) 0 0
\(859\) 63.1487 0.0735143 0.0367571 0.999324i \(-0.488297\pi\)
0.0367571 + 0.999324i \(0.488297\pi\)
\(860\) 348.473 + 93.3731i 0.405201 + 0.108573i
\(861\) 296.325 + 513.250i 0.344164 + 0.596109i
\(862\) −375.536 216.816i −0.435657 0.251527i
\(863\) −970.965 + 970.965i −1.12510 + 1.12510i −0.134143 + 0.990962i \(0.542828\pi\)
−0.990962 + 0.134143i \(0.957172\pi\)
\(864\) −38.0385 141.962i −0.0440260 0.164307i
\(865\) −169.786 + 45.4942i −0.196285 + 0.0525944i
\(866\) −84.6115 84.6115i −0.0977038 0.0977038i
\(867\) −453.970 + 786.300i −0.523611 + 0.906920i
\(868\) −449.709 + 259.640i −0.518098 + 0.299124i
\(869\) 19.0924 71.2539i 0.0219706 0.0819952i
\(870\) 4.27688i 0.00491595i
\(871\) 0 0
\(872\) −414.620 −0.475482
\(873\) 788.927 + 211.392i 0.903696 + 0.242145i
\(874\) 319.547 + 553.471i 0.365614 + 0.633262i
\(875\) 734.207 + 423.895i 0.839094 + 0.484451i
\(876\) 44.2205 44.2205i 0.0504801 0.0504801i
\(877\) −297.024 1108.51i −0.338682 1.26398i −0.899822 0.436258i \(-0.856304\pi\)
0.561140 0.827721i \(-0.310363\pi\)
\(878\) −599.069 + 160.520i −0.682310 + 0.182825i
\(879\) 119.821 + 119.821i 0.136315 + 0.136315i
\(880\) 25.1769 43.6077i 0.0286101 0.0495542i
\(881\) 68.2039 39.3775i 0.0774164 0.0446964i −0.460792 0.887508i \(-0.652435\pi\)
0.538209 + 0.842812i \(0.319101\pi\)
\(882\) −28.2769 + 105.531i −0.0320600 + 0.119649i
\(883\) 196.777i 0.222851i 0.993773 + 0.111425i \(0.0355416\pi\)
−0.993773 + 0.111425i \(0.964458\pi\)
\(884\) 0 0
\(885\) −166.550 −0.188192
\(886\) 442.368 + 118.532i 0.499287 + 0.133783i
\(887\) 182.971 + 316.915i 0.206281 + 0.357289i 0.950540 0.310602i \(-0.100531\pi\)
−0.744259 + 0.667891i \(0.767197\pi\)
\(888\) −93.3731 53.9090i −0.105150 0.0607083i
\(889\) −948.308 + 948.308i −1.06671 + 1.06671i
\(890\) 48.4885 + 180.962i 0.0544815 + 0.203328i
\(891\) 44.6769 11.9711i 0.0501424 0.0134356i
\(892\) −215.258 215.258i −0.241320 0.241320i
\(893\) −601.340 + 1041.55i −0.673393 + 1.16635i
\(894\) 79.1980 45.7250i 0.0885884 0.0511465i
\(895\) 101.863 380.160i 0.113814 0.424759i
\(896\) 88.9948i 0.0993246i
\(897\) 0 0
\(898\) −500.032 −0.556828
\(899\) 22.7264 + 6.08952i 0.0252796 + 0.00677366i
\(900\) 114.000 + 197.454i 0.126667 + 0.219393i
\(901\) 1978.29 + 1142.17i 2.19566 + 1.26766i
\(902\) −223.550 + 223.550i −0.247838 + 0.247838i
\(903\) 259.679 + 969.134i 0.287573 + 1.07324i
\(904\) 483.573 129.573i 0.534926 0.143333i
\(905\) −247.808 247.808i −0.273821 0.273821i
\(906\) 279.564 484.219i 0.308570 0.534458i
\(907\) −1422.08 + 821.038i −1.56789 + 0.905224i −0.571480 + 0.820616i \(0.693630\pi\)
−0.996414 + 0.0846081i \(0.973036\pi\)
\(908\) 111.455 415.956i 0.122748 0.458102i
\(909\) 368.900i 0.405831i
\(910\) 0 0
\(911\) 1061.82 1.16555 0.582776 0.812633i \(-0.301966\pi\)
0.582776 + 0.812633i \(0.301966\pi\)
\(912\) 172.459 + 46.2102i 0.189100 + 0.0506691i
\(913\) −319.198 552.867i −0.349615 0.605550i
\(914\) −325.926 188.174i −0.356593 0.205879i
\(915\) −85.8231 + 85.8231i −0.0937957 + 0.0937957i
\(916\) −6.76022 25.2295i −0.00738015 0.0275431i
\(917\) 340.783 91.3126i 0.371628 0.0995775i
\(918\) 740.885 + 740.885i 0.807064 + 0.807064i
\(919\) −222.386 + 385.185i −0.241987 + 0.419135i −0.961280 0.275572i \(-0.911133\pi\)
0.719293 + 0.694707i \(0.244466\pi\)
\(920\) 105.215 60.7461i 0.114365 0.0660284i
\(921\) −1.66214 + 6.20319i −0.00180471 + 0.00673528i
\(922\) 213.058i 0.231082i
\(923\) 0 0
\(924\) 140.038 0.151557
\(925\) 403.908 + 108.227i 0.436658 + 0.117002i
\(926\) 48.4115 + 83.8513i 0.0522803 + 0.0905521i
\(927\) 121.177 + 69.9615i 0.130719 + 0.0754709i
\(928\) 2.85125 2.85125i 0.00307247 0.00307247i
\(929\) −277.176 1034.43i −0.298359 1.11349i −0.938513 0.345245i \(-0.887796\pi\)
0.640153 0.768247i \(-0.278871\pi\)
\(930\) 191.296 51.2576i 0.205695 0.0551157i
\(931\) −234.626 234.626i −0.252015 0.252015i
\(932\) −397.061 + 687.731i −0.426032 + 0.737908i
\(933\) 579.058 334.319i 0.620641 0.358327i
\(934\) −50.7911 + 189.555i −0.0543802 + 0.202950i
\(935\) 358.981i 0.383937i
\(936\) 0 0
\(937\) 1502.97 1.60403 0.802013 0.597307i \(-0.203763\pi\)
0.802013 + 0.597307i \(0.203763\pi\)
\(938\) 533.063 + 142.834i 0.568298 + 0.152275i
\(939\) −30.4308 52.7077i −0.0324076 0.0561317i
\(940\) 198.000 + 114.315i 0.210638 + 0.121612i
\(941\) −414.136 + 414.136i −0.440102 + 0.440102i −0.892046 0.451944i \(-0.850731\pi\)
0.451944 + 0.892046i \(0.350731\pi\)
\(942\) 9.14875 + 34.1436i 0.00971205 + 0.0362459i
\(943\) −736.800 + 197.425i −0.781336 + 0.209358i
\(944\) 111.033 + 111.033i 0.117620 + 0.117620i
\(945\) 250.298 433.529i 0.264866 0.458761i
\(946\) −463.513 + 267.610i −0.489972 + 0.282885i
\(947\) −423.526 + 1580.62i −0.447229 + 1.66908i 0.262753 + 0.964863i \(0.415370\pi\)
−0.709982 + 0.704220i \(0.751297\pi\)
\(948\) 49.7231i 0.0524506i
\(949\) 0 0
\(950\) −692.452 −0.728897
\(951\) 29.6481 + 7.94417i 0.0311757 + 0.00835349i
\(952\) −317.229 549.458i −0.333224 0.577161i
\(953\) −374.404 216.162i −0.392869 0.226823i 0.290534 0.956865i \(-0.406167\pi\)
−0.683402 + 0.730042i \(0.739500\pi\)
\(954\) 480.631 480.631i 0.503806 0.503806i
\(955\) 180.940 + 675.279i 0.189466 + 0.707098i
\(956\) −542.827 + 145.450i −0.567811 + 0.152144i
\(957\) −4.48661 4.48661i −0.00468820 0.00468820i
\(958\) 162.485 281.433i 0.169609 0.293771i
\(959\) 641.629 370.445i 0.669060 0.386282i
\(960\) 8.78461 32.7846i 0.00915064 0.0341506i
\(961\) 128.487i 0.133702i
\(962\) 0 0
\(963\) −478.392 −0.496773
\(964\) −631.985 169.340i −0.655586 0.175664i
\(965\) 108.419 + 187.786i 0.112351 + 0.194597i
\(966\) 292.613 + 168.940i 0.302912 + 0.174887i
\(967\) −239.455 + 239.455i −0.247627 + 0.247627i −0.819996 0.572369i \(-0.806024\pi\)
0.572369 + 0.819996i \(0.306024\pi\)
\(968\) −69.2436 258.420i −0.0715326 0.266963i
\(969\) −1229.49 + 329.440i −1.26882 + 0.339980i
\(970\) 333.440 + 333.440i 0.343752 + 0.343752i
\(971\) 93.4864 161.923i 0.0962785 0.166759i −0.813863 0.581057i \(-0.802639\pi\)
0.910141 + 0.414298i \(0.135973\pi\)
\(972\) 432.000 249.415i 0.444444 0.256600i
\(973\) 39.0814 145.854i 0.0401659 0.149901i
\(974\) 689.686i 0.708096i
\(975\) 0 0
\(976\) 114.431 0.117245
\(977\) 343.667 + 92.0852i 0.351757 + 0.0942530i 0.430371 0.902652i \(-0.358383\pi\)
−0.0786139 + 0.996905i \(0.525049\pi\)
\(978\) −30.3032 52.4866i −0.0309848 0.0536673i
\(979\) −240.702 138.969i −0.245865 0.141950i
\(980\) −44.6025 + 44.6025i −0.0455128 + 0.0455128i
\(981\) −227.642 849.573i −0.232051 0.866028i
\(982\) −714.785 + 191.526i −0.727887 + 0.195037i
\(983\) −671.365 671.365i −0.682976 0.682976i 0.277694 0.960670i \(-0.410430\pi\)
−0.960670 + 0.277694i \(0.910430\pi\)
\(984\) −106.550 + 184.550i −0.108283 + 0.187551i
\(985\) 796.440 459.825i 0.808569 0.466827i
\(986\) −7.44021 + 27.7673i −0.00754586 + 0.0281615i
\(987\) 635.842i 0.644217i
\(988\) 0 0
\(989\) −1291.36 −1.30572
\(990\) 103.177 + 27.6462i 0.104219 + 0.0279254i
\(991\) 107.875 + 186.845i 0.108855 + 0.188542i 0.915307 0.402758i \(-0.131948\pi\)
−0.806452 + 0.591300i \(0.798615\pi\)
\(992\) −161.703 93.3590i −0.163007 0.0941119i
\(993\) 316.935 316.935i 0.319169 0.319169i
\(994\) 20.9723 + 78.2698i 0.0210989 + 0.0787423i
\(995\) 704.293 188.715i 0.707832 0.189663i
\(996\) −304.277 304.277i −0.305499 0.305499i
\(997\) 862.781 1494.38i 0.865377 1.49888i −0.00129579 0.999999i \(-0.500412\pi\)
0.866673 0.498877i \(-0.166254\pi\)
\(998\) 187.774 108.412i 0.188151 0.108629i
\(999\) 147.990 552.308i 0.148139 0.552860i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.f.c.249.1 4
13.2 odd 12 338.3.d.d.99.1 4
13.3 even 3 338.3.d.e.239.1 4
13.4 even 6 26.3.f.a.19.1 yes 4
13.5 odd 4 26.3.f.a.11.1 4
13.6 odd 12 338.3.f.f.319.1 4
13.7 odd 12 inner 338.3.f.c.319.1 4
13.8 odd 4 338.3.f.d.89.1 4
13.9 even 3 338.3.f.d.19.1 4
13.10 even 6 338.3.d.d.239.1 4
13.11 odd 12 338.3.d.e.99.1 4
13.12 even 2 338.3.f.f.249.1 4
39.5 even 4 234.3.bb.b.37.1 4
39.17 odd 6 234.3.bb.b.19.1 4
52.31 even 4 208.3.bd.c.193.1 4
52.43 odd 6 208.3.bd.c.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.a.11.1 4 13.5 odd 4
26.3.f.a.19.1 yes 4 13.4 even 6
208.3.bd.c.97.1 4 52.43 odd 6
208.3.bd.c.193.1 4 52.31 even 4
234.3.bb.b.19.1 4 39.17 odd 6
234.3.bb.b.37.1 4 39.5 even 4
338.3.d.d.99.1 4 13.2 odd 12
338.3.d.d.239.1 4 13.10 even 6
338.3.d.e.99.1 4 13.11 odd 12
338.3.d.e.239.1 4 13.3 even 3
338.3.f.c.249.1 4 1.1 even 1 trivial
338.3.f.c.319.1 4 13.7 odd 12 inner
338.3.f.d.19.1 4 13.9 even 3
338.3.f.d.89.1 4 13.8 odd 4
338.3.f.f.249.1 4 13.12 even 2
338.3.f.f.319.1 4 13.6 odd 12