Properties

Label 338.3.f.c
Level $338$
Weight $3$
Character orbit 338.f
Analytic conductor $9.210$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - \zeta_{12}^{2} - \zeta_{12}) q^{2} + (\zeta_{12}^{3} + \zeta_{12}) q^{3} + 2 \zeta_{12} q^{4} + (\zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 1) q^{5} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots - 1) q^{6}+ \cdots + (30 \zeta_{12}^{3} - 6 \zeta_{12}^{2} + \cdots + 30) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{6} - 20 q^{7} - 8 q^{8} + 12 q^{9} + 12 q^{10} + 12 q^{11} - 4 q^{14} - 6 q^{15} + 8 q^{16} - 78 q^{17} - 24 q^{18} - 44 q^{19} - 12 q^{20} - 42 q^{21} + 18 q^{22} - 12 q^{23} + 12 q^{24}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
0.366025 + 1.36603i −0.866025 + 1.50000i −1.73205 + 1.00000i 1.73205 1.73205i −2.36603 0.633975i −2.40192 + 8.96410i −2.00000 2.00000i 3.00000 + 5.19615i 3.00000 + 1.73205i
89.1 0.366025 1.36603i −0.866025 1.50000i −1.73205 1.00000i 1.73205 + 1.73205i −2.36603 + 0.633975i −2.40192 8.96410i −2.00000 + 2.00000i 3.00000 5.19615i 3.00000 1.73205i
249.1 −1.36603 0.366025i 0.866025 + 1.50000i 1.73205 + 1.00000i −1.73205 + 1.73205i −0.633975 2.36603i −7.59808 + 2.03590i −2.00000 2.00000i 3.00000 5.19615i 3.00000 1.73205i
319.1 −1.36603 + 0.366025i 0.866025 1.50000i 1.73205 1.00000i −1.73205 1.73205i −0.633975 + 2.36603i −7.59808 2.03590i −2.00000 + 2.00000i 3.00000 + 5.19615i 3.00000 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.f odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.3.f.c 4
13.b even 2 1 338.3.f.f 4
13.c even 3 1 338.3.d.e 4
13.c even 3 1 338.3.f.d 4
13.d odd 4 1 26.3.f.a 4
13.d odd 4 1 338.3.f.d 4
13.e even 6 1 26.3.f.a 4
13.e even 6 1 338.3.d.d 4
13.f odd 12 1 338.3.d.d 4
13.f odd 12 1 338.3.d.e 4
13.f odd 12 1 inner 338.3.f.c 4
13.f odd 12 1 338.3.f.f 4
39.f even 4 1 234.3.bb.b 4
39.h odd 6 1 234.3.bb.b 4
52.f even 4 1 208.3.bd.c 4
52.i odd 6 1 208.3.bd.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.3.f.a 4 13.d odd 4 1
26.3.f.a 4 13.e even 6 1
208.3.bd.c 4 52.f even 4 1
208.3.bd.c 4 52.i odd 6 1
234.3.bb.b 4 39.f even 4 1
234.3.bb.b 4 39.h odd 6 1
338.3.d.d 4 13.e even 6 1
338.3.d.d 4 13.f odd 12 1
338.3.d.e 4 13.c even 3 1
338.3.d.e 4 13.f odd 12 1
338.3.f.c 4 1.a even 1 1 trivial
338.3.f.c 4 13.f odd 12 1 inner
338.3.f.d 4 13.c even 3 1
338.3.f.d 4 13.d odd 4 1
338.3.f.f 4 13.b even 2 1
338.3.f.f 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(338, [\chi])\):

\( T_{3}^{4} + 3T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{4} + 36 \) Copy content Toggle raw display
\( T_{7}^{4} + 20T_{7}^{3} + 221T_{7}^{2} + 1606T_{7} + 5329 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{4} + 36 \) Copy content Toggle raw display
$7$ \( T^{4} + 20 T^{3} + \cdots + 5329 \) Copy content Toggle raw display
$11$ \( T^{4} - 12 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 78 T^{3} + \cdots + 221841 \) Copy content Toggle raw display
$19$ \( T^{4} + 44 T^{3} + \cdots + 167281 \) Copy content Toggle raw display
$23$ \( T^{4} + 12 T^{3} + \cdots + 184041 \) Copy content Toggle raw display
$29$ \( T^{4} + 54 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$31$ \( T^{4} - 128 T^{3} + \cdots + 3602404 \) Copy content Toggle raw display
$37$ \( T^{4} - 2 T^{3} + \cdots + 11449 \) Copy content Toggle raw display
$41$ \( T^{4} + 78 T^{3} + \cdots + 257049 \) Copy content Toggle raw display
$43$ \( T^{4} + 120 T^{3} + \cdots + 103041 \) Copy content Toggle raw display
$47$ \( (T^{2} + 66 T + 2178)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 84 T + 312)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 72 T^{3} + \cdots + 84681 \) Copy content Toggle raw display
$61$ \( T^{4} - 78 T^{3} + \cdots + 1996569 \) Copy content Toggle raw display
$67$ \( T^{4} - 112 T^{3} + \cdots + 2399401 \) Copy content Toggle raw display
$71$ \( T^{4} - 108 T^{3} + \cdots + 154449 \) Copy content Toggle raw display
$73$ \( T^{4} - 136 T^{3} + \cdots + 4251844 \) Copy content Toggle raw display
$79$ \( (T^{2} - 96 T - 1584)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 192 T^{3} + \cdots + 2056356 \) Copy content Toggle raw display
$89$ \( T^{4} - 138 T^{3} + \cdots + 21594609 \) Copy content Toggle raw display
$97$ \( T^{4} - 134 T^{3} + \cdots + 20043529 \) Copy content Toggle raw display
show more
show less