Properties

Label 338.3.d.g.239.2
Level $338$
Weight $3$
Character 338.239
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.2
Root \(-4.71318 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.3.d.g.99.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -3.84716 q^{3} -2.00000i q^{4} +(3.77418 - 3.77418i) q^{5} +(-3.84716 + 3.84716i) q^{6} +(7.25532 + 7.25532i) q^{7} +(-2.00000 - 2.00000i) q^{8} +5.80063 q^{9} -7.54837i q^{10} +(7.40816 + 7.40816i) q^{11} +7.69432i q^{12} +14.5106 q^{14} +(-14.5199 + 14.5199i) q^{15} -4.00000 q^{16} -4.88811i q^{17} +(5.80063 - 5.80063i) q^{18} +(18.6785 - 18.6785i) q^{19} +(-7.54837 - 7.54837i) q^{20} +(-27.9124 - 27.9124i) q^{21} +14.8163 q^{22} -19.9590i q^{23} +(7.69432 + 7.69432i) q^{24} -3.48892i q^{25} +12.3085 q^{27} +(14.5106 - 14.5106i) q^{28} +14.3044 q^{29} +29.0398i q^{30} +(19.0056 - 19.0056i) q^{31} +(-4.00000 + 4.00000i) q^{32} +(-28.5004 - 28.5004i) q^{33} +(-4.88811 - 4.88811i) q^{34} +54.7658 q^{35} -11.6013i q^{36} +(-42.9072 - 42.9072i) q^{37} -37.3569i q^{38} -15.0967 q^{40} +(3.54099 - 3.54099i) q^{41} -55.8247 q^{42} +11.9728i q^{43} +(14.8163 - 14.8163i) q^{44} +(21.8926 - 21.8926i) q^{45} +(-19.9590 - 19.9590i) q^{46} +(-7.59168 - 7.59168i) q^{47} +15.3886 q^{48} +56.2792i q^{49} +(-3.48892 - 3.48892i) q^{50} +18.8053i q^{51} +77.0450 q^{53} +(12.3085 - 12.3085i) q^{54} +55.9195 q^{55} -29.0213i q^{56} +(-71.8590 + 71.8590i) q^{57} +(14.3044 - 14.3044i) q^{58} +(44.4819 + 44.4819i) q^{59} +(29.0398 + 29.0398i) q^{60} -56.2764 q^{61} -38.0112i q^{62} +(42.0854 + 42.0854i) q^{63} +8.00000i q^{64} -57.0007 q^{66} +(-4.32207 + 4.32207i) q^{67} -9.77622 q^{68} +76.7856i q^{69} +(54.7658 - 54.7658i) q^{70} +(-40.4291 + 40.4291i) q^{71} +(-11.6013 - 11.6013i) q^{72} +(12.7990 + 12.7990i) q^{73} -85.8143 q^{74} +13.4224i q^{75} +(-37.3569 - 37.3569i) q^{76} +107.497i q^{77} +7.98532 q^{79} +(-15.0967 + 15.0967i) q^{80} -99.5584 q^{81} -7.08199i q^{82} +(-35.8343 + 35.8343i) q^{83} +(-55.8247 + 55.8247i) q^{84} +(-18.4486 - 18.4486i) q^{85} +(11.9728 + 11.9728i) q^{86} -55.0312 q^{87} -29.6326i q^{88} +(57.2867 + 57.2867i) q^{89} -43.7853i q^{90} -39.9181 q^{92} +(-73.1175 + 73.1175i) q^{93} -15.1834 q^{94} -140.992i q^{95} +(15.3886 - 15.3886i) q^{96} +(-38.7928 + 38.7928i) q^{97} +(56.2792 + 56.2792i) q^{98} +(42.9720 + 42.9720i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 6 q^{5} + 10 q^{7} - 16 q^{8} + 84 q^{9} + 42 q^{11} + 20 q^{14} + 60 q^{15} - 32 q^{16} + 84 q^{18} + 22 q^{19} - 12 q^{20} - 102 q^{21} + 84 q^{22} + 72 q^{27} + 20 q^{28} + 12 q^{29}+ \cdots + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) −3.84716 −1.28239 −0.641193 0.767380i \(-0.721560\pi\)
−0.641193 + 0.767380i \(0.721560\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 3.77418 3.77418i 0.754837 0.754837i −0.220541 0.975378i \(-0.570782\pi\)
0.975378 + 0.220541i \(0.0707823\pi\)
\(6\) −3.84716 + 3.84716i −0.641193 + 0.641193i
\(7\) 7.25532 + 7.25532i 1.03647 + 1.03647i 0.999309 + 0.0371646i \(0.0118326\pi\)
0.0371646 + 0.999309i \(0.488167\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 5.80063 0.644514
\(10\) 7.54837i 0.754837i
\(11\) 7.40816 + 7.40816i 0.673469 + 0.673469i 0.958514 0.285045i \(-0.0920086\pi\)
−0.285045 + 0.958514i \(0.592009\pi\)
\(12\) 7.69432i 0.641193i
\(13\) 0 0
\(14\) 14.5106 1.03647
\(15\) −14.5199 + 14.5199i −0.967992 + 0.967992i
\(16\) −4.00000 −0.250000
\(17\) 4.88811i 0.287536i −0.989611 0.143768i \(-0.954078\pi\)
0.989611 0.143768i \(-0.0459219\pi\)
\(18\) 5.80063 5.80063i 0.322257 0.322257i
\(19\) 18.6785 18.6785i 0.983077 0.983077i −0.0167821 0.999859i \(-0.505342\pi\)
0.999859 + 0.0167821i \(0.00534217\pi\)
\(20\) −7.54837 7.54837i −0.377418 0.377418i
\(21\) −27.9124 27.9124i −1.32916 1.32916i
\(22\) 14.8163 0.673469
\(23\) 19.9590i 0.867785i −0.900965 0.433892i \(-0.857140\pi\)
0.900965 0.433892i \(-0.142860\pi\)
\(24\) 7.69432 + 7.69432i 0.320597 + 0.320597i
\(25\) 3.48892i 0.139557i
\(26\) 0 0
\(27\) 12.3085 0.455870
\(28\) 14.5106 14.5106i 0.518237 0.518237i
\(29\) 14.3044 0.493254 0.246627 0.969110i \(-0.420678\pi\)
0.246627 + 0.969110i \(0.420678\pi\)
\(30\) 29.0398i 0.967992i
\(31\) 19.0056 19.0056i 0.613083 0.613083i −0.330665 0.943748i \(-0.607273\pi\)
0.943748 + 0.330665i \(0.107273\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) −28.5004 28.5004i −0.863647 0.863647i
\(34\) −4.88811 4.88811i −0.143768 0.143768i
\(35\) 54.7658 1.56474
\(36\) 11.6013i 0.322257i
\(37\) −42.9072 42.9072i −1.15965 1.15965i −0.984550 0.175103i \(-0.943974\pi\)
−0.175103 0.984550i \(-0.556026\pi\)
\(38\) 37.3569i 0.983077i
\(39\) 0 0
\(40\) −15.0967 −0.377418
\(41\) 3.54099 3.54099i 0.0863657 0.0863657i −0.662604 0.748970i \(-0.730549\pi\)
0.748970 + 0.662604i \(0.230549\pi\)
\(42\) −55.8247 −1.32916
\(43\) 11.9728i 0.278438i 0.990262 + 0.139219i \(0.0444592\pi\)
−0.990262 + 0.139219i \(0.955541\pi\)
\(44\) 14.8163 14.8163i 0.336734 0.336734i
\(45\) 21.8926 21.8926i 0.486503 0.486503i
\(46\) −19.9590 19.9590i −0.433892 0.433892i
\(47\) −7.59168 7.59168i −0.161525 0.161525i 0.621717 0.783242i \(-0.286435\pi\)
−0.783242 + 0.621717i \(0.786435\pi\)
\(48\) 15.3886 0.320597
\(49\) 56.2792i 1.14856i
\(50\) −3.48892 3.48892i −0.0697783 0.0697783i
\(51\) 18.8053i 0.368732i
\(52\) 0 0
\(53\) 77.0450 1.45368 0.726840 0.686807i \(-0.240988\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(54\) 12.3085 12.3085i 0.227935 0.227935i
\(55\) 55.9195 1.01672
\(56\) 29.0213i 0.518237i
\(57\) −71.8590 + 71.8590i −1.26068 + 1.26068i
\(58\) 14.3044 14.3044i 0.246627 0.246627i
\(59\) 44.4819 + 44.4819i 0.753930 + 0.753930i 0.975210 0.221280i \(-0.0710236\pi\)
−0.221280 + 0.975210i \(0.571024\pi\)
\(60\) 29.0398 + 29.0398i 0.483996 + 0.483996i
\(61\) −56.2764 −0.922564 −0.461282 0.887254i \(-0.652610\pi\)
−0.461282 + 0.887254i \(0.652610\pi\)
\(62\) 38.0112i 0.613083i
\(63\) 42.0854 + 42.0854i 0.668022 + 0.668022i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −57.0007 −0.863647
\(67\) −4.32207 + 4.32207i −0.0645085 + 0.0645085i −0.738625 0.674117i \(-0.764525\pi\)
0.674117 + 0.738625i \(0.264525\pi\)
\(68\) −9.77622 −0.143768
\(69\) 76.7856i 1.11283i
\(70\) 54.7658 54.7658i 0.782368 0.782368i
\(71\) −40.4291 + 40.4291i −0.569424 + 0.569424i −0.931967 0.362543i \(-0.881909\pi\)
0.362543 + 0.931967i \(0.381909\pi\)
\(72\) −11.6013 11.6013i −0.161129 0.161129i
\(73\) 12.7990 + 12.7990i 0.175329 + 0.175329i 0.789316 0.613987i \(-0.210435\pi\)
−0.613987 + 0.789316i \(0.710435\pi\)
\(74\) −85.8143 −1.15965
\(75\) 13.4224i 0.178966i
\(76\) −37.3569 37.3569i −0.491539 0.491539i
\(77\) 107.497i 1.39607i
\(78\) 0 0
\(79\) 7.98532 0.101080 0.0505400 0.998722i \(-0.483906\pi\)
0.0505400 + 0.998722i \(0.483906\pi\)
\(80\) −15.0967 + 15.0967i −0.188709 + 0.188709i
\(81\) −99.5584 −1.22912
\(82\) 7.08199i 0.0863657i
\(83\) −35.8343 + 35.8343i −0.431738 + 0.431738i −0.889219 0.457481i \(-0.848752\pi\)
0.457481 + 0.889219i \(0.348752\pi\)
\(84\) −55.8247 + 55.8247i −0.664580 + 0.664580i
\(85\) −18.4486 18.4486i −0.217043 0.217043i
\(86\) 11.9728 + 11.9728i 0.139219 + 0.139219i
\(87\) −55.0312 −0.632542
\(88\) 29.6326i 0.336734i
\(89\) 57.2867 + 57.2867i 0.643671 + 0.643671i 0.951456 0.307785i \(-0.0995877\pi\)
−0.307785 + 0.951456i \(0.599588\pi\)
\(90\) 43.7853i 0.486503i
\(91\) 0 0
\(92\) −39.9181 −0.433892
\(93\) −73.1175 + 73.1175i −0.786209 + 0.786209i
\(94\) −15.1834 −0.161525
\(95\) 140.992i 1.48413i
\(96\) 15.3886 15.3886i 0.160298 0.160298i
\(97\) −38.7928 + 38.7928i −0.399926 + 0.399926i −0.878207 0.478281i \(-0.841260\pi\)
0.478281 + 0.878207i \(0.341260\pi\)
\(98\) 56.2792 + 56.2792i 0.574278 + 0.574278i
\(99\) 42.9720 + 42.9720i 0.434060 + 0.434060i
\(100\) −6.97783 −0.0697783
\(101\) 14.0635i 0.139242i 0.997573 + 0.0696212i \(0.0221791\pi\)
−0.997573 + 0.0696212i \(0.977821\pi\)
\(102\) 18.8053 + 18.8053i 0.184366 + 0.184366i
\(103\) 80.8399i 0.784853i −0.919783 0.392426i \(-0.871636\pi\)
0.919783 0.392426i \(-0.128364\pi\)
\(104\) 0 0
\(105\) −210.693 −2.00660
\(106\) 77.0450 77.0450i 0.726840 0.726840i
\(107\) 162.705 1.52061 0.760304 0.649568i \(-0.225050\pi\)
0.760304 + 0.649568i \(0.225050\pi\)
\(108\) 24.6170i 0.227935i
\(109\) −62.6738 + 62.6738i −0.574989 + 0.574989i −0.933518 0.358530i \(-0.883278\pi\)
0.358530 + 0.933518i \(0.383278\pi\)
\(110\) 55.9195 55.9195i 0.508359 0.508359i
\(111\) 165.071 + 165.071i 1.48712 + 1.48712i
\(112\) −29.0213 29.0213i −0.259118 0.259118i
\(113\) −69.8809 −0.618415 −0.309208 0.950995i \(-0.600064\pi\)
−0.309208 + 0.950995i \(0.600064\pi\)
\(114\) 143.718i 1.26068i
\(115\) −75.3291 75.3291i −0.655036 0.655036i
\(116\) 28.6087i 0.246627i
\(117\) 0 0
\(118\) 88.9637 0.753930
\(119\) 35.4648 35.4648i 0.298024 0.298024i
\(120\) 58.0795 0.483996
\(121\) 11.2384i 0.0928793i
\(122\) −56.2764 + 56.2764i −0.461282 + 0.461282i
\(123\) −13.6228 + 13.6228i −0.110754 + 0.110754i
\(124\) −38.0112 38.0112i −0.306542 0.306542i
\(125\) 81.1868 + 81.1868i 0.649494 + 0.649494i
\(126\) 84.1708 0.668022
\(127\) 82.7908i 0.651896i 0.945388 + 0.325948i \(0.105683\pi\)
−0.945388 + 0.325948i \(0.894317\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 46.0614i 0.357065i
\(130\) 0 0
\(131\) 47.8506 0.365272 0.182636 0.983181i \(-0.441537\pi\)
0.182636 + 0.983181i \(0.441537\pi\)
\(132\) −57.0007 + 57.0007i −0.431824 + 0.431824i
\(133\) 271.036 2.03787
\(134\) 8.64414i 0.0645085i
\(135\) 46.4545 46.4545i 0.344107 0.344107i
\(136\) −9.77622 + 9.77622i −0.0718840 + 0.0718840i
\(137\) −136.082 136.082i −0.993298 0.993298i 0.00667939 0.999978i \(-0.497874\pi\)
−0.999978 + 0.00667939i \(0.997874\pi\)
\(138\) 76.7856 + 76.7856i 0.556417 + 0.556417i
\(139\) 193.093 1.38916 0.694578 0.719417i \(-0.255591\pi\)
0.694578 + 0.719417i \(0.255591\pi\)
\(140\) 109.532i 0.782368i
\(141\) 29.2064 + 29.2064i 0.207137 + 0.207137i
\(142\) 80.8582i 0.569424i
\(143\) 0 0
\(144\) −23.2025 −0.161129
\(145\) 53.9873 53.9873i 0.372326 0.372326i
\(146\) 25.5980 0.175329
\(147\) 216.515i 1.47289i
\(148\) −85.8143 + 85.8143i −0.579827 + 0.579827i
\(149\) 95.0866 95.0866i 0.638165 0.638165i −0.311938 0.950103i \(-0.600978\pi\)
0.950103 + 0.311938i \(0.100978\pi\)
\(150\) 13.4224 + 13.4224i 0.0894828 + 0.0894828i
\(151\) 26.5821 + 26.5821i 0.176041 + 0.176041i 0.789627 0.613587i \(-0.210274\pi\)
−0.613587 + 0.789627i \(0.710274\pi\)
\(152\) −74.7139 −0.491539
\(153\) 28.3541i 0.185321i
\(154\) 107.497 + 107.497i 0.698033 + 0.698033i
\(155\) 143.461i 0.925555i
\(156\) 0 0
\(157\) −251.005 −1.59876 −0.799380 0.600826i \(-0.794838\pi\)
−0.799380 + 0.600826i \(0.794838\pi\)
\(158\) 7.98532 7.98532i 0.0505400 0.0505400i
\(159\) −296.404 −1.86418
\(160\) 30.1935i 0.188709i
\(161\) 144.809 144.809i 0.899436 0.899436i
\(162\) −99.5584 + 99.5584i −0.614558 + 0.614558i
\(163\) −85.9701 85.9701i −0.527424 0.527424i 0.392380 0.919803i \(-0.371652\pi\)
−0.919803 + 0.392380i \(0.871652\pi\)
\(164\) −7.08199 7.08199i −0.0431829 0.0431829i
\(165\) −215.131 −1.30383
\(166\) 71.6686i 0.431738i
\(167\) −43.7710 43.7710i −0.262102 0.262102i 0.563806 0.825907i \(-0.309337\pi\)
−0.825907 + 0.563806i \(0.809337\pi\)
\(168\) 111.649i 0.664580i
\(169\) 0 0
\(170\) −36.8973 −0.217043
\(171\) 108.347 108.347i 0.633607 0.633607i
\(172\) 23.9457 0.139219
\(173\) 310.835i 1.79674i 0.439244 + 0.898368i \(0.355246\pi\)
−0.439244 + 0.898368i \(0.644754\pi\)
\(174\) −55.0312 + 55.0312i −0.316271 + 0.316271i
\(175\) 25.3132 25.3132i 0.144647 0.144647i
\(176\) −29.6326 29.6326i −0.168367 0.168367i
\(177\) −171.129 171.129i −0.966829 0.966829i
\(178\) 114.573 0.643671
\(179\) 63.3403i 0.353856i −0.984224 0.176928i \(-0.943384\pi\)
0.984224 0.176928i \(-0.0566160\pi\)
\(180\) −43.7853 43.7853i −0.243251 0.243251i
\(181\) 186.504i 1.03041i 0.857067 + 0.515205i \(0.172284\pi\)
−0.857067 + 0.515205i \(0.827716\pi\)
\(182\) 0 0
\(183\) 216.504 1.18308
\(184\) −39.9181 + 39.9181i −0.216946 + 0.216946i
\(185\) −323.879 −1.75070
\(186\) 146.235i 0.786209i
\(187\) 36.2119 36.2119i 0.193647 0.193647i
\(188\) −15.1834 + 15.1834i −0.0807625 + 0.0807625i
\(189\) 89.3020 + 89.3020i 0.472497 + 0.472497i
\(190\) −140.992 140.992i −0.742063 0.742063i
\(191\) −182.691 −0.956500 −0.478250 0.878224i \(-0.658729\pi\)
−0.478250 + 0.878224i \(0.658729\pi\)
\(192\) 30.7773i 0.160298i
\(193\) −64.4548 64.4548i −0.333963 0.333963i 0.520126 0.854089i \(-0.325885\pi\)
−0.854089 + 0.520126i \(0.825885\pi\)
\(194\) 77.5856i 0.399926i
\(195\) 0 0
\(196\) 112.558 0.574278
\(197\) −152.596 + 152.596i −0.774600 + 0.774600i −0.978907 0.204307i \(-0.934506\pi\)
0.204307 + 0.978907i \(0.434506\pi\)
\(198\) 85.9439 0.434060
\(199\) 78.4893i 0.394418i 0.980361 + 0.197209i \(0.0631878\pi\)
−0.980361 + 0.197209i \(0.936812\pi\)
\(200\) −6.97783 + 6.97783i −0.0348892 + 0.0348892i
\(201\) 16.6277 16.6277i 0.0827248 0.0827248i
\(202\) 14.0635 + 14.0635i 0.0696212 + 0.0696212i
\(203\) 103.783 + 103.783i 0.511245 + 0.511245i
\(204\) 37.6107 0.184366
\(205\) 26.7287i 0.130384i
\(206\) −80.8399 80.8399i −0.392426 0.392426i
\(207\) 115.775i 0.559300i
\(208\) 0 0
\(209\) 276.746 1.32414
\(210\) −210.693 + 210.693i −1.00330 + 1.00330i
\(211\) −132.398 −0.627478 −0.313739 0.949509i \(-0.601582\pi\)
−0.313739 + 0.949509i \(0.601582\pi\)
\(212\) 154.090i 0.726840i
\(213\) 155.537 155.537i 0.730221 0.730221i
\(214\) 162.705 162.705i 0.760304 0.760304i
\(215\) 45.1876 + 45.1876i 0.210175 + 0.210175i
\(216\) −24.6170 24.6170i −0.113968 0.113968i
\(217\) 275.783 1.27089
\(218\) 125.348i 0.574989i
\(219\) −49.2398 49.2398i −0.224839 0.224839i
\(220\) 111.839i 0.508359i
\(221\) 0 0
\(222\) 330.141 1.48712
\(223\) 84.4985 84.4985i 0.378917 0.378917i −0.491794 0.870711i \(-0.663659\pi\)
0.870711 + 0.491794i \(0.163659\pi\)
\(224\) −58.0425 −0.259118
\(225\) 20.2379i 0.0899462i
\(226\) −69.8809 + 69.8809i −0.309208 + 0.309208i
\(227\) −299.942 + 299.942i −1.32133 + 1.32133i −0.408632 + 0.912699i \(0.633994\pi\)
−0.912699 + 0.408632i \(0.866006\pi\)
\(228\) 143.718 + 143.718i 0.630342 + 0.630342i
\(229\) −158.206 158.206i −0.690856 0.690856i 0.271564 0.962420i \(-0.412459\pi\)
−0.962420 + 0.271564i \(0.912459\pi\)
\(230\) −150.658 −0.655036
\(231\) 413.558i 1.79030i
\(232\) −28.6087 28.6087i −0.123314 0.123314i
\(233\) 163.030i 0.699701i 0.936806 + 0.349850i \(0.113768\pi\)
−0.936806 + 0.349850i \(0.886232\pi\)
\(234\) 0 0
\(235\) −57.3048 −0.243850
\(236\) 88.9637 88.9637i 0.376965 0.376965i
\(237\) −30.7208 −0.129624
\(238\) 70.9296i 0.298024i
\(239\) −185.455 + 185.455i −0.775962 + 0.775962i −0.979142 0.203179i \(-0.934873\pi\)
0.203179 + 0.979142i \(0.434873\pi\)
\(240\) 58.0795 58.0795i 0.241998 0.241998i
\(241\) −321.239 321.239i −1.33294 1.33294i −0.902728 0.430212i \(-0.858439\pi\)
−0.430212 0.902728i \(-0.641561\pi\)
\(242\) −11.2384 11.2384i −0.0464397 0.0464397i
\(243\) 272.240 1.12033
\(244\) 112.553i 0.461282i
\(245\) 212.408 + 212.408i 0.866972 + 0.866972i
\(246\) 27.2455i 0.110754i
\(247\) 0 0
\(248\) −76.0223 −0.306542
\(249\) 137.860 137.860i 0.553655 0.553655i
\(250\) 162.374 0.649494
\(251\) 438.996i 1.74899i 0.485035 + 0.874495i \(0.338807\pi\)
−0.485035 + 0.874495i \(0.661193\pi\)
\(252\) 84.1708 84.1708i 0.334011 0.334011i
\(253\) 147.860 147.860i 0.584426 0.584426i
\(254\) 82.7908 + 82.7908i 0.325948 + 0.325948i
\(255\) 70.9748 + 70.9748i 0.278333 + 0.278333i
\(256\) 16.0000 0.0625000
\(257\) 437.208i 1.70120i −0.525815 0.850599i \(-0.676240\pi\)
0.525815 0.850599i \(-0.323760\pi\)
\(258\) −46.0614 46.0614i −0.178532 0.178532i
\(259\) 622.610i 2.40390i
\(260\) 0 0
\(261\) 82.9743 0.317909
\(262\) 47.8506 47.8506i 0.182636 0.182636i
\(263\) −287.959 −1.09490 −0.547451 0.836838i \(-0.684402\pi\)
−0.547451 + 0.836838i \(0.684402\pi\)
\(264\) 114.001i 0.431824i
\(265\) 290.782 290.782i 1.09729 1.09729i
\(266\) 271.036 271.036i 1.01893 1.01893i
\(267\) −220.391 220.391i −0.825435 0.825435i
\(268\) 8.64414 + 8.64414i 0.0322542 + 0.0322542i
\(269\) 343.400 1.27658 0.638290 0.769796i \(-0.279642\pi\)
0.638290 + 0.769796i \(0.279642\pi\)
\(270\) 92.9090i 0.344107i
\(271\) 5.87429 + 5.87429i 0.0216764 + 0.0216764i 0.717862 0.696186i \(-0.245121\pi\)
−0.696186 + 0.717862i \(0.745121\pi\)
\(272\) 19.5524i 0.0718840i
\(273\) 0 0
\(274\) −272.164 −0.993298
\(275\) 25.8464 25.8464i 0.0939871 0.0939871i
\(276\) 153.571 0.556417
\(277\) 444.247i 1.60378i −0.597471 0.801891i \(-0.703828\pi\)
0.597471 0.801891i \(-0.296172\pi\)
\(278\) 193.093 193.093i 0.694578 0.694578i
\(279\) 110.244 110.244i 0.395141 0.395141i
\(280\) −109.532 109.532i −0.391184 0.391184i
\(281\) −163.678 163.678i −0.582486 0.582486i 0.353100 0.935586i \(-0.385128\pi\)
−0.935586 + 0.353100i \(0.885128\pi\)
\(282\) 58.4128 0.207137
\(283\) 464.139i 1.64007i 0.572315 + 0.820034i \(0.306045\pi\)
−0.572315 + 0.820034i \(0.693955\pi\)
\(284\) 80.8582 + 80.8582i 0.284712 + 0.284712i
\(285\) 542.418i 1.90322i
\(286\) 0 0
\(287\) 51.3821 0.179032
\(288\) −23.2025 + 23.2025i −0.0805643 + 0.0805643i
\(289\) 265.106 0.917323
\(290\) 107.975i 0.372326i
\(291\) 149.242 149.242i 0.512859 0.512859i
\(292\) 25.5980 25.5980i 0.0876644 0.0876644i
\(293\) 44.9476 + 44.9476i 0.153405 + 0.153405i 0.779637 0.626232i \(-0.215404\pi\)
−0.626232 + 0.779637i \(0.715404\pi\)
\(294\) −216.515 216.515i −0.736446 0.736446i
\(295\) 335.765 1.13819
\(296\) 171.629i 0.579827i
\(297\) 91.1832 + 91.1832i 0.307014 + 0.307014i
\(298\) 190.173i 0.638165i
\(299\) 0 0
\(300\) 26.8448 0.0894828
\(301\) −86.8667 + 86.8667i −0.288594 + 0.288594i
\(302\) 53.1643 0.176041
\(303\) 54.1045i 0.178563i
\(304\) −74.7139 + 74.7139i −0.245769 + 0.245769i
\(305\) −212.397 + 212.397i −0.696385 + 0.696385i
\(306\) −28.3541 28.3541i −0.0926605 0.0926605i
\(307\) 67.1395 + 67.1395i 0.218695 + 0.218695i 0.807948 0.589253i \(-0.200578\pi\)
−0.589253 + 0.807948i \(0.700578\pi\)
\(308\) 214.994 0.698033
\(309\) 311.004i 1.00648i
\(310\) −143.461 143.461i −0.462778 0.462778i
\(311\) 331.141i 1.06476i 0.846505 + 0.532381i \(0.178703\pi\)
−0.846505 + 0.532381i \(0.821297\pi\)
\(312\) 0 0
\(313\) −391.075 −1.24944 −0.624721 0.780848i \(-0.714787\pi\)
−0.624721 + 0.780848i \(0.714787\pi\)
\(314\) −251.005 + 251.005i −0.799380 + 0.799380i
\(315\) 317.676 1.00849
\(316\) 15.9706i 0.0505400i
\(317\) −322.964 + 322.964i −1.01881 + 1.01881i −0.0189927 + 0.999820i \(0.506046\pi\)
−0.999820 + 0.0189927i \(0.993954\pi\)
\(318\) −296.404 + 296.404i −0.932089 + 0.932089i
\(319\) 105.969 + 105.969i 0.332191 + 0.332191i
\(320\) 30.1935 + 30.1935i 0.0943546 + 0.0943546i
\(321\) −625.952 −1.95001
\(322\) 289.618i 0.899436i
\(323\) −91.3024 91.3024i −0.282670 0.282670i
\(324\) 199.117i 0.614558i
\(325\) 0 0
\(326\) −171.940 −0.527424
\(327\) 241.116 241.116i 0.737357 0.737357i
\(328\) −14.1640 −0.0431829
\(329\) 110.160i 0.334833i
\(330\) −215.131 + 215.131i −0.651913 + 0.651913i
\(331\) 346.516 346.516i 1.04688 1.04688i 0.0480317 0.998846i \(-0.484705\pi\)
0.998846 0.0480317i \(-0.0152948\pi\)
\(332\) 71.6686 + 71.6686i 0.215869 + 0.215869i
\(333\) −248.889 248.889i −0.747413 0.747413i
\(334\) −87.5419 −0.262102
\(335\) 32.6246i 0.0973867i
\(336\) 111.649 + 111.649i 0.332290 + 0.332290i
\(337\) 498.500i 1.47923i −0.673031 0.739614i \(-0.735008\pi\)
0.673031 0.739614i \(-0.264992\pi\)
\(338\) 0 0
\(339\) 268.843 0.793047
\(340\) −36.8973 + 36.8973i −0.108521 + 0.108521i
\(341\) 281.593 0.825785
\(342\) 216.694i 0.633607i
\(343\) −52.8131 + 52.8131i −0.153974 + 0.153974i
\(344\) 23.9457 23.9457i 0.0696095 0.0696095i
\(345\) 289.803 + 289.803i 0.840009 + 0.840009i
\(346\) 310.835 + 310.835i 0.898368 + 0.898368i
\(347\) −234.625 −0.676153 −0.338076 0.941119i \(-0.609776\pi\)
−0.338076 + 0.941119i \(0.609776\pi\)
\(348\) 110.062i 0.316271i
\(349\) 125.061 + 125.061i 0.358341 + 0.358341i 0.863201 0.504860i \(-0.168456\pi\)
−0.504860 + 0.863201i \(0.668456\pi\)
\(350\) 50.6264i 0.144647i
\(351\) 0 0
\(352\) −59.2653 −0.168367
\(353\) −159.033 + 159.033i −0.450518 + 0.450518i −0.895526 0.445009i \(-0.853201\pi\)
0.445009 + 0.895526i \(0.353201\pi\)
\(354\) −342.258 −0.966829
\(355\) 305.174i 0.859644i
\(356\) 114.573 114.573i 0.321836 0.321836i
\(357\) −136.439 + 136.439i −0.382181 + 0.382181i
\(358\) −63.3403 63.3403i −0.176928 0.176928i
\(359\) 290.278 + 290.278i 0.808574 + 0.808574i 0.984418 0.175844i \(-0.0562653\pi\)
−0.175844 + 0.984418i \(0.556265\pi\)
\(360\) −87.5705 −0.243251
\(361\) 336.770i 0.932881i
\(362\) 186.504 + 186.504i 0.515205 + 0.515205i
\(363\) 43.2359i 0.119107i
\(364\) 0 0
\(365\) 96.6115 0.264689
\(366\) 216.504 216.504i 0.591542 0.591542i
\(367\) −220.744 −0.601481 −0.300741 0.953706i \(-0.597234\pi\)
−0.300741 + 0.953706i \(0.597234\pi\)
\(368\) 79.8362i 0.216946i
\(369\) 20.5400 20.5400i 0.0556639 0.0556639i
\(370\) −323.879 + 323.879i −0.875349 + 0.875349i
\(371\) 558.986 + 558.986i 1.50670 + 1.50670i
\(372\) 146.235 + 146.235i 0.393105 + 0.393105i
\(373\) −62.1593 −0.166647 −0.0833235 0.996523i \(-0.526553\pi\)
−0.0833235 + 0.996523i \(0.526553\pi\)
\(374\) 72.4238i 0.193647i
\(375\) −312.338 312.338i −0.832902 0.832902i
\(376\) 30.3667i 0.0807625i
\(377\) 0 0
\(378\) 178.604 0.472497
\(379\) −102.724 + 102.724i −0.271038 + 0.271038i −0.829518 0.558480i \(-0.811385\pi\)
0.558480 + 0.829518i \(0.311385\pi\)
\(380\) −281.984 −0.742063
\(381\) 318.509i 0.835982i
\(382\) −182.691 + 182.691i −0.478250 + 0.478250i
\(383\) −355.526 + 355.526i −0.928265 + 0.928265i −0.997594 0.0693288i \(-0.977914\pi\)
0.0693288 + 0.997594i \(0.477914\pi\)
\(384\) −30.7773 30.7773i −0.0801491 0.0801491i
\(385\) 405.714 + 405.714i 1.05380 + 1.05380i
\(386\) −128.910 −0.333963
\(387\) 69.4499i 0.179457i
\(388\) 77.5856 + 77.5856i 0.199963 + 0.199963i
\(389\) 284.973i 0.732579i −0.930501 0.366289i \(-0.880628\pi\)
0.930501 0.366289i \(-0.119372\pi\)
\(390\) 0 0
\(391\) −97.5621 −0.249519
\(392\) 112.558 112.558i 0.287139 0.287139i
\(393\) −184.089 −0.468420
\(394\) 305.193i 0.774600i
\(395\) 30.1380 30.1380i 0.0762988 0.0762988i
\(396\) 85.9439 85.9439i 0.217030 0.217030i
\(397\) −209.336 209.336i −0.527294 0.527294i 0.392471 0.919764i \(-0.371620\pi\)
−0.919764 + 0.392471i \(0.871620\pi\)
\(398\) 78.4893 + 78.4893i 0.197209 + 0.197209i
\(399\) −1042.72 −2.61333
\(400\) 13.9557i 0.0348892i
\(401\) 171.024 + 171.024i 0.426494 + 0.426494i 0.887432 0.460938i \(-0.152487\pi\)
−0.460938 + 0.887432i \(0.652487\pi\)
\(402\) 33.2554i 0.0827248i
\(403\) 0 0
\(404\) 28.1270 0.0696212
\(405\) −375.752 + 375.752i −0.927782 + 0.927782i
\(406\) 207.565 0.511245
\(407\) 635.726i 1.56198i
\(408\) 37.6107 37.6107i 0.0921830 0.0921830i
\(409\) 137.980 137.980i 0.337361 0.337361i −0.518013 0.855373i \(-0.673328\pi\)
0.855373 + 0.518013i \(0.173328\pi\)
\(410\) −26.7287 26.7287i −0.0651920 0.0651920i
\(411\) 523.529 + 523.529i 1.27379 + 1.27379i
\(412\) −161.680 −0.392426
\(413\) 645.460i 1.56286i
\(414\) −115.775 115.775i −0.279650 0.279650i
\(415\) 270.490i 0.651784i
\(416\) 0 0
\(417\) −742.859 −1.78144
\(418\) 276.746 276.746i 0.662072 0.662072i
\(419\) 47.9110 0.114346 0.0571730 0.998364i \(-0.481791\pi\)
0.0571730 + 0.998364i \(0.481791\pi\)
\(420\) 421.385i 1.00330i
\(421\) −477.018 + 477.018i −1.13306 + 1.13306i −0.143394 + 0.989666i \(0.545802\pi\)
−0.989666 + 0.143394i \(0.954198\pi\)
\(422\) −132.398 + 132.398i −0.313739 + 0.313739i
\(423\) −44.0365 44.0365i −0.104105 0.104105i
\(424\) −154.090 154.090i −0.363420 0.363420i
\(425\) −17.0542 −0.0401276
\(426\) 311.074i 0.730221i
\(427\) −408.303 408.303i −0.956214 0.956214i
\(428\) 325.410i 0.760304i
\(429\) 0 0
\(430\) 90.3753 0.210175
\(431\) 55.0595 55.0595i 0.127748 0.127748i −0.640342 0.768090i \(-0.721207\pi\)
0.768090 + 0.640342i \(0.221207\pi\)
\(432\) −49.2340 −0.113968
\(433\) 497.603i 1.14920i 0.818435 + 0.574599i \(0.194842\pi\)
−0.818435 + 0.574599i \(0.805158\pi\)
\(434\) 275.783 275.783i 0.635445 0.635445i
\(435\) −207.698 + 207.698i −0.477466 + 0.477466i
\(436\) 125.348 + 125.348i 0.287494 + 0.287494i
\(437\) −372.804 372.804i −0.853099 0.853099i
\(438\) −98.4795 −0.224839
\(439\) 167.510i 0.381572i 0.981632 + 0.190786i \(0.0611037\pi\)
−0.981632 + 0.190786i \(0.938896\pi\)
\(440\) −111.839 111.839i −0.254179 0.254179i
\(441\) 326.455i 0.740260i
\(442\) 0 0
\(443\) −443.835 −1.00188 −0.500942 0.865481i \(-0.667013\pi\)
−0.500942 + 0.865481i \(0.667013\pi\)
\(444\) 330.141 330.141i 0.743562 0.743562i
\(445\) 432.421 0.971733
\(446\) 168.997i 0.378917i
\(447\) −365.813 + 365.813i −0.818374 + 0.818374i
\(448\) −58.0425 + 58.0425i −0.129559 + 0.129559i
\(449\) −181.585 181.585i −0.404421 0.404421i 0.475366 0.879788i \(-0.342315\pi\)
−0.879788 + 0.475366i \(0.842315\pi\)
\(450\) −20.2379 20.2379i −0.0449731 0.0449731i
\(451\) 52.4645 0.116329
\(452\) 139.762i 0.309208i
\(453\) −102.266 102.266i −0.225752 0.225752i
\(454\) 599.884i 1.32133i
\(455\) 0 0
\(456\) 287.436 0.630342
\(457\) 61.5957 61.5957i 0.134783 0.134783i −0.636497 0.771279i \(-0.719617\pi\)
0.771279 + 0.636497i \(0.219617\pi\)
\(458\) −316.412 −0.690856
\(459\) 60.1653i 0.131079i
\(460\) −150.658 + 150.658i −0.327518 + 0.327518i
\(461\) 349.897 349.897i 0.758996 0.758996i −0.217144 0.976140i \(-0.569674\pi\)
0.976140 + 0.217144i \(0.0696741\pi\)
\(462\) −413.558 413.558i −0.895148 0.895148i
\(463\) −399.472 399.472i −0.862789 0.862789i 0.128872 0.991661i \(-0.458864\pi\)
−0.991661 + 0.128872i \(0.958864\pi\)
\(464\) −57.2175 −0.123314
\(465\) 551.917i 1.18692i
\(466\) 163.030 + 163.030i 0.349850 + 0.349850i
\(467\) 409.816i 0.877550i 0.898597 + 0.438775i \(0.144587\pi\)
−0.898597 + 0.438775i \(0.855413\pi\)
\(468\) 0 0
\(469\) −62.7159 −0.133723
\(470\) −57.3048 + 57.3048i −0.121925 + 0.121925i
\(471\) 965.657 2.05023
\(472\) 177.927i 0.376965i
\(473\) −88.6966 + 88.6966i −0.187519 + 0.187519i
\(474\) −30.7208 + 30.7208i −0.0648118 + 0.0648118i
\(475\) −65.1676 65.1676i −0.137195 0.137195i
\(476\) −70.9296 70.9296i −0.149012 0.149012i
\(477\) 446.909 0.936917
\(478\) 370.910i 0.775962i
\(479\) 376.568 + 376.568i 0.786153 + 0.786153i 0.980861 0.194708i \(-0.0623759\pi\)
−0.194708 + 0.980861i \(0.562376\pi\)
\(480\) 116.159i 0.241998i
\(481\) 0 0
\(482\) −642.477 −1.33294
\(483\) −557.104 + 557.104i −1.15342 + 1.15342i
\(484\) −22.4768 −0.0464397
\(485\) 292.822i 0.603757i
\(486\) 272.240 272.240i 0.560165 0.560165i
\(487\) 476.048 476.048i 0.977512 0.977512i −0.0222407 0.999753i \(-0.507080\pi\)
0.999753 + 0.0222407i \(0.00708003\pi\)
\(488\) 112.553 + 112.553i 0.230641 + 0.230641i
\(489\) 330.740 + 330.740i 0.676361 + 0.676361i
\(490\) 424.816 0.866972
\(491\) 117.456i 0.239219i 0.992821 + 0.119609i \(0.0381642\pi\)
−0.992821 + 0.119609i \(0.961836\pi\)
\(492\) 27.2455 + 27.2455i 0.0553771 + 0.0553771i
\(493\) 69.9214i 0.141828i
\(494\) 0 0
\(495\) 324.368 0.655289
\(496\) −76.0223 + 76.0223i −0.153271 + 0.153271i
\(497\) −586.652 −1.18039
\(498\) 275.720i 0.553655i
\(499\) 155.387 155.387i 0.311396 0.311396i −0.534054 0.845450i \(-0.679332\pi\)
0.845450 + 0.534054i \(0.179332\pi\)
\(500\) 162.374 162.374i 0.324747 0.324747i
\(501\) 168.394 + 168.394i 0.336116 + 0.336116i
\(502\) 438.996 + 438.996i 0.874495 + 0.874495i
\(503\) 325.036 0.646196 0.323098 0.946366i \(-0.395276\pi\)
0.323098 + 0.946366i \(0.395276\pi\)
\(504\) 168.342i 0.334011i
\(505\) 53.0782 + 53.0782i 0.105105 + 0.105105i
\(506\) 295.720i 0.584426i
\(507\) 0 0
\(508\) 165.582 0.325948
\(509\) 410.842 410.842i 0.807154 0.807154i −0.177048 0.984202i \(-0.556655\pi\)
0.984202 + 0.177048i \(0.0566547\pi\)
\(510\) 141.950 0.278333
\(511\) 185.722i 0.363447i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 229.904 229.904i 0.448155 0.448155i
\(514\) −437.208 437.208i −0.850599 0.850599i
\(515\) −305.104 305.104i −0.592436 0.592436i
\(516\) −92.1227 −0.178532
\(517\) 112.481i 0.217564i
\(518\) −622.610 622.610i −1.20195 1.20195i
\(519\) 1195.83i 2.30411i
\(520\) 0 0
\(521\) 400.067 0.767883 0.383942 0.923357i \(-0.374566\pi\)
0.383942 + 0.923357i \(0.374566\pi\)
\(522\) 82.9743 82.9743i 0.158955 0.158955i
\(523\) 468.671 0.896120 0.448060 0.894004i \(-0.352115\pi\)
0.448060 + 0.894004i \(0.352115\pi\)
\(524\) 95.7013i 0.182636i
\(525\) −97.3839 + 97.3839i −0.185493 + 0.185493i
\(526\) −287.959 + 287.959i −0.547451 + 0.547451i
\(527\) −92.9014 92.9014i −0.176283 0.176283i
\(528\) 114.001 + 114.001i 0.215912 + 0.215912i
\(529\) 130.636 0.246950
\(530\) 581.564i 1.09729i
\(531\) 258.023 + 258.023i 0.485918 + 0.485918i
\(532\) 542.073i 1.01893i
\(533\) 0 0
\(534\) −440.782 −0.825435
\(535\) 614.079 614.079i 1.14781 1.14781i
\(536\) 17.2883 0.0322542
\(537\) 243.680i 0.453781i
\(538\) 343.400 343.400i 0.638290 0.638290i
\(539\) −416.925 + 416.925i −0.773516 + 0.773516i
\(540\) −92.9090 92.9090i −0.172054 0.172054i
\(541\) 155.599 + 155.599i 0.287614 + 0.287614i 0.836136 0.548522i \(-0.184809\pi\)
−0.548522 + 0.836136i \(0.684809\pi\)
\(542\) 11.7486 0.0216764
\(543\) 717.511i 1.32138i
\(544\) 19.5524 + 19.5524i 0.0359420 + 0.0359420i
\(545\) 473.085i 0.868045i
\(546\) 0 0
\(547\) 858.888 1.57018 0.785090 0.619382i \(-0.212617\pi\)
0.785090 + 0.619382i \(0.212617\pi\)
\(548\) −272.164 + 272.164i −0.496649 + 0.496649i
\(549\) −326.439 −0.594606
\(550\) 51.6929i 0.0939871i
\(551\) 267.184 267.184i 0.484907 0.484907i
\(552\) 153.571 153.571i 0.278209 0.278209i
\(553\) 57.9360 + 57.9360i 0.104767 + 0.104767i
\(554\) −444.247 444.247i −0.801891 0.801891i
\(555\) 1246.01 2.24507
\(556\) 386.186i 0.694578i
\(557\) −377.023 377.023i −0.676881 0.676881i 0.282412 0.959293i \(-0.408865\pi\)
−0.959293 + 0.282412i \(0.908865\pi\)
\(558\) 220.489i 0.395141i
\(559\) 0 0
\(560\) −219.063 −0.391184
\(561\) −139.313 + 139.313i −0.248330 + 0.248330i
\(562\) −327.357 −0.582486
\(563\) 434.624i 0.771979i −0.922503 0.385990i \(-0.873860\pi\)
0.922503 0.385990i \(-0.126140\pi\)
\(564\) 58.4128 58.4128i 0.103569 0.103569i
\(565\) −263.743 + 263.743i −0.466803 + 0.466803i
\(566\) 464.139 + 464.139i 0.820034 + 0.820034i
\(567\) −722.327 722.327i −1.27395 1.27395i
\(568\) 161.716 0.284712
\(569\) 332.271i 0.583955i −0.956425 0.291978i \(-0.905687\pi\)
0.956425 0.291978i \(-0.0943133\pi\)
\(570\) 542.418 + 542.418i 0.951611 + 0.951611i
\(571\) 555.806i 0.973391i 0.873572 + 0.486696i \(0.161798\pi\)
−0.873572 + 0.486696i \(0.838202\pi\)
\(572\) 0 0
\(573\) 702.843 1.22660
\(574\) 51.3821 51.3821i 0.0895158 0.0895158i
\(575\) −69.6354 −0.121105
\(576\) 46.4050i 0.0805643i
\(577\) 287.753 287.753i 0.498705 0.498705i −0.412330 0.911035i \(-0.635285\pi\)
0.911035 + 0.412330i \(0.135285\pi\)
\(578\) 265.106 265.106i 0.458662 0.458662i
\(579\) 247.968 + 247.968i 0.428269 + 0.428269i
\(580\) −107.975 107.975i −0.186163 0.186163i
\(581\) −519.978 −0.894971
\(582\) 298.484i 0.512859i
\(583\) 570.762 + 570.762i 0.979008 + 0.979008i
\(584\) 51.1960i 0.0876644i
\(585\) 0 0
\(586\) 89.8951 0.153405
\(587\) −473.776 + 473.776i −0.807114 + 0.807114i −0.984196 0.177082i \(-0.943334\pi\)
0.177082 + 0.984196i \(0.443334\pi\)
\(588\) −433.030 −0.736446
\(589\) 709.990i 1.20542i
\(590\) 335.765 335.765i 0.569094 0.569094i
\(591\) 587.062 587.062i 0.993337 0.993337i
\(592\) 171.629 + 171.629i 0.289913 + 0.289913i
\(593\) −69.0570 69.0570i −0.116454 0.116454i 0.646479 0.762932i \(-0.276241\pi\)
−0.762932 + 0.646479i \(0.776241\pi\)
\(594\) 182.366 0.307014
\(595\) 267.701i 0.449918i
\(596\) −190.173 190.173i −0.319082 0.319082i
\(597\) 301.961i 0.505797i
\(598\) 0 0
\(599\) 461.140 0.769850 0.384925 0.922948i \(-0.374227\pi\)
0.384925 + 0.922948i \(0.374227\pi\)
\(600\) 26.8448 26.8448i 0.0447414 0.0447414i
\(601\) 176.162 0.293115 0.146558 0.989202i \(-0.453181\pi\)
0.146558 + 0.989202i \(0.453181\pi\)
\(602\) 173.733i 0.288594i
\(603\) −25.0707 + 25.0707i −0.0415766 + 0.0415766i
\(604\) 53.1643 53.1643i 0.0880203 0.0880203i
\(605\) −42.4158 42.4158i −0.0701087 0.0701087i
\(606\) −54.1045 54.1045i −0.0892813 0.0892813i
\(607\) −315.414 −0.519628 −0.259814 0.965659i \(-0.583661\pi\)
−0.259814 + 0.965659i \(0.583661\pi\)
\(608\) 149.428i 0.245769i
\(609\) −399.269 399.269i −0.655613 0.655613i
\(610\) 424.795i 0.696385i
\(611\) 0 0
\(612\) −56.7082 −0.0926605
\(613\) −638.354 + 638.354i −1.04136 + 1.04136i −0.0422542 + 0.999107i \(0.513454\pi\)
−0.999107 + 0.0422542i \(0.986546\pi\)
\(614\) 134.279 0.218695
\(615\) 102.830i 0.167203i
\(616\) 214.994 214.994i 0.349016 0.349016i
\(617\) −483.018 + 483.018i −0.782849 + 0.782849i −0.980311 0.197461i \(-0.936730\pi\)
0.197461 + 0.980311i \(0.436730\pi\)
\(618\) 311.004 + 311.004i 0.503242 + 0.503242i
\(619\) −413.378 413.378i −0.667816 0.667816i 0.289394 0.957210i \(-0.406546\pi\)
−0.957210 + 0.289394i \(0.906546\pi\)
\(620\) −286.922 −0.462778
\(621\) 245.666i 0.395597i
\(622\) 331.141 + 331.141i 0.532381 + 0.532381i
\(623\) 831.267i 1.33430i
\(624\) 0 0
\(625\) 700.050 1.12008
\(626\) −391.075 + 391.075i −0.624721 + 0.624721i
\(627\) −1064.69 −1.69806
\(628\) 502.010i 0.799380i
\(629\) −209.735 + 209.735i −0.333442 + 0.333442i
\(630\) 317.676 317.676i 0.504247 0.504247i
\(631\) 1.18650 + 1.18650i 0.00188035 + 0.00188035i 0.708046 0.706166i \(-0.249577\pi\)
−0.706166 + 0.708046i \(0.749577\pi\)
\(632\) −15.9706 15.9706i −0.0252700 0.0252700i
\(633\) 509.356 0.804670
\(634\) 645.927i 1.01881i
\(635\) 312.468 + 312.468i 0.492075 + 0.492075i
\(636\) 592.809i 0.932089i
\(637\) 0 0
\(638\) 211.938 0.332191
\(639\) −234.514 + 234.514i −0.367002 + 0.367002i
\(640\) 60.3869 0.0943546
\(641\) 1227.53i 1.91502i 0.288406 + 0.957508i \(0.406875\pi\)
−0.288406 + 0.957508i \(0.593125\pi\)
\(642\) −625.952 + 625.952i −0.975003 + 0.975003i
\(643\) −426.567 + 426.567i −0.663401 + 0.663401i −0.956180 0.292779i \(-0.905420\pi\)
0.292779 + 0.956180i \(0.405420\pi\)
\(644\) −289.618 289.618i −0.449718 0.449718i
\(645\) −173.844 173.844i −0.269526 0.269526i
\(646\) −182.605 −0.282670
\(647\) 876.797i 1.35517i 0.735443 + 0.677587i \(0.236974\pi\)
−0.735443 + 0.677587i \(0.763026\pi\)
\(648\) 199.117 + 199.117i 0.307279 + 0.307279i
\(649\) 659.057i 1.01550i
\(650\) 0 0
\(651\) −1060.98 −1.62977
\(652\) −171.940 + 171.940i −0.263712 + 0.263712i
\(653\) 150.361 0.230261 0.115131 0.993350i \(-0.463271\pi\)
0.115131 + 0.993350i \(0.463271\pi\)
\(654\) 482.232i 0.737357i
\(655\) 180.597 180.597i 0.275721 0.275721i
\(656\) −14.1640 + 14.1640i −0.0215914 + 0.0215914i
\(657\) 74.2422 + 74.2422i 0.113002 + 0.113002i
\(658\) −110.160 110.160i −0.167416 0.167416i
\(659\) 873.541 1.32556 0.662778 0.748816i \(-0.269377\pi\)
0.662778 + 0.748816i \(0.269377\pi\)
\(660\) 430.262i 0.651913i
\(661\) −336.481 336.481i −0.509048 0.509048i 0.405186 0.914234i \(-0.367207\pi\)
−0.914234 + 0.405186i \(0.867207\pi\)
\(662\) 693.033i 1.04688i
\(663\) 0 0
\(664\) 143.337 0.215869
\(665\) 1022.94 1022.94i 1.53826 1.53826i
\(666\) −497.777 −0.747413
\(667\) 285.502i 0.428038i
\(668\) −87.5419 + 87.5419i −0.131051 + 0.131051i
\(669\) −325.079 + 325.079i −0.485918 + 0.485918i
\(670\) 32.6246 + 32.6246i 0.0486934 + 0.0486934i
\(671\) −416.905 416.905i −0.621318 0.621318i
\(672\) 223.299 0.332290
\(673\) 1105.76i 1.64302i −0.570191 0.821512i \(-0.693131\pi\)
0.570191 0.821512i \(-0.306869\pi\)
\(674\) −498.500 498.500i −0.739614 0.739614i
\(675\) 42.9433i 0.0636197i
\(676\) 0 0
\(677\) 474.341 0.700651 0.350326 0.936628i \(-0.386071\pi\)
0.350326 + 0.936628i \(0.386071\pi\)
\(678\) 268.843 268.843i 0.396524 0.396524i
\(679\) −562.908 −0.829025
\(680\) 73.7945i 0.108521i
\(681\) 1153.93 1153.93i 1.69446 1.69446i
\(682\) 281.593 281.593i 0.412892 0.412892i
\(683\) −741.412 741.412i −1.08552 1.08552i −0.995983 0.0895398i \(-0.971460\pi\)
−0.0895398 0.995983i \(-0.528540\pi\)
\(684\) −216.694 216.694i −0.316804 0.316804i
\(685\) −1027.20 −1.49956
\(686\) 105.626i 0.153974i
\(687\) 608.644 + 608.644i 0.885945 + 0.885945i
\(688\) 47.8913i 0.0696095i
\(689\) 0 0
\(690\) 579.606 0.840009
\(691\) −286.793 + 286.793i −0.415040 + 0.415040i −0.883490 0.468450i \(-0.844813\pi\)
0.468450 + 0.883490i \(0.344813\pi\)
\(692\) 621.671 0.898368
\(693\) 623.550i 0.899784i
\(694\) −234.625 + 234.625i −0.338076 + 0.338076i
\(695\) 728.768 728.768i 1.04859 1.04859i
\(696\) 110.062 + 110.062i 0.158136 + 0.158136i
\(697\) −17.3088 17.3088i −0.0248333 0.0248333i
\(698\) 250.122 0.358341
\(699\) 627.203i 0.897287i
\(700\) −50.6264 50.6264i −0.0723234 0.0723234i
\(701\) 322.739i 0.460398i −0.973144 0.230199i \(-0.926062\pi\)
0.973144 0.230199i \(-0.0739378\pi\)
\(702\) 0 0
\(703\) −1602.88 −2.28006
\(704\) −59.2653 + 59.2653i −0.0841836 + 0.0841836i
\(705\) 220.460 0.312710
\(706\) 318.065i 0.450518i
\(707\) −102.035 + 102.035i −0.144321 + 0.144321i
\(708\) −342.258 + 342.258i −0.483415 + 0.483415i
\(709\) 68.9061 + 68.9061i 0.0971877 + 0.0971877i 0.754029 0.656841i \(-0.228108\pi\)
−0.656841 + 0.754029i \(0.728108\pi\)
\(710\) 305.174 + 305.174i 0.429822 + 0.429822i
\(711\) 46.3198 0.0651475
\(712\) 229.147i 0.321836i
\(713\) −379.333 379.333i −0.532024 0.532024i
\(714\) 272.877i 0.382181i
\(715\) 0 0
\(716\) −126.681 −0.176928
\(717\) 713.475 713.475i 0.995083 0.995083i
\(718\) 580.556 0.808574
\(719\) 892.454i 1.24124i −0.784110 0.620622i \(-0.786880\pi\)
0.784110 0.620622i \(-0.213120\pi\)
\(720\) −87.5705 + 87.5705i −0.121626 + 0.121626i
\(721\) 586.519 586.519i 0.813479 0.813479i
\(722\) −336.770 336.770i −0.466440 0.466440i
\(723\) 1235.86 + 1235.86i 1.70934 + 1.70934i
\(724\) 373.008 0.515205
\(725\) 49.9067i 0.0688369i
\(726\) 43.2359 + 43.2359i 0.0595536 + 0.0595536i
\(727\) 1093.66i 1.50435i −0.658964 0.752175i \(-0.729005\pi\)
0.658964 0.752175i \(-0.270995\pi\)
\(728\) 0 0
\(729\) −151.327 −0.207581
\(730\) 96.6115 96.6115i 0.132345 0.132345i
\(731\) 58.5245 0.0800609
\(732\) 433.009i 0.591542i
\(733\) 136.804 136.804i 0.186636 0.186636i −0.607604 0.794240i \(-0.707869\pi\)
0.794240 + 0.607604i \(0.207869\pi\)
\(734\) −220.744 + 220.744i −0.300741 + 0.300741i
\(735\) −817.168 817.168i −1.11179 1.11179i
\(736\) 79.8362 + 79.8362i 0.108473 + 0.108473i
\(737\) −64.0371 −0.0868889
\(738\) 41.0800i 0.0556639i
\(739\) −568.031 568.031i −0.768649 0.768649i 0.209220 0.977869i \(-0.432908\pi\)
−0.977869 + 0.209220i \(0.932908\pi\)
\(740\) 647.758i 0.875349i
\(741\) 0 0
\(742\) 1117.97 1.50670
\(743\) 505.313 505.313i 0.680098 0.680098i −0.279924 0.960022i \(-0.590309\pi\)
0.960022 + 0.279924i \(0.0903093\pi\)
\(744\) 292.470 0.393105
\(745\) 717.748i 0.963421i
\(746\) −62.1593 + 62.1593i −0.0833235 + 0.0833235i
\(747\) −207.861 + 207.861i −0.278261 + 0.278261i
\(748\) −72.4238 72.4238i −0.0968233 0.0968233i
\(749\) 1180.48 + 1180.48i 1.57607 + 1.57607i
\(750\) −624.677 −0.832902
\(751\) 24.3942i 0.0324823i −0.999868 0.0162412i \(-0.994830\pi\)
0.999868 0.0162412i \(-0.00516995\pi\)
\(752\) 30.3667 + 30.3667i 0.0403813 + 0.0403813i
\(753\) 1688.89i 2.24288i
\(754\) 0 0
\(755\) 200.652 0.265764
\(756\) 178.604 178.604i 0.236249 0.236249i
\(757\) −1025.22 −1.35433 −0.677163 0.735833i \(-0.736791\pi\)
−0.677163 + 0.735833i \(0.736791\pi\)
\(758\) 205.447i 0.271038i
\(759\) −568.840 + 568.840i −0.749460 + 0.749460i
\(760\) −281.984 + 281.984i −0.371031 + 0.371031i
\(761\) −272.647 272.647i −0.358275 0.358275i 0.504902 0.863177i \(-0.331529\pi\)
−0.863177 + 0.504902i \(0.831529\pi\)
\(762\) −318.509 318.509i −0.417991 0.417991i
\(763\) −909.436 −1.19192
\(764\) 365.383i 0.478250i
\(765\) −107.014 107.014i −0.139887 0.139887i
\(766\) 711.051i 0.928265i
\(767\) 0 0
\(768\) −61.5545 −0.0801491
\(769\) 171.616 171.616i 0.223168 0.223168i −0.586663 0.809831i \(-0.699559\pi\)
0.809831 + 0.586663i \(0.199559\pi\)
\(770\) 811.427 1.05380
\(771\) 1682.01i 2.18159i
\(772\) −128.910 + 128.910i −0.166981 + 0.166981i
\(773\) 367.857 367.857i 0.475883 0.475883i −0.427929 0.903812i \(-0.640757\pi\)
0.903812 + 0.427929i \(0.140757\pi\)
\(774\) 69.4499 + 69.4499i 0.0897286 + 0.0897286i
\(775\) −66.3089 66.3089i −0.0855598 0.0855598i
\(776\) 155.171 0.199963
\(777\) 2395.28i 3.08273i
\(778\) −284.973 284.973i −0.366289 0.366289i
\(779\) 132.281i 0.169808i
\(780\) 0 0
\(781\) −599.010 −0.766978
\(782\) −97.5621 + 97.5621i −0.124760 + 0.124760i
\(783\) 176.065 0.224860
\(784\) 225.117i 0.287139i
\(785\) −947.340 + 947.340i −1.20680 + 1.20680i
\(786\) −184.089 + 184.089i −0.234210 + 0.234210i
\(787\) 1028.17 + 1028.17i 1.30644 + 1.30644i 0.923965 + 0.382478i \(0.124929\pi\)
0.382478 + 0.923965i \(0.375071\pi\)
\(788\) 305.193 + 305.193i 0.387300 + 0.387300i
\(789\) 1107.83 1.40409
\(790\) 60.2761i 0.0762988i
\(791\) −507.008 507.008i −0.640971 0.640971i
\(792\) 171.888i 0.217030i
\(793\) 0 0
\(794\) −418.671 −0.527294
\(795\) −1118.68 + 1118.68i −1.40715 + 1.40715i
\(796\) 156.979 0.197209
\(797\) 472.216i 0.592491i 0.955112 + 0.296246i \(0.0957347\pi\)
−0.955112 + 0.296246i \(0.904265\pi\)
\(798\) −1042.72 + 1042.72i −1.30667 + 1.30667i
\(799\) −37.1090 + 37.1090i −0.0464443 + 0.0464443i
\(800\) 13.9557 + 13.9557i 0.0174446 + 0.0174446i
\(801\) 332.299 + 332.299i 0.414855 + 0.414855i
\(802\) 342.048 0.426494
\(803\) 189.634i 0.236157i
\(804\) −33.2554 33.2554i −0.0413624 0.0413624i
\(805\) 1093.07i 1.35785i
\(806\) 0 0
\(807\) −1321.11 −1.63707
\(808\) 28.1270 28.1270i 0.0348106 0.0348106i
\(809\) 954.431 1.17977 0.589883 0.807489i \(-0.299174\pi\)
0.589883 + 0.807489i \(0.299174\pi\)
\(810\) 751.503i 0.927782i
\(811\) 643.215 643.215i 0.793114 0.793114i −0.188885 0.981999i \(-0.560487\pi\)
0.981999 + 0.188885i \(0.0604875\pi\)
\(812\) 207.565 207.565i 0.255622 0.255622i
\(813\) −22.5993 22.5993i −0.0277975 0.0277975i
\(814\) −635.726 635.726i −0.780990 0.780990i
\(815\) −648.934 −0.796238
\(816\) 75.2214i 0.0921830i
\(817\) 223.634 + 223.634i 0.273726 + 0.273726i
\(818\) 275.961i 0.337361i
\(819\) 0 0
\(820\) −53.4574 −0.0651920
\(821\) 609.239 609.239i 0.742069 0.742069i −0.230907 0.972976i \(-0.574169\pi\)
0.972976 + 0.230907i \(0.0741692\pi\)
\(822\) 1047.06 1.27379
\(823\) 747.037i 0.907700i −0.891078 0.453850i \(-0.850050\pi\)
0.891078 0.453850i \(-0.149950\pi\)
\(824\) −161.680 + 161.680i −0.196213 + 0.196213i
\(825\) −99.4354 + 99.4354i −0.120528 + 0.120528i
\(826\) 645.460 + 645.460i 0.781428 + 0.781428i
\(827\) −1064.80 1064.80i −1.28755 1.28755i −0.936273 0.351272i \(-0.885749\pi\)
−0.351272 0.936273i \(-0.614251\pi\)
\(828\) −231.550 −0.279650
\(829\) 127.571i 0.153886i −0.997036 0.0769429i \(-0.975484\pi\)
0.997036 0.0769429i \(-0.0245159\pi\)
\(830\) 270.490 + 270.490i 0.325892 + 0.325892i
\(831\) 1709.09i 2.05667i
\(832\) 0 0
\(833\) 275.099 0.330251
\(834\) −742.859 + 742.859i −0.890718 + 0.890718i
\(835\) −330.399 −0.395688
\(836\) 553.492i 0.662072i
\(837\) 233.930 233.930i 0.279486 0.279486i
\(838\) 47.9110 47.9110i 0.0571730 0.0571730i
\(839\) −335.660 335.660i −0.400071 0.400071i 0.478187 0.878258i \(-0.341294\pi\)
−0.878258 + 0.478187i \(0.841294\pi\)
\(840\) 421.385 + 421.385i 0.501649 + 0.501649i
\(841\) −636.385 −0.756700
\(842\) 954.036i 1.13306i
\(843\) 629.697 + 629.697i 0.746972 + 0.746972i
\(844\) 264.796i 0.313739i
\(845\) 0 0
\(846\) −88.0730 −0.104105
\(847\) 81.5381 81.5381i 0.0962670 0.0962670i
\(848\) −308.180 −0.363420
\(849\) 1785.62i 2.10320i
\(850\) −17.0542 + 17.0542i −0.0200638 + 0.0200638i
\(851\) −856.386 + 856.386i −1.00633 + 1.00633i
\(852\) −311.074 311.074i −0.365111 0.365111i
\(853\) 425.319 + 425.319i 0.498616 + 0.498616i 0.911007 0.412391i \(-0.135306\pi\)
−0.412391 + 0.911007i \(0.635306\pi\)
\(854\) −816.606 −0.956214
\(855\) 817.841i 0.956540i
\(856\) −325.410 325.410i −0.380152 0.380152i
\(857\) 48.5237i 0.0566204i −0.999599 0.0283102i \(-0.990987\pi\)
0.999599 0.0283102i \(-0.00901262\pi\)
\(858\) 0 0
\(859\) 165.922 0.193157 0.0965787 0.995325i \(-0.469210\pi\)
0.0965787 + 0.995325i \(0.469210\pi\)
\(860\) 90.3753 90.3753i 0.105088 0.105088i
\(861\) −197.675 −0.229588
\(862\) 110.119i 0.127748i
\(863\) 376.277 376.277i 0.436010 0.436010i −0.454657 0.890667i \(-0.650238\pi\)
0.890667 + 0.454657i \(0.150238\pi\)
\(864\) −49.2340 + 49.2340i −0.0569838 + 0.0569838i
\(865\) 1173.15 + 1173.15i 1.35624 + 1.35624i
\(866\) 497.603 + 497.603i 0.574599 + 0.574599i
\(867\) −1019.91 −1.17636
\(868\) 551.566i 0.635445i
\(869\) 59.1565 + 59.1565i 0.0680742 + 0.0680742i
\(870\) 415.395i 0.477466i
\(871\) 0 0
\(872\) 250.695 0.287494
\(873\) −225.023 + 225.023i −0.257758 + 0.257758i
\(874\) −745.609 −0.853099
\(875\) 1178.07i 1.34637i
\(876\) −98.4795 + 98.4795i −0.112420 + 0.112420i
\(877\) −903.857 + 903.857i −1.03062 + 1.03062i −0.0311071 + 0.999516i \(0.509903\pi\)
−0.999516 + 0.0311071i \(0.990097\pi\)
\(878\) 167.510 + 167.510i 0.190786 + 0.190786i
\(879\) −172.920 172.920i −0.196724 0.196724i
\(880\) −223.678 −0.254179
\(881\) 1248.35i 1.41697i −0.705727 0.708484i \(-0.749379\pi\)
0.705727 0.708484i \(-0.250621\pi\)
\(882\) 326.455 + 326.455i 0.370130 + 0.370130i
\(883\) 1217.43i 1.37874i 0.724408 + 0.689371i \(0.242113\pi\)
−0.724408 + 0.689371i \(0.757887\pi\)
\(884\) 0 0
\(885\) −1291.74 −1.45960
\(886\) −443.835 + 443.835i −0.500942 + 0.500942i
\(887\) −31.0970 −0.0350587 −0.0175293 0.999846i \(-0.505580\pi\)
−0.0175293 + 0.999846i \(0.505580\pi\)
\(888\) 660.283i 0.743562i
\(889\) −600.673 + 600.673i −0.675673 + 0.675673i
\(890\) 432.421 432.421i 0.485867 0.485867i
\(891\) −737.544 737.544i −0.827771 0.827771i
\(892\) −168.997 168.997i −0.189459 0.189459i
\(893\) −283.602 −0.317583
\(894\) 731.626i 0.818374i
\(895\) −239.058 239.058i −0.267104 0.267104i
\(896\) 116.085i 0.129559i
\(897\) 0 0
\(898\) −363.170 −0.404421
\(899\) 271.863 271.863i 0.302406 0.302406i
\(900\) −40.4758 −0.0449731
\(901\) 376.605i 0.417985i
\(902\) 52.4645 52.4645i 0.0581646 0.0581646i
\(903\) 334.190 334.190i 0.370088 0.370088i
\(904\) 139.762 + 139.762i 0.154604 + 0.154604i
\(905\) 703.901 + 703.901i 0.777791 + 0.777791i
\(906\) −204.531 −0.225752
\(907\) 1539.44i 1.69728i 0.528968 + 0.848642i \(0.322579\pi\)
−0.528968 + 0.848642i \(0.677421\pi\)
\(908\) 599.884 + 599.884i 0.660666 + 0.660666i
\(909\) 81.5771i 0.0897438i
\(910\) 0 0
\(911\) −148.518 −0.163027 −0.0815136 0.996672i \(-0.525975\pi\)
−0.0815136 + 0.996672i \(0.525975\pi\)
\(912\) 287.436 287.436i 0.315171 0.315171i
\(913\) −530.932 −0.581525
\(914\) 123.191i 0.134783i
\(915\) 817.127 817.127i 0.893035 0.893035i
\(916\) −316.412 + 316.412i −0.345428 + 0.345428i
\(917\) 347.171 + 347.171i 0.378595 + 0.378595i
\(918\) −60.1653 60.1653i −0.0655395 0.0655395i
\(919\) −1750.17 −1.90442 −0.952212 0.305438i \(-0.901197\pi\)
−0.952212 + 0.305438i \(0.901197\pi\)
\(920\) 301.316i 0.327518i
\(921\) −258.296 258.296i −0.280452 0.280452i
\(922\) 699.794i 0.758996i
\(923\) 0 0
\(924\) −827.116 −0.895148
\(925\) −149.700 + 149.700i −0.161837 + 0.161837i
\(926\) −798.943 −0.862789
\(927\) 468.922i 0.505849i
\(928\) −57.2175 + 57.2175i −0.0616568 + 0.0616568i
\(929\) −696.265 + 696.265i −0.749478 + 0.749478i −0.974381 0.224903i \(-0.927793\pi\)
0.224903 + 0.974381i \(0.427793\pi\)
\(930\) 551.917 + 551.917i 0.593460 + 0.593460i
\(931\) 1051.21 + 1051.21i 1.12912 + 1.12912i
\(932\) 326.061 0.349850
\(933\) 1273.95i 1.36544i
\(934\) 409.816 + 409.816i 0.438775 + 0.438775i
\(935\) 273.341i 0.292343i
\(936\) 0 0
\(937\) 835.853 0.892052 0.446026 0.895020i \(-0.352839\pi\)
0.446026 + 0.895020i \(0.352839\pi\)
\(938\) −62.7159 + 62.7159i −0.0668613 + 0.0668613i
\(939\) 1504.53 1.60227
\(940\) 114.610i 0.121925i
\(941\) 759.883 759.883i 0.807527 0.807527i −0.176732 0.984259i \(-0.556553\pi\)
0.984259 + 0.176732i \(0.0565525\pi\)
\(942\) 965.657 965.657i 1.02511 1.02511i
\(943\) −70.6749 70.6749i −0.0749468 0.0749468i
\(944\) −177.927 177.927i −0.188482 0.188482i
\(945\) 674.084 0.713317
\(946\) 177.393i 0.187519i
\(947\) 816.039 + 816.039i 0.861709 + 0.861709i 0.991537 0.129827i \(-0.0414423\pi\)
−0.129827 + 0.991537i \(0.541442\pi\)
\(948\) 61.4415i 0.0648118i
\(949\) 0 0
\(950\) −130.335 −0.137195
\(951\) 1242.49 1242.49i 1.30651 1.30651i
\(952\) −141.859 −0.149012
\(953\) 1628.14i 1.70844i −0.519914 0.854219i \(-0.674036\pi\)
0.519914 0.854219i \(-0.325964\pi\)
\(954\) 446.909 446.909i 0.468458 0.468458i
\(955\) −689.511 + 689.511i −0.722001 + 0.722001i
\(956\) 370.910 + 370.910i 0.387981 + 0.387981i
\(957\) −407.680 407.680i −0.425998 0.425998i
\(958\) 753.135 0.786153
\(959\) 1974.63i 2.05906i
\(960\) −116.159 116.159i −0.120999 0.120999i
\(961\) 238.576i 0.248258i
\(962\) 0 0
\(963\) 943.791 0.980053
\(964\) −642.477 + 642.477i −0.666470 + 0.666470i
\(965\) −486.529 −0.504175
\(966\) 1114.21i 1.15342i
\(967\) −1097.29 + 1097.29i −1.13473 + 1.13473i −0.145354 + 0.989380i \(0.546432\pi\)
−0.989380 + 0.145354i \(0.953568\pi\)
\(968\) −22.4768 + 22.4768i −0.0232198 + 0.0232198i
\(969\) 351.255 + 351.255i 0.362492 + 0.362492i
\(970\) 292.822 + 292.822i 0.301879 + 0.301879i
\(971\) 1289.79 1.32831 0.664157 0.747593i \(-0.268791\pi\)
0.664157 + 0.747593i \(0.268791\pi\)
\(972\) 544.481i 0.560165i
\(973\) 1400.95 + 1400.95i 1.43982 + 1.43982i
\(974\) 952.097i 0.977512i
\(975\) 0 0
\(976\) 225.106 0.230641
\(977\) −1105.01 + 1105.01i −1.13102 + 1.13102i −0.141012 + 0.990008i \(0.545036\pi\)
−0.990008 + 0.141012i \(0.954964\pi\)
\(978\) 661.481 0.676361
\(979\) 848.778i 0.866985i
\(980\) 424.816 424.816i 0.433486 0.433486i
\(981\) −363.547 + 363.547i −0.370588 + 0.370588i
\(982\) 117.456 + 117.456i 0.119609 + 0.119609i
\(983\) 79.2765 + 79.2765i 0.0806475 + 0.0806475i 0.746280 0.665632i \(-0.231838\pi\)
−0.665632 + 0.746280i \(0.731838\pi\)
\(984\) 54.4911 0.0553771
\(985\) 1151.85i 1.16939i
\(986\) −69.9214 69.9214i −0.0709142 0.0709142i
\(987\) 423.803i 0.429385i
\(988\) 0 0
\(989\) 238.966 0.241624
\(990\) 324.368 324.368i 0.327645 0.327645i
\(991\) −203.185 −0.205030 −0.102515 0.994731i \(-0.532689\pi\)
−0.102515 + 0.994731i \(0.532689\pi\)
\(992\) 152.045i 0.153271i
\(993\) −1333.10 + 1333.10i −1.34250 + 1.34250i
\(994\) −586.652 + 586.652i −0.590193 + 0.590193i
\(995\) 296.233 + 296.233i 0.297721 + 0.297721i
\(996\) −275.720 275.720i −0.276828 0.276828i
\(997\) 1972.04 1.97798 0.988989 0.147987i \(-0.0472792\pi\)
0.988989 + 0.147987i \(0.0472792\pi\)
\(998\) 310.774i 0.311396i
\(999\) −528.123 528.123i −0.528651 0.528651i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.d.g.239.2 8
13.2 odd 12 338.3.f.i.319.2 8
13.3 even 3 338.3.f.h.19.2 8
13.4 even 6 338.3.f.i.249.2 8
13.5 odd 4 338.3.d.f.99.2 8
13.6 odd 12 338.3.f.j.89.2 8
13.7 odd 12 338.3.f.h.89.2 8
13.8 odd 4 inner 338.3.d.g.99.2 8
13.9 even 3 26.3.f.b.15.2 yes 8
13.10 even 6 338.3.f.j.19.2 8
13.11 odd 12 26.3.f.b.7.2 8
13.12 even 2 338.3.d.f.239.2 8
39.11 even 12 234.3.bb.f.163.1 8
39.35 odd 6 234.3.bb.f.145.1 8
52.11 even 12 208.3.bd.f.33.1 8
52.35 odd 6 208.3.bd.f.145.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.7.2 8 13.11 odd 12
26.3.f.b.15.2 yes 8 13.9 even 3
208.3.bd.f.33.1 8 52.11 even 12
208.3.bd.f.145.1 8 52.35 odd 6
234.3.bb.f.145.1 8 39.35 odd 6
234.3.bb.f.163.1 8 39.11 even 12
338.3.d.f.99.2 8 13.5 odd 4
338.3.d.f.239.2 8 13.12 even 2
338.3.d.g.99.2 8 13.8 odd 4 inner
338.3.d.g.239.2 8 1.1 even 1 trivial
338.3.f.h.19.2 8 13.3 even 3
338.3.f.h.89.2 8 13.7 odd 12
338.3.f.i.249.2 8 13.4 even 6
338.3.f.i.319.2 8 13.2 odd 12
338.3.f.j.19.2 8 13.10 even 6
338.3.f.j.89.2 8 13.6 odd 12