Properties

Label 338.3.d.f.239.1
Level $338$
Weight $3$
Character 338.239
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.1
Root \(-3.90972 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.3.d.f.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -4.77574 q^{3} -2.00000i q^{4} +(5.88981 - 5.88981i) q^{5} +(4.77574 - 4.77574i) q^{6} +(-0.251956 - 0.251956i) q^{7} +(2.00000 + 2.00000i) q^{8} +13.8077 q^{9} +11.7796i q^{10} +(0.523787 + 0.523787i) q^{11} +9.55149i q^{12} +0.503913 q^{14} +(-28.1282 + 28.1282i) q^{15} -4.00000 q^{16} -2.88063i q^{17} +(-13.8077 + 13.8077i) q^{18} +(-7.68297 + 7.68297i) q^{19} +(-11.7796 - 11.7796i) q^{20} +(1.20328 + 1.20328i) q^{21} -1.04757 q^{22} -22.8951i q^{23} +(-9.55149 - 9.55149i) q^{24} -44.3798i q^{25} -22.9605 q^{27} +(-0.503913 + 0.503913i) q^{28} +30.4185 q^{29} -56.2565i q^{30} +(-14.8631 + 14.8631i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-2.50147 - 2.50147i) q^{33} +(2.88063 + 2.88063i) q^{34} -2.96795 q^{35} -27.6155i q^{36} +(-29.4864 - 29.4864i) q^{37} -15.3659i q^{38} +23.5593 q^{40} +(18.2202 - 18.2202i) q^{41} -2.40656 q^{42} -29.3186i q^{43} +(1.04757 - 1.04757i) q^{44} +(81.3249 - 81.3249i) q^{45} +(22.8951 + 22.8951i) q^{46} +(-21.2000 - 21.2000i) q^{47} +19.1030 q^{48} -48.8730i q^{49} +(44.3798 + 44.3798i) q^{50} +13.7571i q^{51} -85.8410 q^{53} +(22.9605 - 22.9605i) q^{54} +6.17002 q^{55} -1.00783i q^{56} +(36.6919 - 36.6919i) q^{57} +(-30.4185 + 30.4185i) q^{58} +(-70.7628 - 70.7628i) q^{59} +(56.2565 + 56.2565i) q^{60} +15.4640 q^{61} -29.7263i q^{62} +(-3.47895 - 3.47895i) q^{63} +8.00000i q^{64} +5.00295 q^{66} +(-49.2169 + 49.2169i) q^{67} -5.76126 q^{68} +109.341i q^{69} +(2.96795 - 2.96795i) q^{70} +(-68.9636 + 68.9636i) q^{71} +(27.6155 + 27.6155i) q^{72} +(-50.9541 - 50.9541i) q^{73} +58.9729 q^{74} +211.947i q^{75} +(15.3659 + 15.3659i) q^{76} -0.263943i q^{77} +105.981 q^{79} +(-23.5593 + 23.5593i) q^{80} -14.6162 q^{81} +36.4405i q^{82} +(27.2221 - 27.2221i) q^{83} +(2.40656 - 2.40656i) q^{84} +(-16.9664 - 16.9664i) q^{85} +(29.3186 + 29.3186i) q^{86} -145.271 q^{87} +2.09515i q^{88} +(60.1398 + 60.1398i) q^{89} +162.650i q^{90} -45.7902 q^{92} +(70.9825 - 70.9825i) q^{93} +42.4001 q^{94} +90.5025i q^{95} +(-19.1030 + 19.1030i) q^{96} +(-14.3732 + 14.3732i) q^{97} +(48.8730 + 48.8730i) q^{98} +(7.23232 + 7.23232i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 6 q^{5} - 10 q^{7} + 16 q^{8} + 84 q^{9} - 42 q^{11} + 20 q^{14} - 60 q^{15} - 32 q^{16} - 84 q^{18} - 22 q^{19} + 12 q^{20} + 102 q^{21} + 84 q^{22} + 72 q^{27} - 20 q^{28} + 12 q^{29}+ \cdots - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) −4.77574 −1.59191 −0.795957 0.605353i \(-0.793032\pi\)
−0.795957 + 0.605353i \(0.793032\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 5.88981 5.88981i 1.17796 1.17796i 0.197700 0.980263i \(-0.436653\pi\)
0.980263 0.197700i \(-0.0633472\pi\)
\(6\) 4.77574 4.77574i 0.795957 0.795957i
\(7\) −0.251956 0.251956i −0.0359938 0.0359938i 0.688881 0.724875i \(-0.258102\pi\)
−0.724875 + 0.688881i \(0.758102\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 13.8077 1.53419
\(10\) 11.7796i 1.17796i
\(11\) 0.523787 + 0.523787i 0.0476170 + 0.0476170i 0.730514 0.682897i \(-0.239280\pi\)
−0.682897 + 0.730514i \(0.739280\pi\)
\(12\) 9.55149i 0.795957i
\(13\) 0 0
\(14\) 0.503913 0.0359938
\(15\) −28.1282 + 28.1282i −1.87522 + 1.87522i
\(16\) −4.00000 −0.250000
\(17\) 2.88063i 0.169449i −0.996404 0.0847244i \(-0.972999\pi\)
0.996404 0.0847244i \(-0.0270010\pi\)
\(18\) −13.8077 + 13.8077i −0.767096 + 0.767096i
\(19\) −7.68297 + 7.68297i −0.404367 + 0.404367i −0.879769 0.475402i \(-0.842303\pi\)
0.475402 + 0.879769i \(0.342303\pi\)
\(20\) −11.7796 11.7796i −0.588981 0.588981i
\(21\) 1.20328 + 1.20328i 0.0572990 + 0.0572990i
\(22\) −1.04757 −0.0476170
\(23\) 22.8951i 0.995440i −0.867338 0.497720i \(-0.834171\pi\)
0.867338 0.497720i \(-0.165829\pi\)
\(24\) −9.55149 9.55149i −0.397979 0.397979i
\(25\) 44.3798i 1.77519i
\(26\) 0 0
\(27\) −22.9605 −0.850388
\(28\) −0.503913 + 0.503913i −0.0179969 + 0.0179969i
\(29\) 30.4185 1.04891 0.524457 0.851437i \(-0.324268\pi\)
0.524457 + 0.851437i \(0.324268\pi\)
\(30\) 56.2565i 1.87522i
\(31\) −14.8631 + 14.8631i −0.479456 + 0.479456i −0.904958 0.425502i \(-0.860098\pi\)
0.425502 + 0.904958i \(0.360098\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −2.50147 2.50147i −0.0758023 0.0758023i
\(34\) 2.88063 + 2.88063i 0.0847244 + 0.0847244i
\(35\) −2.96795 −0.0847986
\(36\) 27.6155i 0.767096i
\(37\) −29.4864 29.4864i −0.796931 0.796931i 0.185680 0.982610i \(-0.440551\pi\)
−0.982610 + 0.185680i \(0.940551\pi\)
\(38\) 15.3659i 0.404367i
\(39\) 0 0
\(40\) 23.5593 0.588981
\(41\) 18.2202 18.2202i 0.444396 0.444396i −0.449090 0.893486i \(-0.648252\pi\)
0.893486 + 0.449090i \(0.148252\pi\)
\(42\) −2.40656 −0.0572990
\(43\) 29.3186i 0.681828i −0.940095 0.340914i \(-0.889264\pi\)
0.940095 0.340914i \(-0.110736\pi\)
\(44\) 1.04757 1.04757i 0.0238085 0.0238085i
\(45\) 81.3249 81.3249i 1.80722 1.80722i
\(46\) 22.8951 + 22.8951i 0.497720 + 0.497720i
\(47\) −21.2000 21.2000i −0.451065 0.451065i 0.444643 0.895708i \(-0.353330\pi\)
−0.895708 + 0.444643i \(0.853330\pi\)
\(48\) 19.1030 0.397979
\(49\) 48.8730i 0.997409i
\(50\) 44.3798 + 44.3798i 0.887596 + 0.887596i
\(51\) 13.7571i 0.269748i
\(52\) 0 0
\(53\) −85.8410 −1.61964 −0.809821 0.586678i \(-0.800436\pi\)
−0.809821 + 0.586678i \(0.800436\pi\)
\(54\) 22.9605 22.9605i 0.425194 0.425194i
\(55\) 6.17002 0.112182
\(56\) 1.00783i 0.0179969i
\(57\) 36.6919 36.6919i 0.643718 0.643718i
\(58\) −30.4185 + 30.4185i −0.524457 + 0.524457i
\(59\) −70.7628 70.7628i −1.19937 1.19937i −0.974355 0.225015i \(-0.927757\pi\)
−0.225015 0.974355i \(-0.572243\pi\)
\(60\) 56.2565 + 56.2565i 0.937608 + 0.937608i
\(61\) 15.4640 0.253509 0.126754 0.991934i \(-0.459544\pi\)
0.126754 + 0.991934i \(0.459544\pi\)
\(62\) 29.7263i 0.479456i
\(63\) −3.47895 3.47895i −0.0552214 0.0552214i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 5.00295 0.0758023
\(67\) −49.2169 + 49.2169i −0.734581 + 0.734581i −0.971524 0.236943i \(-0.923855\pi\)
0.236943 + 0.971524i \(0.423855\pi\)
\(68\) −5.76126 −0.0847244
\(69\) 109.341i 1.58466i
\(70\) 2.96795 2.96795i 0.0423993 0.0423993i
\(71\) −68.9636 + 68.9636i −0.971318 + 0.971318i −0.999600 0.0282816i \(-0.990996\pi\)
0.0282816 + 0.999600i \(0.490996\pi\)
\(72\) 27.6155 + 27.6155i 0.383548 + 0.383548i
\(73\) −50.9541 50.9541i −0.698001 0.698001i 0.265978 0.963979i \(-0.414305\pi\)
−0.963979 + 0.265978i \(0.914305\pi\)
\(74\) 58.9729 0.796931
\(75\) 211.947i 2.82595i
\(76\) 15.3659 + 15.3659i 0.202183 + 0.202183i
\(77\) 0.263943i 0.00342783i
\(78\) 0 0
\(79\) 105.981 1.34153 0.670767 0.741669i \(-0.265965\pi\)
0.670767 + 0.741669i \(0.265965\pi\)
\(80\) −23.5593 + 23.5593i −0.294491 + 0.294491i
\(81\) −14.6162 −0.180447
\(82\) 36.4405i 0.444396i
\(83\) 27.2221 27.2221i 0.327977 0.327977i −0.523840 0.851817i \(-0.675501\pi\)
0.851817 + 0.523840i \(0.175501\pi\)
\(84\) 2.40656 2.40656i 0.0286495 0.0286495i
\(85\) −16.9664 16.9664i −0.199604 0.199604i
\(86\) 29.3186 + 29.3186i 0.340914 + 0.340914i
\(87\) −145.271 −1.66978
\(88\) 2.09515i 0.0238085i
\(89\) 60.1398 + 60.1398i 0.675728 + 0.675728i 0.959031 0.283303i \(-0.0914301\pi\)
−0.283303 + 0.959031i \(0.591430\pi\)
\(90\) 162.650i 1.80722i
\(91\) 0 0
\(92\) −45.7902 −0.497720
\(93\) 70.9825 70.9825i 0.763253 0.763253i
\(94\) 42.4001 0.451065
\(95\) 90.5025i 0.952658i
\(96\) −19.1030 + 19.1030i −0.198989 + 0.198989i
\(97\) −14.3732 + 14.3732i −0.148177 + 0.148177i −0.777303 0.629126i \(-0.783413\pi\)
0.629126 + 0.777303i \(0.283413\pi\)
\(98\) 48.8730 + 48.8730i 0.498704 + 0.498704i
\(99\) 7.23232 + 7.23232i 0.0730537 + 0.0730537i
\(100\) −88.7596 −0.887596
\(101\) 27.8238i 0.275484i 0.990468 + 0.137742i \(0.0439844\pi\)
−0.990468 + 0.137742i \(0.956016\pi\)
\(102\) −13.7571 13.7571i −0.134874 0.134874i
\(103\) 68.0852i 0.661021i −0.943802 0.330511i \(-0.892779\pi\)
0.943802 0.330511i \(-0.107221\pi\)
\(104\) 0 0
\(105\) 14.1742 0.134992
\(106\) 85.8410 85.8410i 0.809821 0.809821i
\(107\) −128.599 −1.20186 −0.600930 0.799301i \(-0.705203\pi\)
−0.600930 + 0.799301i \(0.705203\pi\)
\(108\) 45.9210i 0.425194i
\(109\) 30.5407 30.5407i 0.280190 0.280190i −0.552995 0.833185i \(-0.686515\pi\)
0.833185 + 0.552995i \(0.186515\pi\)
\(110\) −6.17002 + 6.17002i −0.0560911 + 0.0560911i
\(111\) 140.820 + 140.820i 1.26865 + 1.26865i
\(112\) 1.00783 + 1.00783i 0.00899844 + 0.00899844i
\(113\) 46.1413 0.408330 0.204165 0.978936i \(-0.434552\pi\)
0.204165 + 0.978936i \(0.434552\pi\)
\(114\) 73.3838i 0.643718i
\(115\) −134.848 134.848i −1.17259 1.17259i
\(116\) 60.8370i 0.524457i
\(117\) 0 0
\(118\) 141.526 1.19937
\(119\) −0.725793 + 0.725793i −0.00609910 + 0.00609910i
\(120\) −112.513 −0.937608
\(121\) 120.451i 0.995465i
\(122\) −15.4640 + 15.4640i −0.126754 + 0.126754i
\(123\) −87.0151 + 87.0151i −0.707440 + 0.707440i
\(124\) 29.7263 + 29.7263i 0.239728 + 0.239728i
\(125\) −114.143 114.143i −0.913147 0.913147i
\(126\) 6.95789 0.0552214
\(127\) 230.649i 1.81613i −0.418824 0.908067i \(-0.637558\pi\)
0.418824 0.908067i \(-0.362442\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 140.018i 1.08541i
\(130\) 0 0
\(131\) 162.262 1.23864 0.619321 0.785138i \(-0.287408\pi\)
0.619321 + 0.785138i \(0.287408\pi\)
\(132\) −5.00295 + 5.00295i −0.0379011 + 0.0379011i
\(133\) 3.87155 0.0291094
\(134\) 98.4338i 0.734581i
\(135\) −135.233 + 135.233i −1.00173 + 1.00173i
\(136\) 5.76126 5.76126i 0.0423622 0.0423622i
\(137\) 73.0740 + 73.0740i 0.533387 + 0.533387i 0.921579 0.388192i \(-0.126900\pi\)
−0.388192 + 0.921579i \(0.626900\pi\)
\(138\) −109.341 109.341i −0.792328 0.792328i
\(139\) −25.5784 −0.184017 −0.0920087 0.995758i \(-0.529329\pi\)
−0.0920087 + 0.995758i \(0.529329\pi\)
\(140\) 5.93590i 0.0423993i
\(141\) 101.246 + 101.246i 0.718056 + 0.718056i
\(142\) 137.927i 0.971318i
\(143\) 0 0
\(144\) −55.2309 −0.383548
\(145\) 179.159 179.159i 1.23558 1.23558i
\(146\) 101.908 0.698001
\(147\) 233.405i 1.58779i
\(148\) −58.9729 + 58.9729i −0.398465 + 0.398465i
\(149\) −19.0235 + 19.0235i −0.127674 + 0.127674i −0.768056 0.640382i \(-0.778776\pi\)
0.640382 + 0.768056i \(0.278776\pi\)
\(150\) −211.947 211.947i −1.41298 1.41298i
\(151\) 109.697 + 109.697i 0.726468 + 0.726468i 0.969914 0.243446i \(-0.0782780\pi\)
−0.243446 + 0.969914i \(0.578278\pi\)
\(152\) −30.7319 −0.202183
\(153\) 39.7749i 0.259967i
\(154\) 0.263943 + 0.263943i 0.00171392 + 0.00171392i
\(155\) 175.082i 1.12956i
\(156\) 0 0
\(157\) −142.680 −0.908790 −0.454395 0.890800i \(-0.650145\pi\)
−0.454395 + 0.890800i \(0.650145\pi\)
\(158\) −105.981 + 105.981i −0.670767 + 0.670767i
\(159\) 409.955 2.57833
\(160\) 47.1185i 0.294491i
\(161\) −5.76857 + 5.76857i −0.0358296 + 0.0358296i
\(162\) 14.6162 14.6162i 0.0902233 0.0902233i
\(163\) −18.7836 18.7836i −0.115237 0.115237i 0.647137 0.762374i \(-0.275966\pi\)
−0.762374 + 0.647137i \(0.775966\pi\)
\(164\) −36.4405 36.4405i −0.222198 0.222198i
\(165\) −29.4664 −0.178584
\(166\) 54.4441i 0.327977i
\(167\) 5.32150 + 5.32150i 0.0318653 + 0.0318653i 0.722860 0.690995i \(-0.242827\pi\)
−0.690995 + 0.722860i \(0.742827\pi\)
\(168\) 4.81312i 0.0286495i
\(169\) 0 0
\(170\) 33.9327 0.199604
\(171\) −106.084 + 106.084i −0.620376 + 0.620376i
\(172\) −58.6372 −0.340914
\(173\) 28.8293i 0.166643i −0.996523 0.0833216i \(-0.973447\pi\)
0.996523 0.0833216i \(-0.0265529\pi\)
\(174\) 145.271 145.271i 0.834891 0.834891i
\(175\) −11.1818 + 11.1818i −0.0638958 + 0.0638958i
\(176\) −2.09515 2.09515i −0.0119043 0.0119043i
\(177\) 337.945 + 337.945i 1.90929 + 1.90929i
\(178\) −120.280 −0.675728
\(179\) 212.098i 1.18491i 0.805605 + 0.592453i \(0.201840\pi\)
−0.805605 + 0.592453i \(0.798160\pi\)
\(180\) −162.650 162.650i −0.903610 0.903610i
\(181\) 112.088i 0.619270i −0.950856 0.309635i \(-0.899793\pi\)
0.950856 0.309635i \(-0.100207\pi\)
\(182\) 0 0
\(183\) −73.8523 −0.403564
\(184\) 45.7902 45.7902i 0.248860 0.248860i
\(185\) −347.339 −1.87751
\(186\) 141.965i 0.763253i
\(187\) 1.50884 1.50884i 0.00806865 0.00806865i
\(188\) −42.4001 + 42.4001i −0.225532 + 0.225532i
\(189\) 5.78504 + 5.78504i 0.0306087 + 0.0306087i
\(190\) −90.5025 90.5025i −0.476329 0.476329i
\(191\) 265.048 1.38769 0.693843 0.720126i \(-0.255916\pi\)
0.693843 + 0.720126i \(0.255916\pi\)
\(192\) 38.2060i 0.198989i
\(193\) 112.568 + 112.568i 0.583256 + 0.583256i 0.935796 0.352541i \(-0.114682\pi\)
−0.352541 + 0.935796i \(0.614682\pi\)
\(194\) 28.7464i 0.148177i
\(195\) 0 0
\(196\) −97.7461 −0.498704
\(197\) −212.704 + 212.704i −1.07972 + 1.07972i −0.0831819 + 0.996534i \(0.526508\pi\)
−0.996534 + 0.0831819i \(0.973492\pi\)
\(198\) −14.4646 −0.0730537
\(199\) 187.319i 0.941301i −0.882320 0.470650i \(-0.844019\pi\)
0.882320 0.470650i \(-0.155981\pi\)
\(200\) 88.7596 88.7596i 0.443798 0.443798i
\(201\) 235.047 235.047i 1.16939 1.16939i
\(202\) −27.8238 27.8238i −0.137742 0.137742i
\(203\) −7.66414 7.66414i −0.0377544 0.0377544i
\(204\) 27.5143 0.134874
\(205\) 214.627i 1.04696i
\(206\) 68.0852 + 68.0852i 0.330511 + 0.330511i
\(207\) 316.130i 1.52720i
\(208\) 0 0
\(209\) −8.04849 −0.0385095
\(210\) −14.1742 + 14.1742i −0.0674961 + 0.0674961i
\(211\) 169.813 0.804801 0.402401 0.915464i \(-0.368176\pi\)
0.402401 + 0.915464i \(0.368176\pi\)
\(212\) 171.682i 0.809821i
\(213\) 329.353 329.353i 1.54626 1.54626i
\(214\) 128.599 128.599i 0.600930 0.600930i
\(215\) −172.681 172.681i −0.803168 0.803168i
\(216\) −45.9210 45.9210i −0.212597 0.212597i
\(217\) 7.48972 0.0345148
\(218\) 61.0814i 0.280190i
\(219\) 243.344 + 243.344i 1.11116 + 1.11116i
\(220\) 12.3400i 0.0560911i
\(221\) 0 0
\(222\) −281.639 −1.26865
\(223\) 170.054 170.054i 0.762572 0.762572i −0.214215 0.976787i \(-0.568719\pi\)
0.976787 + 0.214215i \(0.0687192\pi\)
\(224\) −2.01565 −0.00899844
\(225\) 612.784i 2.72349i
\(226\) −46.1413 + 46.1413i −0.204165 + 0.204165i
\(227\) 63.9791 63.9791i 0.281846 0.281846i −0.551999 0.833845i \(-0.686135\pi\)
0.833845 + 0.551999i \(0.186135\pi\)
\(228\) −73.3838 73.3838i −0.321859 0.321859i
\(229\) −248.887 248.887i −1.08684 1.08684i −0.995852 0.0909923i \(-0.970996\pi\)
−0.0909923 0.995852i \(-0.529004\pi\)
\(230\) 269.696 1.17259
\(231\) 1.26053i 0.00545682i
\(232\) 60.8370 + 60.8370i 0.262228 + 0.262228i
\(233\) 384.870i 1.65180i 0.563815 + 0.825901i \(0.309333\pi\)
−0.563815 + 0.825901i \(0.690667\pi\)
\(234\) 0 0
\(235\) −249.728 −1.06267
\(236\) −141.526 + 141.526i −0.599685 + 0.599685i
\(237\) −506.139 −2.13561
\(238\) 1.45159i 0.00609910i
\(239\) −210.628 + 210.628i −0.881290 + 0.881290i −0.993666 0.112375i \(-0.964154\pi\)
0.112375 + 0.993666i \(0.464154\pi\)
\(240\) 112.513 112.513i 0.468804 0.468804i
\(241\) 132.472 + 132.472i 0.549675 + 0.549675i 0.926347 0.376672i \(-0.122932\pi\)
−0.376672 + 0.926347i \(0.622932\pi\)
\(242\) 120.451 + 120.451i 0.497733 + 0.497733i
\(243\) 276.447 1.13764
\(244\) 30.9281i 0.126754i
\(245\) −287.853 287.853i −1.17491 1.17491i
\(246\) 174.030i 0.707440i
\(247\) 0 0
\(248\) −59.4525 −0.239728
\(249\) −130.006 + 130.006i −0.522111 + 0.522111i
\(250\) 228.287 0.913147
\(251\) 100.518i 0.400471i −0.979748 0.200236i \(-0.935829\pi\)
0.979748 0.200236i \(-0.0641708\pi\)
\(252\) −6.95789 + 6.95789i −0.0276107 + 0.0276107i
\(253\) 11.9922 11.9922i 0.0473999 0.0473999i
\(254\) 230.649 + 230.649i 0.908067 + 0.908067i
\(255\) 81.0270 + 81.0270i 0.317753 + 0.317753i
\(256\) 16.0000 0.0625000
\(257\) 69.5049i 0.270447i 0.990815 + 0.135223i \(0.0431752\pi\)
−0.990815 + 0.135223i \(0.956825\pi\)
\(258\) −140.018 140.018i −0.542706 0.542706i
\(259\) 14.8586i 0.0573691i
\(260\) 0 0
\(261\) 420.010 1.60924
\(262\) −162.262 + 162.262i −0.619321 + 0.619321i
\(263\) 259.178 0.985469 0.492735 0.870180i \(-0.335997\pi\)
0.492735 + 0.870180i \(0.335997\pi\)
\(264\) 10.0059i 0.0379011i
\(265\) −505.587 + 505.587i −1.90788 + 1.90788i
\(266\) −3.87155 + 3.87155i −0.0145547 + 0.0145547i
\(267\) −287.212 287.212i −1.07570 1.07570i
\(268\) 98.4338 + 98.4338i 0.367290 + 0.367290i
\(269\) 42.0112 0.156176 0.0780878 0.996946i \(-0.475119\pi\)
0.0780878 + 0.996946i \(0.475119\pi\)
\(270\) 270.466i 1.00173i
\(271\) −222.800 222.800i −0.822139 0.822139i 0.164275 0.986415i \(-0.447471\pi\)
−0.986415 + 0.164275i \(0.947471\pi\)
\(272\) 11.5225i 0.0423622i
\(273\) 0 0
\(274\) −146.148 −0.533387
\(275\) 23.2456 23.2456i 0.0845294 0.0845294i
\(276\) 218.682 0.792328
\(277\) 189.673i 0.684739i −0.939565 0.342370i \(-0.888771\pi\)
0.939565 0.342370i \(-0.111229\pi\)
\(278\) 25.5784 25.5784i 0.0920087 0.0920087i
\(279\) −205.226 + 205.226i −0.735577 + 0.735577i
\(280\) −5.93590 5.93590i −0.0211997 0.0211997i
\(281\) 32.8661 + 32.8661i 0.116961 + 0.116961i 0.763165 0.646204i \(-0.223644\pi\)
−0.646204 + 0.763165i \(0.723644\pi\)
\(282\) −202.492 −0.718056
\(283\) 526.965i 1.86207i −0.364934 0.931033i \(-0.618909\pi\)
0.364934 0.931033i \(-0.381091\pi\)
\(284\) 137.927 + 137.927i 0.485659 + 0.485659i
\(285\) 432.217i 1.51655i
\(286\) 0 0
\(287\) −9.18141 −0.0319910
\(288\) 55.2309 55.2309i 0.191774 0.191774i
\(289\) 280.702 0.971287
\(290\) 358.319i 1.23558i
\(291\) 68.6426 68.6426i 0.235885 0.235885i
\(292\) −101.908 + 101.908i −0.349001 + 0.349001i
\(293\) −96.8335 96.8335i −0.330490 0.330490i 0.522283 0.852772i \(-0.325081\pi\)
−0.852772 + 0.522283i \(0.825081\pi\)
\(294\) −233.405 233.405i −0.793895 0.793895i
\(295\) −833.560 −2.82563
\(296\) 117.946i 0.398465i
\(297\) −12.0264 12.0264i −0.0404930 0.0404930i
\(298\) 38.0469i 0.127674i
\(299\) 0 0
\(300\) 423.893 1.41298
\(301\) −7.38701 + 7.38701i −0.0245416 + 0.0245416i
\(302\) −219.393 −0.726468
\(303\) 132.880i 0.438546i
\(304\) 30.7319 30.7319i 0.101092 0.101092i
\(305\) 91.0803 91.0803i 0.298624 0.298624i
\(306\) 39.7749 + 39.7749i 0.129983 + 0.129983i
\(307\) 306.038 + 306.038i 0.996866 + 0.996866i 0.999995 0.00312957i \(-0.000996174\pi\)
−0.00312957 + 0.999995i \(0.500996\pi\)
\(308\) −0.527886 −0.00171392
\(309\) 325.157i 1.05229i
\(310\) −175.082 175.082i −0.564781 0.564781i
\(311\) 138.274i 0.444611i −0.974977 0.222305i \(-0.928642\pi\)
0.974977 0.222305i \(-0.0713582\pi\)
\(312\) 0 0
\(313\) 525.434 1.67870 0.839352 0.543589i \(-0.182935\pi\)
0.839352 + 0.543589i \(0.182935\pi\)
\(314\) 142.680 142.680i 0.454395 0.454395i
\(315\) −40.9807 −0.130097
\(316\) 211.962i 0.670767i
\(317\) −24.3899 + 24.3899i −0.0769397 + 0.0769397i −0.744529 0.667590i \(-0.767326\pi\)
0.667590 + 0.744529i \(0.267326\pi\)
\(318\) −409.955 + 409.955i −1.28917 + 1.28917i
\(319\) 15.9328 + 15.9328i 0.0499462 + 0.0499462i
\(320\) 47.1185 + 47.1185i 0.147245 + 0.147245i
\(321\) 614.156 1.91326
\(322\) 11.5371i 0.0358296i
\(323\) 22.1318 + 22.1318i 0.0685194 + 0.0685194i
\(324\) 29.2323i 0.0902233i
\(325\) 0 0
\(326\) 37.5671 0.115237
\(327\) −145.855 + 145.855i −0.446039 + 0.446039i
\(328\) 72.8809 0.222198
\(329\) 10.6830i 0.0324710i
\(330\) 29.4664 29.4664i 0.0892922 0.0892922i
\(331\) −15.6801 + 15.6801i −0.0473718 + 0.0473718i −0.730396 0.683024i \(-0.760664\pi\)
0.683024 + 0.730396i \(0.260664\pi\)
\(332\) −54.4441 54.4441i −0.163988 0.163988i
\(333\) −407.141 407.141i −1.22264 1.22264i
\(334\) −10.6430 −0.0318653
\(335\) 579.757i 1.73062i
\(336\) −4.81312 4.81312i −0.0143248 0.0143248i
\(337\) 544.688i 1.61629i 0.588987 + 0.808143i \(0.299527\pi\)
−0.588987 + 0.808143i \(0.700473\pi\)
\(338\) 0 0
\(339\) −220.359 −0.650026
\(340\) −33.9327 + 33.9327i −0.0998021 + 0.0998021i
\(341\) −15.5702 −0.0456605
\(342\) 212.169i 0.620376i
\(343\) −24.6597 + 24.6597i −0.0718943 + 0.0718943i
\(344\) 58.6372 58.6372i 0.170457 0.170457i
\(345\) 643.999 + 643.999i 1.86666 + 1.86666i
\(346\) 28.8293 + 28.8293i 0.0833216 + 0.0833216i
\(347\) −640.601 −1.84611 −0.923057 0.384663i \(-0.874317\pi\)
−0.923057 + 0.384663i \(0.874317\pi\)
\(348\) 290.542i 0.834891i
\(349\) −42.7706 42.7706i −0.122552 0.122552i 0.643171 0.765723i \(-0.277619\pi\)
−0.765723 + 0.643171i \(0.777619\pi\)
\(350\) 22.3635i 0.0638958i
\(351\) 0 0
\(352\) 4.19030 0.0119043
\(353\) 207.432 207.432i 0.587625 0.587625i −0.349362 0.936988i \(-0.613602\pi\)
0.936988 + 0.349362i \(0.113602\pi\)
\(354\) −675.890 −1.90929
\(355\) 812.365i 2.28835i
\(356\) 120.280 120.280i 0.337864 0.337864i
\(357\) 3.46620 3.46620i 0.00970925 0.00970925i
\(358\) −212.098 212.098i −0.592453 0.592453i
\(359\) 118.752 + 118.752i 0.330785 + 0.330785i 0.852885 0.522099i \(-0.174851\pi\)
−0.522099 + 0.852885i \(0.674851\pi\)
\(360\) 325.300 0.903610
\(361\) 242.944i 0.672975i
\(362\) 112.088 + 112.088i 0.309635 + 0.309635i
\(363\) 575.245i 1.58470i
\(364\) 0 0
\(365\) −600.220 −1.64444
\(366\) 73.8523 73.8523i 0.201782 0.201782i
\(367\) −102.316 −0.278789 −0.139395 0.990237i \(-0.544516\pi\)
−0.139395 + 0.990237i \(0.544516\pi\)
\(368\) 91.5805i 0.248860i
\(369\) 251.580 251.580i 0.681789 0.681789i
\(370\) 347.339 347.339i 0.938755 0.938755i
\(371\) 21.6282 + 21.6282i 0.0582970 + 0.0582970i
\(372\) −141.965 141.965i −0.381626 0.381626i
\(373\) 604.616 1.62095 0.810477 0.585770i \(-0.199208\pi\)
0.810477 + 0.585770i \(0.199208\pi\)
\(374\) 3.01767i 0.00806865i
\(375\) 545.119 + 545.119i 1.45365 + 1.45365i
\(376\) 84.8001i 0.225532i
\(377\) 0 0
\(378\) −11.5701 −0.0306087
\(379\) 271.338 271.338i 0.715931 0.715931i −0.251838 0.967769i \(-0.581035\pi\)
0.967769 + 0.251838i \(0.0810350\pi\)
\(380\) 181.005 0.476329
\(381\) 1101.52i 2.89113i
\(382\) −265.048 + 265.048i −0.693843 + 0.693843i
\(383\) 289.692 289.692i 0.756377 0.756377i −0.219284 0.975661i \(-0.570372\pi\)
0.975661 + 0.219284i \(0.0703722\pi\)
\(384\) 38.2060 + 38.2060i 0.0994947 + 0.0994947i
\(385\) −1.55458 1.55458i −0.00403786 0.00403786i
\(386\) −225.137 −0.583256
\(387\) 404.823i 1.04605i
\(388\) 28.7464 + 28.7464i 0.0740885 + 0.0740885i
\(389\) 43.6909i 0.112316i 0.998422 + 0.0561579i \(0.0178850\pi\)
−0.998422 + 0.0561579i \(0.982115\pi\)
\(390\) 0 0
\(391\) −65.9523 −0.168676
\(392\) 97.7461 97.7461i 0.249352 0.249352i
\(393\) −774.922 −1.97181
\(394\) 425.408i 1.07972i
\(395\) 624.209 624.209i 1.58028 1.58028i
\(396\) 14.4646 14.4646i 0.0365268 0.0365268i
\(397\) 193.785 + 193.785i 0.488122 + 0.488122i 0.907713 0.419591i \(-0.137826\pi\)
−0.419591 + 0.907713i \(0.637826\pi\)
\(398\) 187.319 + 187.319i 0.470650 + 0.470650i
\(399\) −18.4895 −0.0463396
\(400\) 177.519i 0.443798i
\(401\) 63.0185 + 63.0185i 0.157153 + 0.157153i 0.781304 0.624151i \(-0.214555\pi\)
−0.624151 + 0.781304i \(0.714555\pi\)
\(402\) 470.095i 1.16939i
\(403\) 0 0
\(404\) 55.6477 0.137742
\(405\) −86.0865 + 86.0865i −0.212559 + 0.212559i
\(406\) 15.3283 0.0377544
\(407\) 30.8893i 0.0758950i
\(408\) −27.5143 + 27.5143i −0.0674370 + 0.0674370i
\(409\) −516.276 + 516.276i −1.26229 + 1.26229i −0.312307 + 0.949981i \(0.601102\pi\)
−0.949981 + 0.312307i \(0.898898\pi\)
\(410\) 214.627 + 214.627i 0.523482 + 0.523482i
\(411\) −348.983 348.983i −0.849107 0.849107i
\(412\) −136.170 −0.330511
\(413\) 35.6583i 0.0863397i
\(414\) 316.130 + 316.130i 0.763598 + 0.763598i
\(415\) 320.666i 0.772688i
\(416\) 0 0
\(417\) 122.156 0.292940
\(418\) 8.04849 8.04849i 0.0192548 0.0192548i
\(419\) 260.975 0.622851 0.311426 0.950271i \(-0.399194\pi\)
0.311426 + 0.950271i \(0.399194\pi\)
\(420\) 28.3484i 0.0674961i
\(421\) 103.038 103.038i 0.244745 0.244745i −0.574065 0.818810i \(-0.694634\pi\)
0.818810 + 0.574065i \(0.194634\pi\)
\(422\) −169.813 + 169.813i −0.402401 + 0.402401i
\(423\) −292.724 292.724i −0.692020 0.692020i
\(424\) −171.682 171.682i −0.404910 0.404910i
\(425\) −127.842 −0.300804
\(426\) 658.705i 1.54626i
\(427\) −3.89626 3.89626i −0.00912474 0.00912474i
\(428\) 257.198i 0.600930i
\(429\) 0 0
\(430\) 345.362 0.803168
\(431\) 96.3288 96.3288i 0.223501 0.223501i −0.586470 0.809971i \(-0.699483\pi\)
0.809971 + 0.586470i \(0.199483\pi\)
\(432\) 91.8419 0.212597
\(433\) 201.358i 0.465031i 0.972593 + 0.232516i \(0.0746956\pi\)
−0.972593 + 0.232516i \(0.925304\pi\)
\(434\) −7.48972 + 7.48972i −0.0172574 + 0.0172574i
\(435\) −855.619 + 855.619i −1.96694 + 1.96694i
\(436\) −61.0814 61.0814i −0.140095 0.140095i
\(437\) 175.902 + 175.902i 0.402523 + 0.402523i
\(438\) −486.687 −1.11116
\(439\) 74.3517i 0.169366i 0.996408 + 0.0846830i \(0.0269878\pi\)
−0.996408 + 0.0846830i \(0.973012\pi\)
\(440\) 12.3400 + 12.3400i 0.0280455 + 0.0280455i
\(441\) 674.826i 1.53022i
\(442\) 0 0
\(443\) 130.644 0.294908 0.147454 0.989069i \(-0.452892\pi\)
0.147454 + 0.989069i \(0.452892\pi\)
\(444\) 281.639 281.639i 0.634323 0.634323i
\(445\) 708.424 1.59196
\(446\) 340.107i 0.762572i
\(447\) 90.8512 90.8512i 0.203246 0.203246i
\(448\) 2.01565 2.01565i 0.00449922 0.00449922i
\(449\) −509.691 509.691i −1.13517 1.13517i −0.989305 0.145864i \(-0.953404\pi\)
−0.145864 0.989305i \(-0.546596\pi\)
\(450\) 612.784 + 612.784i 1.36174 + 1.36174i
\(451\) 19.0871 0.0423216
\(452\) 92.2826i 0.204165i
\(453\) −523.883 523.883i −1.15647 1.15647i
\(454\) 127.958i 0.281846i
\(455\) 0 0
\(456\) 146.768 0.321859
\(457\) 256.408 256.408i 0.561069 0.561069i −0.368542 0.929611i \(-0.620143\pi\)
0.929611 + 0.368542i \(0.120143\pi\)
\(458\) 497.774 1.08684
\(459\) 66.1406i 0.144097i
\(460\) −269.696 + 269.696i −0.586295 + 0.586295i
\(461\) 611.809 611.809i 1.32713 1.32713i 0.419274 0.907860i \(-0.362285\pi\)
0.907860 0.419274i \(-0.137715\pi\)
\(462\) −1.26053 1.26053i −0.00272841 0.00272841i
\(463\) −163.492 163.492i −0.353114 0.353114i 0.508153 0.861267i \(-0.330328\pi\)
−0.861267 + 0.508153i \(0.830328\pi\)
\(464\) −121.674 −0.262228
\(465\) 836.147i 1.79817i
\(466\) −384.870 384.870i −0.825901 0.825901i
\(467\) 242.866i 0.520056i −0.965601 0.260028i \(-0.916268\pi\)
0.965601 0.260028i \(-0.0837318\pi\)
\(468\) 0 0
\(469\) 24.8010 0.0528807
\(470\) 249.728 249.728i 0.531337 0.531337i
\(471\) 681.403 1.44672
\(472\) 283.051i 0.599685i
\(473\) 15.3567 15.3567i 0.0324666 0.0324666i
\(474\) 506.139 506.139i 1.06780 1.06780i
\(475\) 340.969 + 340.969i 0.717829 + 0.717829i
\(476\) 1.45159 + 1.45159i 0.00304955 + 0.00304955i
\(477\) −1185.27 −2.48484
\(478\) 421.257i 0.881290i
\(479\) 158.062 + 158.062i 0.329983 + 0.329983i 0.852580 0.522597i \(-0.175037\pi\)
−0.522597 + 0.852580i \(0.675037\pi\)
\(480\) 225.026i 0.468804i
\(481\) 0 0
\(482\) −264.943 −0.549675
\(483\) 27.5492 27.5492i 0.0570377 0.0570377i
\(484\) −240.903 −0.497733
\(485\) 169.311i 0.349094i
\(486\) −276.447 + 276.447i −0.568822 + 0.568822i
\(487\) 15.2557 15.2557i 0.0313258 0.0313258i −0.691270 0.722596i \(-0.742949\pi\)
0.722596 + 0.691270i \(0.242949\pi\)
\(488\) 30.9281 + 30.9281i 0.0633772 + 0.0633772i
\(489\) 89.7055 + 89.7055i 0.183447 + 0.183447i
\(490\) 575.706 1.17491
\(491\) 58.3092i 0.118756i 0.998236 + 0.0593780i \(0.0189117\pi\)
−0.998236 + 0.0593780i \(0.981088\pi\)
\(492\) 174.030 + 174.030i 0.353720 + 0.353720i
\(493\) 87.6244i 0.177737i
\(494\) 0 0
\(495\) 85.1940 0.172109
\(496\) 59.4525 59.4525i 0.119864 0.119864i
\(497\) 34.7516 0.0699228
\(498\) 260.011i 0.522111i
\(499\) −625.494 + 625.494i −1.25350 + 1.25350i −0.299353 + 0.954142i \(0.596771\pi\)
−0.954142 + 0.299353i \(0.903229\pi\)
\(500\) −228.287 + 228.287i −0.456573 + 0.456573i
\(501\) −25.4141 25.4141i −0.0507268 0.0507268i
\(502\) 100.518 + 100.518i 0.200236 + 0.200236i
\(503\) −10.5141 −0.0209029 −0.0104514 0.999945i \(-0.503327\pi\)
−0.0104514 + 0.999945i \(0.503327\pi\)
\(504\) 13.9158i 0.0276107i
\(505\) 163.877 + 163.877i 0.324509 + 0.324509i
\(506\) 23.9843i 0.0473999i
\(507\) 0 0
\(508\) −461.298 −0.908067
\(509\) −72.0472 + 72.0472i −0.141547 + 0.141547i −0.774329 0.632783i \(-0.781913\pi\)
0.632783 + 0.774329i \(0.281913\pi\)
\(510\) −162.054 −0.317753
\(511\) 25.6764i 0.0502474i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 176.405 176.405i 0.343869 0.343869i
\(514\) −69.5049 69.5049i −0.135223 0.135223i
\(515\) −401.009 401.009i −0.778658 0.778658i
\(516\) 280.036 0.542706
\(517\) 22.2086i 0.0429567i
\(518\) −14.8586 14.8586i −0.0286845 0.0286845i
\(519\) 137.681i 0.265282i
\(520\) 0 0
\(521\) 170.985 0.328185 0.164093 0.986445i \(-0.447530\pi\)
0.164093 + 0.986445i \(0.447530\pi\)
\(522\) −420.010 + 420.010i −0.804618 + 0.804618i
\(523\) −835.390 −1.59730 −0.798652 0.601793i \(-0.794453\pi\)
−0.798652 + 0.601793i \(0.794453\pi\)
\(524\) 324.524i 0.619321i
\(525\) 53.4013 53.4013i 0.101717 0.101717i
\(526\) −259.178 + 259.178i −0.492735 + 0.492735i
\(527\) 42.8152 + 42.8152i 0.0812432 + 0.0812432i
\(528\) 10.0059 + 10.0059i 0.0189506 + 0.0189506i
\(529\) 4.81369 0.00909960
\(530\) 1011.17i 1.90788i
\(531\) −977.074 977.074i −1.84006 1.84006i
\(532\) 7.74309i 0.0145547i
\(533\) 0 0
\(534\) 574.424 1.07570
\(535\) −757.425 + 757.425i −1.41575 + 1.41575i
\(536\) −196.868 −0.367290
\(537\) 1012.93i 1.88627i
\(538\) −42.0112 + 42.0112i −0.0780878 + 0.0780878i
\(539\) 25.5991 25.5991i 0.0474937 0.0474937i
\(540\) 270.466 + 270.466i 0.500863 + 0.500863i
\(541\) −503.966 503.966i −0.931545 0.931545i 0.0662572 0.997803i \(-0.478894\pi\)
−0.997803 + 0.0662572i \(0.978894\pi\)
\(542\) 445.599 0.822139
\(543\) 535.303i 0.985825i
\(544\) −11.5225 11.5225i −0.0211811 0.0211811i
\(545\) 359.758i 0.660107i
\(546\) 0 0
\(547\) −249.081 −0.455359 −0.227680 0.973736i \(-0.573114\pi\)
−0.227680 + 0.973736i \(0.573114\pi\)
\(548\) 146.148 146.148i 0.266694 0.266694i
\(549\) 213.523 0.388931
\(550\) 46.4912i 0.0845294i
\(551\) −233.704 + 233.704i −0.424146 + 0.424146i
\(552\) −218.682 + 218.682i −0.396164 + 0.396164i
\(553\) −26.7026 26.7026i −0.0482868 0.0482868i
\(554\) 189.673 + 189.673i 0.342370 + 0.342370i
\(555\) 1658.80 2.98883
\(556\) 51.1568i 0.0920087i
\(557\) 462.831 + 462.831i 0.830936 + 0.830936i 0.987645 0.156709i \(-0.0500884\pi\)
−0.156709 + 0.987645i \(0.550088\pi\)
\(558\) 410.452i 0.735577i
\(559\) 0 0
\(560\) 11.8718 0.0211997
\(561\) −7.20582 + 7.20582i −0.0128446 + 0.0128446i
\(562\) −65.7322 −0.116961
\(563\) 956.407i 1.69877i −0.527774 0.849385i \(-0.676973\pi\)
0.527774 0.849385i \(-0.323027\pi\)
\(564\) 202.492 202.492i 0.359028 0.359028i
\(565\) 271.764 271.764i 0.480997 0.480997i
\(566\) 526.965 + 526.965i 0.931033 + 0.931033i
\(567\) 3.68264 + 3.68264i 0.00649495 + 0.00649495i
\(568\) −275.854 −0.485659
\(569\) 325.258i 0.571630i 0.958285 + 0.285815i \(0.0922643\pi\)
−0.958285 + 0.285815i \(0.907736\pi\)
\(570\) 432.217 + 432.217i 0.758275 + 0.758275i
\(571\) 218.946i 0.383442i −0.981449 0.191721i \(-0.938593\pi\)
0.981449 0.191721i \(-0.0614069\pi\)
\(572\) 0 0
\(573\) −1265.80 −2.20908
\(574\) 9.18141 9.18141i 0.0159955 0.0159955i
\(575\) −1016.08 −1.76710
\(576\) 110.462i 0.191774i
\(577\) 478.578 478.578i 0.829425 0.829425i −0.158012 0.987437i \(-0.550508\pi\)
0.987437 + 0.158012i \(0.0505084\pi\)
\(578\) −280.702 + 280.702i −0.485644 + 0.485644i
\(579\) −537.597 537.597i −0.928493 0.928493i
\(580\) −358.319 358.319i −0.617791 0.617791i
\(581\) −13.7175 −0.0236102
\(582\) 137.285i 0.235885i
\(583\) −44.9624 44.9624i −0.0771225 0.0771225i
\(584\) 203.816i 0.349001i
\(585\) 0 0
\(586\) 193.667 0.330490
\(587\) −175.333 + 175.333i −0.298694 + 0.298694i −0.840502 0.541808i \(-0.817740\pi\)
0.541808 + 0.840502i \(0.317740\pi\)
\(588\) 466.810 0.793895
\(589\) 228.386i 0.387752i
\(590\) 833.560 833.560i 1.41281 1.41281i
\(591\) 1015.82 1015.82i 1.71882 1.71882i
\(592\) 117.946 + 117.946i 0.199233 + 0.199233i
\(593\) 107.905 + 107.905i 0.181964 + 0.181964i 0.792211 0.610247i \(-0.208930\pi\)
−0.610247 + 0.792211i \(0.708930\pi\)
\(594\) 24.0528 0.0404930
\(595\) 8.54957i 0.0143690i
\(596\) 38.0469 + 38.0469i 0.0638371 + 0.0638371i
\(597\) 894.587i 1.49847i
\(598\) 0 0
\(599\) 788.030 1.31558 0.657788 0.753203i \(-0.271492\pi\)
0.657788 + 0.753203i \(0.271492\pi\)
\(600\) −423.893 + 423.893i −0.706488 + 0.706488i
\(601\) 383.052 0.637358 0.318679 0.947863i \(-0.396761\pi\)
0.318679 + 0.947863i \(0.396761\pi\)
\(602\) 14.7740i 0.0245416i
\(603\) −679.574 + 679.574i −1.12699 + 1.12699i
\(604\) 219.393 219.393i 0.363234 0.363234i
\(605\) −709.436 709.436i −1.17262 1.17262i
\(606\) 132.880 + 132.880i 0.219273 + 0.219273i
\(607\) 237.780 0.391730 0.195865 0.980631i \(-0.437249\pi\)
0.195865 + 0.980631i \(0.437249\pi\)
\(608\) 61.4638i 0.101092i
\(609\) 36.6020 + 36.6020i 0.0601017 + 0.0601017i
\(610\) 182.161i 0.298624i
\(611\) 0 0
\(612\) −79.5499 −0.129983
\(613\) −309.811 + 309.811i −0.505401 + 0.505401i −0.913111 0.407710i \(-0.866327\pi\)
0.407710 + 0.913111i \(0.366327\pi\)
\(614\) −612.075 −0.996866
\(615\) 1025.01i 1.66668i
\(616\) 0.527886 0.527886i 0.000856959 0.000856959i
\(617\) −81.8203 + 81.8203i −0.132610 + 0.132610i −0.770296 0.637686i \(-0.779892\pi\)
0.637686 + 0.770296i \(0.279892\pi\)
\(618\) −325.157 325.157i −0.526145 0.526145i
\(619\) 471.622 + 471.622i 0.761910 + 0.761910i 0.976667 0.214757i \(-0.0688961\pi\)
−0.214757 + 0.976667i \(0.568896\pi\)
\(620\) 350.164 0.564781
\(621\) 525.683i 0.846510i
\(622\) 138.274 + 138.274i 0.222305 + 0.222305i
\(623\) 30.3052i 0.0486440i
\(624\) 0 0
\(625\) −235.071 −0.376114
\(626\) −525.434 + 525.434i −0.839352 + 0.839352i
\(627\) 38.4375 0.0613038
\(628\) 285.360i 0.454395i
\(629\) −84.9395 + 84.9395i −0.135039 + 0.135039i
\(630\) 40.9807 40.9807i 0.0650487 0.0650487i
\(631\) 601.949 + 601.949i 0.953960 + 0.953960i 0.998986 0.0450262i \(-0.0143371\pi\)
−0.0450262 + 0.998986i \(0.514337\pi\)
\(632\) 211.962 + 211.962i 0.335383 + 0.335383i
\(633\) −810.984 −1.28118
\(634\) 48.7798i 0.0769397i
\(635\) −1358.48 1358.48i −2.13934 2.13934i
\(636\) 819.909i 1.28917i
\(637\) 0 0
\(638\) −31.8657 −0.0499462
\(639\) −952.231 + 952.231i −1.49019 + 1.49019i
\(640\) −94.2370 −0.147245
\(641\) 29.2054i 0.0455622i 0.999740 + 0.0227811i \(0.00725207\pi\)
−0.999740 + 0.0227811i \(0.992748\pi\)
\(642\) −614.156 + 614.156i −0.956630 + 0.956630i
\(643\) 144.515 144.515i 0.224752 0.224752i −0.585744 0.810496i \(-0.699198\pi\)
0.810496 + 0.585744i \(0.199198\pi\)
\(644\) 11.5371 + 11.5371i 0.0179148 + 0.0179148i
\(645\) 824.681 + 824.681i 1.27857 + 1.27857i
\(646\) −44.2636 −0.0685194
\(647\) 1057.30i 1.63415i 0.576528 + 0.817077i \(0.304407\pi\)
−0.576528 + 0.817077i \(0.695593\pi\)
\(648\) −29.2323 29.2323i −0.0451116 0.0451116i
\(649\) 74.1294i 0.114221i
\(650\) 0 0
\(651\) −35.7690 −0.0549447
\(652\) −37.5671 + 37.5671i −0.0576183 + 0.0576183i
\(653\) 76.1010 0.116541 0.0582703 0.998301i \(-0.481441\pi\)
0.0582703 + 0.998301i \(0.481441\pi\)
\(654\) 291.709i 0.446039i
\(655\) 955.693 955.693i 1.45907 1.45907i
\(656\) −72.8809 + 72.8809i −0.111099 + 0.111099i
\(657\) −703.560 703.560i −1.07087 1.07087i
\(658\) −10.6830 10.6830i −0.0162355 0.0162355i
\(659\) −843.635 −1.28017 −0.640087 0.768302i \(-0.721102\pi\)
−0.640087 + 0.768302i \(0.721102\pi\)
\(660\) 58.9329i 0.0892922i
\(661\) 592.287 + 592.287i 0.896046 + 0.896046i 0.995084 0.0990373i \(-0.0315763\pi\)
−0.0990373 + 0.995084i \(0.531576\pi\)
\(662\) 31.3602i 0.0473718i
\(663\) 0 0
\(664\) 108.888 0.163988
\(665\) 22.8027 22.8027i 0.0342898 0.0342898i
\(666\) 814.281 1.22264
\(667\) 696.435i 1.04413i
\(668\) 10.6430 10.6430i 0.0159326 0.0159326i
\(669\) −812.132 + 812.132i −1.21395 + 1.21395i
\(670\) −579.757 579.757i −0.865308 0.865308i
\(671\) 8.09987 + 8.09987i 0.0120713 + 0.0120713i
\(672\) 9.62623 0.0143248
\(673\) 386.500i 0.574294i −0.957887 0.287147i \(-0.907293\pi\)
0.957887 0.287147i \(-0.0927068\pi\)
\(674\) −544.688 544.688i −0.808143 0.808143i
\(675\) 1018.98i 1.50960i
\(676\) 0 0
\(677\) 328.683 0.485500 0.242750 0.970089i \(-0.421951\pi\)
0.242750 + 0.970089i \(0.421951\pi\)
\(678\) 220.359 220.359i 0.325013 0.325013i
\(679\) 7.24283 0.0106669
\(680\) 67.8654i 0.0998021i
\(681\) −305.548 + 305.548i −0.448675 + 0.448675i
\(682\) 15.5702 15.5702i 0.0228303 0.0228303i
\(683\) 571.567 + 571.567i 0.836848 + 0.836848i 0.988443 0.151595i \(-0.0484410\pi\)
−0.151595 + 0.988443i \(0.548441\pi\)
\(684\) 212.169 + 212.169i 0.310188 + 0.310188i
\(685\) 860.785 1.25662
\(686\) 49.3195i 0.0718943i
\(687\) 1188.62 + 1188.62i 1.73016 + 1.73016i
\(688\) 117.274i 0.170457i
\(689\) 0 0
\(690\) −1288.00 −1.86666
\(691\) 570.418 570.418i 0.825497 0.825497i −0.161393 0.986890i \(-0.551599\pi\)
0.986890 + 0.161393i \(0.0515988\pi\)
\(692\) −57.6586 −0.0833216
\(693\) 3.64446i 0.00525896i
\(694\) 640.601 640.601i 0.923057 0.923057i
\(695\) −150.652 + 150.652i −0.216766 + 0.216766i
\(696\) −290.542 290.542i −0.417445 0.417445i
\(697\) −52.4857 52.4857i −0.0753023 0.0753023i
\(698\) 85.5412 0.122552
\(699\) 1838.04i 2.62953i
\(700\) 22.3635 + 22.3635i 0.0319479 + 0.0319479i
\(701\) 1080.31i 1.54110i −0.637378 0.770552i \(-0.719981\pi\)
0.637378 0.770552i \(-0.280019\pi\)
\(702\) 0 0
\(703\) 453.087 0.644505
\(704\) −4.19030 + 4.19030i −0.00595213 + 0.00595213i
\(705\) 1192.64 1.69169
\(706\) 414.863i 0.587625i
\(707\) 7.01040 7.01040i 0.00991570 0.00991570i
\(708\) 675.890 675.890i 0.954647 0.954647i
\(709\) −558.528 558.528i −0.787769 0.787769i 0.193359 0.981128i \(-0.438062\pi\)
−0.981128 + 0.193359i \(0.938062\pi\)
\(710\) −812.365 812.365i −1.14418 1.14418i
\(711\) 1463.36 2.05817
\(712\) 240.559i 0.337864i
\(713\) 340.293 + 340.293i 0.477269 + 0.477269i
\(714\) 6.93240i 0.00970925i
\(715\) 0 0
\(716\) 424.196 0.592453
\(717\) 1005.91 1005.91i 1.40294 1.40294i
\(718\) −237.504 −0.330785
\(719\) 809.099i 1.12531i −0.826691 0.562656i \(-0.809780\pi\)
0.826691 0.562656i \(-0.190220\pi\)
\(720\) −325.300 + 325.300i −0.451805 + 0.451805i
\(721\) −17.1545 + 17.1545i −0.0237926 + 0.0237926i
\(722\) −242.944 242.944i −0.336487 0.336487i
\(723\) −632.651 632.651i −0.875036 0.875036i
\(724\) −224.176 −0.309635
\(725\) 1349.97i 1.86202i
\(726\) −575.245 575.245i −0.792348 0.792348i
\(727\) 1368.53i 1.88243i −0.337808 0.941215i \(-0.609685\pi\)
0.337808 0.941215i \(-0.390315\pi\)
\(728\) 0 0
\(729\) −1188.70 −1.63059
\(730\) 600.220 600.220i 0.822219 0.822219i
\(731\) −84.4560 −0.115535
\(732\) 147.705i 0.201782i
\(733\) −204.408 + 204.408i −0.278865 + 0.278865i −0.832656 0.553791i \(-0.813181\pi\)
0.553791 + 0.832656i \(0.313181\pi\)
\(734\) 102.316 102.316i 0.139395 0.139395i
\(735\) 1374.71 + 1374.71i 1.87036 + 1.87036i
\(736\) −91.5805 91.5805i −0.124430 0.124430i
\(737\) −51.5584 −0.0699571
\(738\) 503.160i 0.681789i
\(739\) 171.597 + 171.597i 0.232202 + 0.232202i 0.813611 0.581409i \(-0.197498\pi\)
−0.581409 + 0.813611i \(0.697498\pi\)
\(740\) 694.678i 0.938755i
\(741\) 0 0
\(742\) −43.2564 −0.0582970
\(743\) −63.8290 + 63.8290i −0.0859071 + 0.0859071i −0.748755 0.662847i \(-0.769348\pi\)
0.662847 + 0.748755i \(0.269348\pi\)
\(744\) 283.930 0.381626
\(745\) 224.089i 0.300791i
\(746\) −604.616 + 604.616i −0.810477 + 0.810477i
\(747\) 375.875 375.875i 0.503179 0.503179i
\(748\) −3.01767 3.01767i −0.00403432 0.00403432i
\(749\) 32.4014 + 32.4014i 0.0432595 + 0.0432595i
\(750\) −1090.24 −1.45365
\(751\) 392.268i 0.522328i −0.965294 0.261164i \(-0.915894\pi\)
0.965294 0.261164i \(-0.0841063\pi\)
\(752\) 84.8001 + 84.8001i 0.112766 + 0.112766i
\(753\) 480.050i 0.637516i
\(754\) 0 0
\(755\) 1292.19 1.71150
\(756\) 11.5701 11.5701i 0.0153043 0.0153043i
\(757\) −357.655 −0.472463 −0.236232 0.971697i \(-0.575912\pi\)
−0.236232 + 0.971697i \(0.575912\pi\)
\(758\) 542.676i 0.715931i
\(759\) −57.2715 + 57.2715i −0.0754566 + 0.0754566i
\(760\) −181.005 + 181.005i −0.238165 + 0.238165i
\(761\) 589.776 + 589.776i 0.775001 + 0.775001i 0.978976 0.203975i \(-0.0653860\pi\)
−0.203975 + 0.978976i \(0.565386\pi\)
\(762\) −1101.52 1101.52i −1.44557 1.44557i
\(763\) −15.3899 −0.0201702
\(764\) 530.096i 0.693843i
\(765\) −234.267 234.267i −0.306231 0.306231i
\(766\) 579.385i 0.756377i
\(767\) 0 0
\(768\) −76.4119 −0.0994947
\(769\) −589.722 + 589.722i −0.766869 + 0.766869i −0.977554 0.210685i \(-0.932430\pi\)
0.210685 + 0.977554i \(0.432430\pi\)
\(770\) 3.10915 0.00403786
\(771\) 331.937i 0.430528i
\(772\) 225.137 225.137i 0.291628 0.291628i
\(773\) −633.332 + 633.332i −0.819317 + 0.819317i −0.986009 0.166692i \(-0.946691\pi\)
0.166692 + 0.986009i \(0.446691\pi\)
\(774\) 404.823 + 404.823i 0.523027 + 0.523027i
\(775\) 659.623 + 659.623i 0.851126 + 0.851126i
\(776\) −57.4927 −0.0740885
\(777\) 70.9608i 0.0913267i
\(778\) −43.6909 43.6909i −0.0561579 0.0561579i
\(779\) 279.971i 0.359398i
\(780\) 0 0
\(781\) −72.2445 −0.0925026
\(782\) 65.9523 65.9523i 0.0843380 0.0843380i
\(783\) −698.423 −0.891984
\(784\) 195.492i 0.249352i
\(785\) −840.359 + 840.359i −1.07052 + 1.07052i
\(786\) 774.922 774.922i 0.985906 0.985906i
\(787\) −670.541 670.541i −0.852021 0.852021i 0.138361 0.990382i \(-0.455817\pi\)
−0.990382 + 0.138361i \(0.955817\pi\)
\(788\) 425.408 + 425.408i 0.539858 + 0.539858i
\(789\) −1237.77 −1.56878
\(790\) 1248.42i 1.58028i
\(791\) −11.6256 11.6256i −0.0146973 0.0146973i
\(792\) 28.9293i 0.0365268i
\(793\) 0 0
\(794\) −387.569 −0.488122
\(795\) 2414.56 2414.56i 3.03718 3.03718i
\(796\) −374.638 −0.470650
\(797\) 384.489i 0.482421i −0.970473 0.241210i \(-0.922456\pi\)
0.970473 0.241210i \(-0.0775444\pi\)
\(798\) 18.4895 18.4895i 0.0231698 0.0231698i
\(799\) −61.0694 + 61.0694i −0.0764323 + 0.0764323i
\(800\) −177.519 177.519i −0.221899 0.221899i
\(801\) 830.394 + 830.394i 1.03670 + 1.03670i
\(802\) −126.037 −0.157153
\(803\) 53.3782i 0.0664735i
\(804\) −470.095 470.095i −0.584695 0.584695i
\(805\) 67.9516i 0.0844119i
\(806\) 0 0
\(807\) −200.635 −0.248618
\(808\) −55.6477 + 55.6477i −0.0688709 + 0.0688709i
\(809\) 15.5780 0.0192558 0.00962791 0.999954i \(-0.496935\pi\)
0.00962791 + 0.999954i \(0.496935\pi\)
\(810\) 172.173i 0.212559i
\(811\) 488.921 488.921i 0.602861 0.602861i −0.338209 0.941071i \(-0.609821\pi\)
0.941071 + 0.338209i \(0.109821\pi\)
\(812\) −15.3283 + 15.3283i −0.0188772 + 0.0188772i
\(813\) 1064.03 + 1064.03i 1.30878 + 1.30878i
\(814\) 30.8893 + 30.8893i 0.0379475 + 0.0379475i
\(815\) −221.263 −0.271489
\(816\) 55.0286i 0.0674370i
\(817\) 225.254 + 225.254i 0.275709 + 0.275709i
\(818\) 1032.55i 1.26229i
\(819\) 0 0
\(820\) −429.255 −0.523482
\(821\) 279.870 279.870i 0.340890 0.340890i −0.515812 0.856702i \(-0.672510\pi\)
0.856702 + 0.515812i \(0.172510\pi\)
\(822\) 697.966 0.849107
\(823\) 459.551i 0.558385i 0.960235 + 0.279192i \(0.0900667\pi\)
−0.960235 + 0.279192i \(0.909933\pi\)
\(824\) 136.170 136.170i 0.165255 0.165255i
\(825\) −111.015 + 111.015i −0.134564 + 0.134564i
\(826\) −35.6583 35.6583i −0.0431699 0.0431699i
\(827\) −1019.38 1019.38i −1.23263 1.23263i −0.962951 0.269678i \(-0.913083\pi\)
−0.269678 0.962951i \(-0.586917\pi\)
\(828\) −632.259 −0.763598
\(829\) 137.402i 0.165744i 0.996560 + 0.0828722i \(0.0264093\pi\)
−0.996560 + 0.0828722i \(0.973591\pi\)
\(830\) 320.666 + 320.666i 0.386344 + 0.386344i
\(831\) 905.828i 1.09005i
\(832\) 0 0
\(833\) −140.785 −0.169010
\(834\) −122.156 + 122.156i −0.146470 + 0.146470i
\(835\) 62.6853 0.0750722
\(836\) 16.0970i 0.0192548i
\(837\) 341.265 341.265i 0.407724 0.407724i
\(838\) −260.975 + 260.975i −0.311426 + 0.311426i
\(839\) 382.590 + 382.590i 0.456007 + 0.456007i 0.897342 0.441335i \(-0.145495\pi\)
−0.441335 + 0.897342i \(0.645495\pi\)
\(840\) 28.3484 + 28.3484i 0.0337480 + 0.0337480i
\(841\) 84.2851 0.100220
\(842\) 206.076i 0.244745i
\(843\) −156.960 156.960i −0.186192 0.186192i
\(844\) 339.626i 0.402401i
\(845\) 0 0
\(846\) 585.449 0.692020
\(847\) −30.3485 + 30.3485i −0.0358306 + 0.0358306i
\(848\) 343.364 0.404910
\(849\) 2516.65i 2.96425i
\(850\) 127.842 127.842i 0.150402 0.150402i
\(851\) −675.095 + 675.095i −0.793297 + 0.793297i
\(852\) −658.705 658.705i −0.773128 0.773128i
\(853\) 549.575 + 549.575i 0.644285 + 0.644285i 0.951606 0.307321i \(-0.0994325\pi\)
−0.307321 + 0.951606i \(0.599433\pi\)
\(854\) 7.79253 0.00912474
\(855\) 1249.63i 1.46156i
\(856\) −257.198 257.198i −0.300465 0.300465i
\(857\) 908.454i 1.06004i 0.847985 + 0.530020i \(0.177816\pi\)
−0.847985 + 0.530020i \(0.822184\pi\)
\(858\) 0 0
\(859\) −383.134 −0.446023 −0.223012 0.974816i \(-0.571589\pi\)
−0.223012 + 0.974816i \(0.571589\pi\)
\(860\) −345.362 + 345.362i −0.401584 + 0.401584i
\(861\) 43.8480 0.0509269
\(862\) 192.658i 0.223501i
\(863\) 320.195 320.195i 0.371026 0.371026i −0.496825 0.867851i \(-0.665501\pi\)
0.867851 + 0.496825i \(0.165501\pi\)
\(864\) −91.8419 + 91.8419i −0.106299 + 0.106299i
\(865\) −169.799 169.799i −0.196299 0.196299i
\(866\) −201.358 201.358i −0.232516 0.232516i
\(867\) −1340.56 −1.54621
\(868\) 14.9794i 0.0172574i
\(869\) 55.5116 + 55.5116i 0.0638798 + 0.0638798i
\(870\) 1711.24i 1.96694i
\(871\) 0 0
\(872\) 122.163 0.140095
\(873\) −198.461 + 198.461i −0.227332 + 0.227332i
\(874\) −351.805 −0.402523
\(875\) 57.5183i 0.0657352i
\(876\) 486.687 486.687i 0.555579 0.555579i
\(877\) −1068.79 + 1068.79i −1.21868 + 1.21868i −0.250591 + 0.968093i \(0.580625\pi\)
−0.968093 + 0.250591i \(0.919375\pi\)
\(878\) −74.3517 74.3517i −0.0846830 0.0846830i
\(879\) 462.452 + 462.452i 0.526111 + 0.526111i
\(880\) −24.6801 −0.0280455
\(881\) 1160.78i 1.31758i 0.752329 + 0.658788i \(0.228931\pi\)
−0.752329 + 0.658788i \(0.771069\pi\)
\(882\) 674.826 + 674.826i 0.765108 + 0.765108i
\(883\) 1327.78i 1.50371i 0.659328 + 0.751856i \(0.270841\pi\)
−0.659328 + 0.751856i \(0.729159\pi\)
\(884\) 0 0
\(885\) 3980.87 4.49815
\(886\) −130.644 + 130.644i −0.147454 + 0.147454i
\(887\) 497.255 0.560604 0.280302 0.959912i \(-0.409565\pi\)
0.280302 + 0.959912i \(0.409565\pi\)
\(888\) 563.279i 0.634323i
\(889\) −58.1135 + 58.1135i −0.0653695 + 0.0653695i
\(890\) −708.424 + 708.424i −0.795982 + 0.795982i
\(891\) −7.65577 7.65577i −0.00859233 0.00859233i
\(892\) −340.107 340.107i −0.381286 0.381286i
\(893\) 325.758 0.364791
\(894\) 181.702i 0.203246i
\(895\) 1249.22 + 1249.22i 1.39578 + 1.39578i
\(896\) 4.03130i 0.00449922i
\(897\) 0 0
\(898\) 1019.38 1.13517
\(899\) −452.114 + 452.114i −0.502908 + 0.502908i
\(900\) −1225.57 −1.36174
\(901\) 247.276i 0.274446i
\(902\) −19.0871 + 19.0871i −0.0211608 + 0.0211608i
\(903\) 35.2785 35.2785i 0.0390681 0.0390681i
\(904\) 92.2826 + 92.2826i 0.102082 + 0.102082i
\(905\) −660.176 660.176i −0.729477 0.729477i
\(906\) 1047.77 1.15647
\(907\) 967.599i 1.06681i 0.845859 + 0.533406i \(0.179088\pi\)
−0.845859 + 0.533406i \(0.820912\pi\)
\(908\) −127.958 127.958i −0.140923 0.140923i
\(909\) 384.184i 0.422645i
\(910\) 0 0
\(911\) −760.079 −0.834335 −0.417168 0.908830i \(-0.636977\pi\)
−0.417168 + 0.908830i \(0.636977\pi\)
\(912\) −146.768 + 146.768i −0.160929 + 0.160929i
\(913\) 28.5171 0.0312345
\(914\) 512.817i 0.561069i
\(915\) −434.976 + 434.976i −0.475384 + 0.475384i
\(916\) −497.774 + 497.774i −0.543422 + 0.543422i
\(917\) −40.8830 40.8830i −0.0445834 0.0445834i
\(918\) −66.1406 66.1406i −0.0720486 0.0720486i
\(919\) 416.498 0.453208 0.226604 0.973987i \(-0.427238\pi\)
0.226604 + 0.973987i \(0.427238\pi\)
\(920\) 539.392i 0.586295i
\(921\) −1461.56 1461.56i −1.58692 1.58692i
\(922\) 1223.62i 1.32713i
\(923\) 0 0
\(924\) 2.52105 0.00272841
\(925\) −1308.60 + 1308.60i −1.41470 + 1.41470i
\(926\) 326.983 0.353114
\(927\) 940.102i 1.01413i
\(928\) 121.674 121.674i 0.131114 0.131114i
\(929\) 295.541 295.541i 0.318128 0.318128i −0.529920 0.848048i \(-0.677778\pi\)
0.848048 + 0.529920i \(0.177778\pi\)
\(930\) 836.147 + 836.147i 0.899083 + 0.899083i
\(931\) 375.490 + 375.490i 0.403319 + 0.403319i
\(932\) 769.740 0.825901
\(933\) 660.361i 0.707783i
\(934\) 242.866 + 242.866i 0.260028 + 0.260028i
\(935\) 17.7735i 0.0190091i
\(936\) 0 0
\(937\) −140.819 −0.150287 −0.0751436 0.997173i \(-0.523942\pi\)
−0.0751436 + 0.997173i \(0.523942\pi\)
\(938\) −24.8010 + 24.8010i −0.0264403 + 0.0264403i
\(939\) −2509.34 −2.67235
\(940\) 499.457i 0.531337i
\(941\) −1032.31 + 1032.31i −1.09704 + 1.09704i −0.102281 + 0.994756i \(0.532614\pi\)
−0.994756 + 0.102281i \(0.967386\pi\)
\(942\) −681.403 + 681.403i −0.723358 + 0.723358i
\(943\) −417.154 417.154i −0.442369 0.442369i
\(944\) 283.051 + 283.051i 0.299842 + 0.299842i
\(945\) 68.1456 0.0721118
\(946\) 30.7134i 0.0324666i
\(947\) 341.629 + 341.629i 0.360749 + 0.360749i 0.864088 0.503340i \(-0.167896\pi\)
−0.503340 + 0.864088i \(0.667896\pi\)
\(948\) 1012.28i 1.06780i
\(949\) 0 0
\(950\) −681.937 −0.717829
\(951\) 116.480 116.480i 0.122481 0.122481i
\(952\) −2.90317 −0.00304955
\(953\) 857.938i 0.900250i 0.892966 + 0.450125i \(0.148621\pi\)
−0.892966 + 0.450125i \(0.851379\pi\)
\(954\) 1185.27 1185.27i 1.24242 1.24242i
\(955\) 1561.08 1561.08i 1.63464 1.63464i
\(956\) 421.257 + 421.257i 0.440645 + 0.440645i
\(957\) −76.0911 76.0911i −0.0795100 0.0795100i
\(958\) −316.124 −0.329983
\(959\) 36.8229i 0.0383972i
\(960\) −225.026 225.026i −0.234402 0.234402i
\(961\) 519.175i 0.540244i
\(962\) 0 0
\(963\) −1775.66 −1.84389
\(964\) 264.943 264.943i 0.274837 0.274837i
\(965\) 1326.01 1.37411
\(966\) 55.0984i 0.0570377i
\(967\) 911.551 911.551i 0.942658 0.942658i −0.0557845 0.998443i \(-0.517766\pi\)
0.998443 + 0.0557845i \(0.0177660\pi\)
\(968\) 240.903 240.903i 0.248866 0.248866i
\(969\) −105.696 105.696i −0.109077 0.109077i
\(970\) −169.311 169.311i −0.174547 0.174547i
\(971\) 1074.01 1.10609 0.553043 0.833153i \(-0.313467\pi\)
0.553043 + 0.833153i \(0.313467\pi\)
\(972\) 552.895i 0.568822i
\(973\) 6.44465 + 6.44465i 0.00662348 + 0.00662348i
\(974\) 30.5113i 0.0313258i
\(975\) 0 0
\(976\) −61.8562 −0.0633772
\(977\) 561.757 561.757i 0.574981 0.574981i −0.358535 0.933516i \(-0.616724\pi\)
0.933516 + 0.358535i \(0.116724\pi\)
\(978\) −179.411 −0.183447
\(979\) 63.0009i 0.0643523i
\(980\) −575.706 + 575.706i −0.587455 + 0.587455i
\(981\) 421.698 421.698i 0.429865 0.429865i
\(982\) −58.3092 58.3092i −0.0593780 0.0593780i
\(983\) 1275.63 + 1275.63i 1.29769 + 1.29769i 0.929916 + 0.367773i \(0.119880\pi\)
0.367773 + 0.929916i \(0.380120\pi\)
\(984\) −348.061 −0.353720
\(985\) 2505.57i 2.54373i
\(986\) 87.6244 + 87.6244i 0.0888686 + 0.0888686i
\(987\) 51.0191i 0.0516911i
\(988\) 0 0
\(989\) −671.253 −0.678719
\(990\) −85.1940 + 85.1940i −0.0860545 + 0.0860545i
\(991\) −1129.33 −1.13959 −0.569795 0.821787i \(-0.692977\pi\)
−0.569795 + 0.821787i \(0.692977\pi\)
\(992\) 118.905i 0.119864i
\(993\) 74.8840 74.8840i 0.0754119 0.0754119i
\(994\) −34.7516 + 34.7516i −0.0349614 + 0.0349614i
\(995\) −1103.27 1103.27i −1.10882 1.10882i
\(996\) 260.011 + 260.011i 0.261055 + 0.261055i
\(997\) −7.14438 −0.00716588 −0.00358294 0.999994i \(-0.501140\pi\)
−0.00358294 + 0.999994i \(0.501140\pi\)
\(998\) 1250.99i 1.25350i
\(999\) 677.023 + 677.023i 0.677701 + 0.677701i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.d.f.239.1 8
13.2 odd 12 338.3.f.h.319.2 8
13.3 even 3 338.3.f.i.19.2 8
13.4 even 6 338.3.f.h.249.2 8
13.5 odd 4 338.3.d.g.99.1 8
13.6 odd 12 26.3.f.b.11.2 8
13.7 odd 12 338.3.f.i.89.2 8
13.8 odd 4 inner 338.3.d.f.99.1 8
13.9 even 3 338.3.f.j.249.2 8
13.10 even 6 26.3.f.b.19.2 yes 8
13.11 odd 12 338.3.f.j.319.2 8
13.12 even 2 338.3.d.g.239.1 8
39.23 odd 6 234.3.bb.f.19.2 8
39.32 even 12 234.3.bb.f.37.2 8
52.19 even 12 208.3.bd.f.193.1 8
52.23 odd 6 208.3.bd.f.97.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.2 8 13.6 odd 12
26.3.f.b.19.2 yes 8 13.10 even 6
208.3.bd.f.97.1 8 52.23 odd 6
208.3.bd.f.193.1 8 52.19 even 12
234.3.bb.f.19.2 8 39.23 odd 6
234.3.bb.f.37.2 8 39.32 even 12
338.3.d.f.99.1 8 13.8 odd 4 inner
338.3.d.f.239.1 8 1.1 even 1 trivial
338.3.d.g.99.1 8 13.5 odd 4
338.3.d.g.239.1 8 13.12 even 2
338.3.f.h.249.2 8 13.4 even 6
338.3.f.h.319.2 8 13.2 odd 12
338.3.f.i.19.2 8 13.3 even 3
338.3.f.i.89.2 8 13.7 odd 12
338.3.f.j.249.2 8 13.9 even 3
338.3.f.j.319.2 8 13.11 odd 12