Properties

Label 338.3.d.e
Level $338$
Weight $3$
Character orbit 338.d
Analytic conductor $9.210$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,3,Mod(99,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.99");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} + (\beta_{3} - \beta_{2} + \beta_1) q^{3} + 2 \beta_{2} q^{4} + ( - \beta_{2} + 2 \beta_1 - 1) q^{5} + ( - \beta_{2} + 2 \beta_1 - 1) q^{6} + ( - 7 \beta_{3} + 4 \beta_{2} - 4) q^{7} + (2 \beta_{2} - 2) q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} + 1) q^{2} + (\beta_{3} - \beta_{2} + \beta_1) q^{3} + 2 \beta_{2} q^{4} + ( - \beta_{2} + 2 \beta_1 - 1) q^{5} + ( - \beta_{2} + 2 \beta_1 - 1) q^{6} + ( - 7 \beta_{3} + 4 \beta_{2} - 4) q^{7} + (2 \beta_{2} - 2) q^{8} - 6 q^{9} + ( - 2 \beta_{3} + 2 \beta_1 - 2) q^{10} + ( - \beta_{3} + 5 \beta_{2} - 5) q^{11} + ( - 2 \beta_{3} + 2 \beta_1 - 2) q^{12} + ( - 7 \beta_{3} + 7 \beta_{2} - 7 \beta_1 - 1) q^{14} + (3 \beta_{2} + 3) q^{15} - 4 q^{16} + ( - 13 \beta_{3} - 6 \beta_{2} + 13 \beta_1 - 13) q^{17} + ( - 6 \beta_{2} - 6) q^{18} + ( - 12 \beta_{2} + 17 \beta_1 - 12) q^{19} + ( - 4 \beta_{3} + 2 \beta_{2} - 2) q^{20} + ( - \beta_{3} + 11 \beta_{2} - 11) q^{21} + ( - \beta_{3} + \beta_{2} - \beta_1 - 9) q^{22} + (2 \beta_{3} - 21 \beta_{2} - 2 \beta_1 + 2) q^{23} + ( - 4 \beta_{3} + 2 \beta_{2} - 2) q^{24} - 19 \beta_{2} q^{25} + ( - 15 \beta_{3} + 15 \beta_{2} - 15 \beta_1) q^{27} + (6 \beta_{2} - 14 \beta_1 + 6) q^{28} + (16 \beta_{3} - 16 \beta_{2} + 16 \beta_1 + 27) q^{29} + 6 \beta_{2} q^{30} + (27 \beta_{2} + 10 \beta_1 + 27) q^{31} + ( - 4 \beta_{2} - 4) q^{32} + ( - 9 \beta_{3} + 6 \beta_{2} - 6) q^{33} + ( - 26 \beta_{3} + 7 \beta_{2} - 7) q^{34} + ( - \beta_{3} + \beta_{2} - \beta_1 - 21) q^{35} - 12 \beta_{2} q^{36} + ( - 7 \beta_{3} - 6 \beta_{2} + 6) q^{37} + ( - 17 \beta_{3} - 7 \beta_{2} + 17 \beta_1 - 17) q^{38} + ( - 4 \beta_{3} + 4 \beta_{2} - 4 \beta_1) q^{40} + (26 \beta_{2} - 13 \beta_1 + 26) q^{41} + ( - \beta_{3} + \beta_{2} - \beta_1 - 21) q^{42} + ( - 20 \beta_{3} - 39 \beta_{2} + 20 \beta_1 - 20) q^{43} + ( - 8 \beta_{2} - 2 \beta_1 - 8) q^{44} + (6 \beta_{2} - 12 \beta_1 + 6) q^{45} + (4 \beta_{3} - 23 \beta_{2} + 23) q^{46} + (33 \beta_{2} - 33) q^{47} + ( - 4 \beta_{3} + 4 \beta_{2} - 4 \beta_1) q^{48} + (7 \beta_{3} - 25 \beta_{2} - 7 \beta_1 + 7) q^{49} + ( - 19 \beta_{2} + 19) q^{50} + (6 \beta_{3} + 39 \beta_{2} - 6 \beta_1 + 6) q^{51} + (22 \beta_{3} - 22 \beta_{2} + 22 \beta_1 - 42) q^{53} + (15 \beta_{2} - 30 \beta_1 + 15) q^{54} + ( - 9 \beta_{3} + 9 \beta_{2} - 9 \beta_1 - 3) q^{55} + (14 \beta_{3} - 2 \beta_{2} - 14 \beta_1 + 14) q^{56} + (29 \beta_{2} - 7 \beta_1 + 29) q^{57} + (11 \beta_{2} + 32 \beta_1 + 11) q^{58} + (13 \beta_{3} + 10 \beta_{2} - 10) q^{59} + (6 \beta_{2} - 6) q^{60} + ( - 6 \beta_{3} + 6 \beta_{2} - 6 \beta_1 - 39) q^{61} + ( - 10 \beta_{3} + 64 \beta_{2} + 10 \beta_1 - 10) q^{62} + (42 \beta_{3} - 24 \beta_{2} + 24) q^{63} - 8 \beta_{2} q^{64} + ( - 9 \beta_{3} + 9 \beta_{2} - 9 \beta_1 - 3) q^{66} + ( - 23 \beta_{2} + 33 \beta_1 - 23) q^{67} + ( - 26 \beta_{3} + 26 \beta_{2} - 26 \beta_1 + 12) q^{68} + (21 \beta_{3} - 6 \beta_{2} - 21 \beta_1 + 21) q^{69} + ( - 20 \beta_{2} - 2 \beta_1 - 20) q^{70} + ( - 4 \beta_{2} - 25 \beta_1 - 4) q^{71} + ( - 12 \beta_{2} + 12) q^{72} + (54 \beta_{3} - 61 \beta_{2} + 61) q^{73} + ( - 7 \beta_{3} + 7 \beta_{2} - 7 \beta_1 + 19) q^{74} + (19 \beta_{3} - 19 \beta_1 + 19) q^{75} + ( - 34 \beta_{3} + 10 \beta_{2} - 10) q^{76} + (32 \beta_{3} - 15 \beta_{2} - 32 \beta_1 + 32) q^{77} + (36 \beta_{3} - 36 \beta_{2} + 36 \beta_1 + 48) q^{79} + (4 \beta_{2} - 8 \beta_1 + 4) q^{80} + 9 q^{81} + (13 \beta_{3} + 39 \beta_{2} - 13 \beta_1 + 13) q^{82} + ( - 71 \beta_{2} + 46 \beta_1 - 71) q^{83} + ( - 20 \beta_{2} - 2 \beta_1 - 20) q^{84} + (12 \beta_{3} + 33 \beta_{2} - 33) q^{85} + ( - 40 \beta_{3} - 19 \beta_{2} + 19) q^{86} + (27 \beta_{3} - 27 \beta_{2} + 27 \beta_1 + 48) q^{87} + (2 \beta_{3} - 18 \beta_{2} - 2 \beta_1 + 2) q^{88} + ( - 13 \beta_{3} + 56 \beta_{2} - 56) q^{89} + (12 \beta_{3} - 12 \beta_1 + 12) q^{90} + (4 \beta_{3} - 4 \beta_{2} + 4 \beta_1 + 42) q^{92} + ( - 17 \beta_{2} + 64 \beta_1 - 17) q^{93} - 66 q^{94} + (7 \beta_{3} + 51 \beta_{2} - 7 \beta_1 + 7) q^{95} + (4 \beta_{2} - 8 \beta_1 + 4) q^{96} + (71 \beta_{2} - 69 \beta_1 + 71) q^{97} + (14 \beta_{3} - 32 \beta_{2} + 32) q^{98} + (6 \beta_{3} - 30 \beta_{2} + 30) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{7} - 8 q^{8} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 2 q^{7} - 8 q^{8} - 24 q^{9} - 18 q^{11} - 4 q^{14} + 12 q^{15} - 16 q^{16} - 24 q^{18} - 14 q^{19} - 42 q^{21} - 36 q^{22} - 4 q^{28} + 108 q^{29} + 128 q^{31} - 16 q^{32} - 6 q^{33} + 24 q^{34} - 84 q^{35} + 38 q^{37} + 78 q^{41} - 84 q^{42} - 36 q^{44} + 84 q^{46} - 132 q^{47} + 76 q^{50} - 168 q^{53} - 12 q^{55} + 102 q^{57} + 108 q^{58} - 66 q^{59} - 24 q^{60} - 156 q^{61} + 12 q^{63} - 12 q^{66} - 26 q^{67} + 48 q^{68} - 84 q^{70} - 66 q^{71} + 48 q^{72} + 136 q^{73} + 76 q^{74} + 28 q^{76} + 192 q^{79} + 36 q^{81} - 192 q^{83} - 84 q^{84} - 156 q^{85} + 156 q^{86} + 192 q^{87} - 198 q^{89} + 168 q^{92} + 60 q^{93} - 264 q^{94} + 146 q^{97} + 100 q^{98} + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} + \zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{2} + \zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( -\beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
1.00000 + 1.00000i −1.73205 2.00000i −1.73205 1.73205i −1.73205 1.73205i 5.56218 5.56218i −2.00000 + 2.00000i −6.00000 3.46410i
99.2 1.00000 + 1.00000i 1.73205 2.00000i 1.73205 + 1.73205i 1.73205 + 1.73205i −6.56218 + 6.56218i −2.00000 + 2.00000i −6.00000 3.46410i
239.1 1.00000 1.00000i −1.73205 2.00000i −1.73205 + 1.73205i −1.73205 + 1.73205i 5.56218 + 5.56218i −2.00000 2.00000i −6.00000 3.46410i
239.2 1.00000 1.00000i 1.73205 2.00000i 1.73205 1.73205i 1.73205 1.73205i −6.56218 6.56218i −2.00000 2.00000i −6.00000 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.3.d.e 4
13.b even 2 1 338.3.d.d 4
13.c even 3 1 338.3.f.c 4
13.c even 3 1 338.3.f.d 4
13.d odd 4 1 338.3.d.d 4
13.d odd 4 1 inner 338.3.d.e 4
13.e even 6 1 26.3.f.a 4
13.e even 6 1 338.3.f.f 4
13.f odd 12 1 26.3.f.a 4
13.f odd 12 1 338.3.f.c 4
13.f odd 12 1 338.3.f.d 4
13.f odd 12 1 338.3.f.f 4
39.h odd 6 1 234.3.bb.b 4
39.k even 12 1 234.3.bb.b 4
52.i odd 6 1 208.3.bd.c 4
52.l even 12 1 208.3.bd.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.3.f.a 4 13.e even 6 1
26.3.f.a 4 13.f odd 12 1
208.3.bd.c 4 52.i odd 6 1
208.3.bd.c 4 52.l even 12 1
234.3.bb.b 4 39.h odd 6 1
234.3.bb.b 4 39.k even 12 1
338.3.d.d 4 13.b even 2 1
338.3.d.d 4 13.d odd 4 1
338.3.d.e 4 1.a even 1 1 trivial
338.3.d.e 4 13.d odd 4 1 inner
338.3.f.c 4 13.c even 3 1
338.3.f.c 4 13.f odd 12 1
338.3.f.d 4 13.c even 3 1
338.3.f.d 4 13.f odd 12 1
338.3.f.f 4 13.e even 6 1
338.3.f.f 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(338, [\chi])\):

\( T_{3}^{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{4} + 36 \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} + 2T_{7}^{2} - 146T_{7} + 5329 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 36 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + 2 T^{2} - 146 T + 5329 \) Copy content Toggle raw display
$11$ \( T^{4} + 18 T^{3} + 162 T^{2} + \cdots + 1521 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 1086 T^{2} + 221841 \) Copy content Toggle raw display
$19$ \( T^{4} + 14 T^{3} + 98 T^{2} + \cdots + 167281 \) Copy content Toggle raw display
$23$ \( T^{4} + 906 T^{2} + 184041 \) Copy content Toggle raw display
$29$ \( (T^{2} - 54 T - 39)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 128 T^{3} + 8192 T^{2} + \cdots + 3602404 \) Copy content Toggle raw display
$37$ \( T^{4} - 38 T^{3} + 722 T^{2} + \cdots + 11449 \) Copy content Toggle raw display
$41$ \( T^{4} - 78 T^{3} + 3042 T^{2} + \cdots + 257049 \) Copy content Toggle raw display
$43$ \( T^{4} + 5442 T^{2} + 103041 \) Copy content Toggle raw display
$47$ \( (T^{2} + 66 T + 2178)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 84 T + 312)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 66 T^{3} + 2178 T^{2} + \cdots + 84681 \) Copy content Toggle raw display
$61$ \( (T^{2} + 78 T + 1413)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 26 T^{3} + 338 T^{2} + \cdots + 2399401 \) Copy content Toggle raw display
$71$ \( T^{4} + 66 T^{3} + 2178 T^{2} + \cdots + 154449 \) Copy content Toggle raw display
$73$ \( T^{4} - 136 T^{3} + 9248 T^{2} + \cdots + 4251844 \) Copy content Toggle raw display
$79$ \( (T^{2} - 96 T - 1584)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 192 T^{3} + 18432 T^{2} + \cdots + 2056356 \) Copy content Toggle raw display
$89$ \( T^{4} + 198 T^{3} + \cdots + 21594609 \) Copy content Toggle raw display
$97$ \( T^{4} - 146 T^{3} + \cdots + 20043529 \) Copy content Toggle raw display
show more
show less