Defining parameters
Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 338.d (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(136\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(338, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 210 | 54 | 156 |
Cusp forms | 154 | 54 | 100 |
Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(338, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(338, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)