Properties

Label 338.3.d
Level $338$
Weight $3$
Character orbit 338.d
Rep. character $\chi_{338}(99,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $54$
Newform subspaces $9$
Sturm bound $136$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 9 \)
Sturm bound: \(136\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(338, [\chi])\).

Total New Old
Modular forms 210 54 156
Cusp forms 154 54 100
Eisenstein series 56 0 56

Trace form

\( 54 q - 2 q^{2} + 6 q^{5} - 4 q^{7} + 4 q^{8} + 186 q^{9} - 12 q^{11} - 16 q^{14} - 216 q^{16} + 18 q^{18} - 52 q^{19} - 12 q^{20} - 48 q^{22} - 24 q^{27} - 8 q^{28} + 88 q^{29} + 28 q^{31} + 8 q^{32} + 12 q^{34}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(338, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
338.3.d.a 338.d 13.d $2$ $9.210$ \(\Q(\sqrt{-1}) \) None 26.3.d.a \(-2\) \(0\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots\)
338.3.d.b 338.d 13.d $2$ $9.210$ \(\Q(\sqrt{-1}) \) None 338.3.d.b \(-2\) \(8\) \(-8\) \(-10\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+4 q^{3}+2 i q^{4}+(-4 i-4)q^{5}+\cdots\)
338.3.d.c 338.d 13.d $2$ $9.210$ \(\Q(\sqrt{-1}) \) None 338.3.d.b \(2\) \(8\) \(8\) \(10\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i+1)q^{2}+4 q^{3}+2 i q^{4}+(4 i+4)q^{5}+\cdots\)
338.3.d.d 338.d 13.d $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.f.a \(-4\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_{2}-1)q^{2}+(\beta_{3}-\beta_{2}+\beta_1)q^{3}+\cdots\)
338.3.d.e 338.d 13.d $4$ $9.210$ \(\Q(\zeta_{12})\) None 26.3.f.a \(4\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{2}+1)q^{2}+(\beta_{3}-\beta_{2}+\beta_1)q^{3}+\cdots\)
338.3.d.f 338.d 13.d $8$ $9.210$ 8.0.\(\cdots\).1 None 26.3.f.b \(-8\) \(0\) \(-6\) \(-10\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{5})q^{2}+(-1+\beta _{1}+\beta _{3}+\beta _{5}+\cdots)q^{3}+\cdots\)
338.3.d.g 338.d 13.d $8$ $9.210$ 8.0.\(\cdots\).1 None 26.3.f.b \(8\) \(0\) \(6\) \(10\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{5})q^{2}+(-1+\beta _{1}+\beta _{3}+\beta _{5}+\cdots)q^{3}+\cdots\)
338.3.d.h 338.d 13.d $12$ $9.210$ 12.0.\(\cdots\).2 None 338.3.d.h \(-12\) \(-8\) \(8\) \(24\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{1})q^{2}+(-1+\beta _{4}+\beta _{7}-\beta _{9}+\cdots)q^{3}+\cdots\)
338.3.d.i 338.d 13.d $12$ $9.210$ 12.0.\(\cdots\).2 None 338.3.d.h \(12\) \(-8\) \(-8\) \(-24\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{1})q^{2}+(-1+\beta _{4}+\beta _{7}-\beta _{9}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(338, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)