Properties

Label 338.2.k
Level $338$
Weight $2$
Character orbit 338.k
Rep. character $\chi_{338}(17,\cdot)$
Character field $\Q(\zeta_{78})$
Dimension $336$
Newform subspaces $1$
Sturm bound $91$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.k (of order \(78\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{78})\)
Newform subspaces: \( 1 \)
Sturm bound: \(91\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(338, [\chi])\).

Total New Old
Modular forms 1152 336 816
Cusp forms 1056 336 720
Eisenstein series 96 0 96

Trace form

\( 336 q - 14 q^{4} + 14 q^{9} - 52 q^{13} + 4 q^{14} + 52 q^{15} + 14 q^{16} + 2 q^{17} + 24 q^{22} + 4 q^{23} + 20 q^{25} + 12 q^{27} - 6 q^{29} - 202 q^{30} + 52 q^{31} - 10 q^{35} - 14 q^{36} - 4 q^{38}+ \cdots - 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(338, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
338.2.k.a 338.k 169.k $336$ $2.699$ None 338.2.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{78}]$

Decomposition of \(S_{2}^{\mathrm{old}}(338, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)