Defining parameters
| Level: | \( N \) | \(=\) | \( 338 = 2 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 338.k (of order \(78\) and degree \(24\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 169 \) |
| Character field: | \(\Q(\zeta_{78})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(91\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(338, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1152 | 336 | 816 |
| Cusp forms | 1056 | 336 | 720 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(338, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 338.2.k.a | $336$ | $2.699$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(338, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(338, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 2}\)