# Properties

 Label 338.2.c.a Level $338$ Weight $2$ Character orbit 338.c Analytic conductor $2.699$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$338 = 2 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 338.c (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.69894358832$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 26) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{6} - 1) q^{2} + (\zeta_{6} - 1) q^{3} - \zeta_{6} q^{4} + 3 q^{5} - \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} + 2 \zeta_{6} q^{9} +O(q^{10})$$ q + (z - 1) * q^2 + (z - 1) * q^3 - z * q^4 + 3 * q^5 - z * q^6 - z * q^7 + q^8 + 2*z * q^9 $$q + (\zeta_{6} - 1) q^{2} + (\zeta_{6} - 1) q^{3} - \zeta_{6} q^{4} + 3 q^{5} - \zeta_{6} q^{6} - \zeta_{6} q^{7} + q^{8} + 2 \zeta_{6} q^{9} + (3 \zeta_{6} - 3) q^{10} + ( - 6 \zeta_{6} + 6) q^{11} + q^{12} + q^{14} + (3 \zeta_{6} - 3) q^{15} + (\zeta_{6} - 1) q^{16} + 3 \zeta_{6} q^{17} - 2 q^{18} + 2 \zeta_{6} q^{19} - 3 \zeta_{6} q^{20} + q^{21} + 6 \zeta_{6} q^{22} + (\zeta_{6} - 1) q^{24} + 4 q^{25} - 5 q^{27} + (\zeta_{6} - 1) q^{28} + (6 \zeta_{6} - 6) q^{29} - 3 \zeta_{6} q^{30} + 4 q^{31} - \zeta_{6} q^{32} + 6 \zeta_{6} q^{33} - 3 q^{34} - 3 \zeta_{6} q^{35} + ( - 2 \zeta_{6} + 2) q^{36} + (7 \zeta_{6} - 7) q^{37} - 2 q^{38} + 3 q^{40} + (\zeta_{6} - 1) q^{42} + \zeta_{6} q^{43} - 6 q^{44} + 6 \zeta_{6} q^{45} - 3 q^{47} - \zeta_{6} q^{48} + ( - 6 \zeta_{6} + 6) q^{49} + (4 \zeta_{6} - 4) q^{50} - 3 q^{51} + ( - 5 \zeta_{6} + 5) q^{54} + ( - 18 \zeta_{6} + 18) q^{55} - \zeta_{6} q^{56} - 2 q^{57} - 6 \zeta_{6} q^{58} - 6 \zeta_{6} q^{59} + 3 q^{60} - 8 \zeta_{6} q^{61} + (4 \zeta_{6} - 4) q^{62} + ( - 2 \zeta_{6} + 2) q^{63} + q^{64} - 6 q^{66} + ( - 14 \zeta_{6} + 14) q^{67} + ( - 3 \zeta_{6} + 3) q^{68} + 3 q^{70} - 3 \zeta_{6} q^{71} + 2 \zeta_{6} q^{72} - 2 q^{73} - 7 \zeta_{6} q^{74} + (4 \zeta_{6} - 4) q^{75} + ( - 2 \zeta_{6} + 2) q^{76} - 6 q^{77} + 8 q^{79} + (3 \zeta_{6} - 3) q^{80} + (\zeta_{6} - 1) q^{81} - 12 q^{83} - \zeta_{6} q^{84} + 9 \zeta_{6} q^{85} - q^{86} - 6 \zeta_{6} q^{87} + ( - 6 \zeta_{6} + 6) q^{88} + (6 \zeta_{6} - 6) q^{89} - 6 q^{90} + (4 \zeta_{6} - 4) q^{93} + ( - 3 \zeta_{6} + 3) q^{94} + 6 \zeta_{6} q^{95} + q^{96} - 10 \zeta_{6} q^{97} + 6 \zeta_{6} q^{98} + 12 q^{99} +O(q^{100})$$ q + (z - 1) * q^2 + (z - 1) * q^3 - z * q^4 + 3 * q^5 - z * q^6 - z * q^7 + q^8 + 2*z * q^9 + (3*z - 3) * q^10 + (-6*z + 6) * q^11 + q^12 + q^14 + (3*z - 3) * q^15 + (z - 1) * q^16 + 3*z * q^17 - 2 * q^18 + 2*z * q^19 - 3*z * q^20 + q^21 + 6*z * q^22 + (z - 1) * q^24 + 4 * q^25 - 5 * q^27 + (z - 1) * q^28 + (6*z - 6) * q^29 - 3*z * q^30 + 4 * q^31 - z * q^32 + 6*z * q^33 - 3 * q^34 - 3*z * q^35 + (-2*z + 2) * q^36 + (7*z - 7) * q^37 - 2 * q^38 + 3 * q^40 + (z - 1) * q^42 + z * q^43 - 6 * q^44 + 6*z * q^45 - 3 * q^47 - z * q^48 + (-6*z + 6) * q^49 + (4*z - 4) * q^50 - 3 * q^51 + (-5*z + 5) * q^54 + (-18*z + 18) * q^55 - z * q^56 - 2 * q^57 - 6*z * q^58 - 6*z * q^59 + 3 * q^60 - 8*z * q^61 + (4*z - 4) * q^62 + (-2*z + 2) * q^63 + q^64 - 6 * q^66 + (-14*z + 14) * q^67 + (-3*z + 3) * q^68 + 3 * q^70 - 3*z * q^71 + 2*z * q^72 - 2 * q^73 - 7*z * q^74 + (4*z - 4) * q^75 + (-2*z + 2) * q^76 - 6 * q^77 + 8 * q^79 + (3*z - 3) * q^80 + (z - 1) * q^81 - 12 * q^83 - z * q^84 + 9*z * q^85 - q^86 - 6*z * q^87 + (-6*z + 6) * q^88 + (6*z - 6) * q^89 - 6 * q^90 + (4*z - 4) * q^93 + (-3*z + 3) * q^94 + 6*z * q^95 + q^96 - 10*z * q^97 + 6*z * q^98 + 12 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - q^{3} - q^{4} + 6 q^{5} - q^{6} - q^{7} + 2 q^{8} + 2 q^{9}+O(q^{10})$$ 2 * q - q^2 - q^3 - q^4 + 6 * q^5 - q^6 - q^7 + 2 * q^8 + 2 * q^9 $$2 q - q^{2} - q^{3} - q^{4} + 6 q^{5} - q^{6} - q^{7} + 2 q^{8} + 2 q^{9} - 3 q^{10} + 6 q^{11} + 2 q^{12} + 2 q^{14} - 3 q^{15} - q^{16} + 3 q^{17} - 4 q^{18} + 2 q^{19} - 3 q^{20} + 2 q^{21} + 6 q^{22} - q^{24} + 8 q^{25} - 10 q^{27} - q^{28} - 6 q^{29} - 3 q^{30} + 8 q^{31} - q^{32} + 6 q^{33} - 6 q^{34} - 3 q^{35} + 2 q^{36} - 7 q^{37} - 4 q^{38} + 6 q^{40} - q^{42} + q^{43} - 12 q^{44} + 6 q^{45} - 6 q^{47} - q^{48} + 6 q^{49} - 4 q^{50} - 6 q^{51} + 5 q^{54} + 18 q^{55} - q^{56} - 4 q^{57} - 6 q^{58} - 6 q^{59} + 6 q^{60} - 8 q^{61} - 4 q^{62} + 2 q^{63} + 2 q^{64} - 12 q^{66} + 14 q^{67} + 3 q^{68} + 6 q^{70} - 3 q^{71} + 2 q^{72} - 4 q^{73} - 7 q^{74} - 4 q^{75} + 2 q^{76} - 12 q^{77} + 16 q^{79} - 3 q^{80} - q^{81} - 24 q^{83} - q^{84} + 9 q^{85} - 2 q^{86} - 6 q^{87} + 6 q^{88} - 6 q^{89} - 12 q^{90} - 4 q^{93} + 3 q^{94} + 6 q^{95} + 2 q^{96} - 10 q^{97} + 6 q^{98} + 24 q^{99}+O(q^{100})$$ 2 * q - q^2 - q^3 - q^4 + 6 * q^5 - q^6 - q^7 + 2 * q^8 + 2 * q^9 - 3 * q^10 + 6 * q^11 + 2 * q^12 + 2 * q^14 - 3 * q^15 - q^16 + 3 * q^17 - 4 * q^18 + 2 * q^19 - 3 * q^20 + 2 * q^21 + 6 * q^22 - q^24 + 8 * q^25 - 10 * q^27 - q^28 - 6 * q^29 - 3 * q^30 + 8 * q^31 - q^32 + 6 * q^33 - 6 * q^34 - 3 * q^35 + 2 * q^36 - 7 * q^37 - 4 * q^38 + 6 * q^40 - q^42 + q^43 - 12 * q^44 + 6 * q^45 - 6 * q^47 - q^48 + 6 * q^49 - 4 * q^50 - 6 * q^51 + 5 * q^54 + 18 * q^55 - q^56 - 4 * q^57 - 6 * q^58 - 6 * q^59 + 6 * q^60 - 8 * q^61 - 4 * q^62 + 2 * q^63 + 2 * q^64 - 12 * q^66 + 14 * q^67 + 3 * q^68 + 6 * q^70 - 3 * q^71 + 2 * q^72 - 4 * q^73 - 7 * q^74 - 4 * q^75 + 2 * q^76 - 12 * q^77 + 16 * q^79 - 3 * q^80 - q^81 - 24 * q^83 - q^84 + 9 * q^85 - 2 * q^86 - 6 * q^87 + 6 * q^88 - 6 * q^89 - 12 * q^90 - 4 * q^93 + 3 * q^94 + 6 * q^95 + 2 * q^96 - 10 * q^97 + 6 * q^98 + 24 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/338\mathbb{Z}\right)^\times$$.

 $$n$$ $$171$$ $$\chi(n)$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
191.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 3.00000 −0.500000 0.866025i −0.500000 0.866025i 1.00000 1.00000 + 1.73205i −1.50000 + 2.59808i
315.1 −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 3.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i 1.00000 1.00000 1.73205i −1.50000 2.59808i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.2.c.a 2
13.b even 2 1 338.2.c.d 2
13.c even 3 1 338.2.a.f 1
13.c even 3 1 inner 338.2.c.a 2
13.d odd 4 2 338.2.e.a 4
13.e even 6 1 26.2.a.a 1
13.e even 6 1 338.2.c.d 2
13.f odd 12 2 338.2.b.c 2
13.f odd 12 2 338.2.e.a 4
39.h odd 6 1 234.2.a.e 1
39.i odd 6 1 3042.2.a.a 1
39.k even 12 2 3042.2.b.a 2
52.i odd 6 1 208.2.a.a 1
52.j odd 6 1 2704.2.a.f 1
52.l even 12 2 2704.2.f.d 2
65.l even 6 1 650.2.a.j 1
65.n even 6 1 8450.2.a.c 1
65.r odd 12 2 650.2.b.d 2
91.k even 6 1 1274.2.f.p 2
91.l odd 6 1 1274.2.f.r 2
91.p odd 6 1 1274.2.f.r 2
91.t odd 6 1 1274.2.a.d 1
91.u even 6 1 1274.2.f.p 2
104.p odd 6 1 832.2.a.i 1
104.s even 6 1 832.2.a.d 1
117.l even 6 1 2106.2.e.ba 2
117.m odd 6 1 2106.2.e.b 2
117.r even 6 1 2106.2.e.ba 2
117.v odd 6 1 2106.2.e.b 2
143.i odd 6 1 3146.2.a.n 1
156.r even 6 1 1872.2.a.q 1
195.y odd 6 1 5850.2.a.p 1
195.bf even 12 2 5850.2.e.a 2
208.bh even 12 2 3328.2.b.m 2
208.bi odd 12 2 3328.2.b.j 2
221.n even 6 1 7514.2.a.c 1
247.m odd 6 1 9386.2.a.j 1
260.w odd 6 1 5200.2.a.x 1
312.ba even 6 1 7488.2.a.h 1
312.bg odd 6 1 7488.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.a 1 13.e even 6 1
208.2.a.a 1 52.i odd 6 1
234.2.a.e 1 39.h odd 6 1
338.2.a.f 1 13.c even 3 1
338.2.b.c 2 13.f odd 12 2
338.2.c.a 2 1.a even 1 1 trivial
338.2.c.a 2 13.c even 3 1 inner
338.2.c.d 2 13.b even 2 1
338.2.c.d 2 13.e even 6 1
338.2.e.a 4 13.d odd 4 2
338.2.e.a 4 13.f odd 12 2
650.2.a.j 1 65.l even 6 1
650.2.b.d 2 65.r odd 12 2
832.2.a.d 1 104.s even 6 1
832.2.a.i 1 104.p odd 6 1
1274.2.a.d 1 91.t odd 6 1
1274.2.f.p 2 91.k even 6 1
1274.2.f.p 2 91.u even 6 1
1274.2.f.r 2 91.l odd 6 1
1274.2.f.r 2 91.p odd 6 1
1872.2.a.q 1 156.r even 6 1
2106.2.e.b 2 117.m odd 6 1
2106.2.e.b 2 117.v odd 6 1
2106.2.e.ba 2 117.l even 6 1
2106.2.e.ba 2 117.r even 6 1
2704.2.a.f 1 52.j odd 6 1
2704.2.f.d 2 52.l even 12 2
3042.2.a.a 1 39.i odd 6 1
3042.2.b.a 2 39.k even 12 2
3146.2.a.n 1 143.i odd 6 1
3328.2.b.j 2 208.bi odd 12 2
3328.2.b.m 2 208.bh even 12 2
5200.2.a.x 1 260.w odd 6 1
5850.2.a.p 1 195.y odd 6 1
5850.2.e.a 2 195.bf even 12 2
7488.2.a.g 1 312.bg odd 6 1
7488.2.a.h 1 312.ba even 6 1
7514.2.a.c 1 221.n even 6 1
8450.2.a.c 1 65.n even 6 1
9386.2.a.j 1 247.m odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(338, [\chi])$$:

 $$T_{3}^{2} + T_{3} + 1$$ T3^2 + T3 + 1 $$T_{5} - 3$$ T5 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2} + T + 1$$
$5$ $$(T - 3)^{2}$$
$7$ $$T^{2} + T + 1$$
$11$ $$T^{2} - 6T + 36$$
$13$ $$T^{2}$$
$17$ $$T^{2} - 3T + 9$$
$19$ $$T^{2} - 2T + 4$$
$23$ $$T^{2}$$
$29$ $$T^{2} + 6T + 36$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2} + 7T + 49$$
$41$ $$T^{2}$$
$43$ $$T^{2} - T + 1$$
$47$ $$(T + 3)^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2} + 6T + 36$$
$61$ $$T^{2} + 8T + 64$$
$67$ $$T^{2} - 14T + 196$$
$71$ $$T^{2} + 3T + 9$$
$73$ $$(T + 2)^{2}$$
$79$ $$(T - 8)^{2}$$
$83$ $$(T + 12)^{2}$$
$89$ $$T^{2} + 6T + 36$$
$97$ $$T^{2} + 10T + 100$$