Properties

Label 3366.2.a.k
Level $3366$
Weight $2$
Character orbit 3366.a
Self dual yes
Analytic conductor $26.878$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3366 = 2 \cdot 3^{2} \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3366.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.8776453204\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1122)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + 2q^{5} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} + 2q^{5} - q^{8} - 2q^{10} + q^{11} - 2q^{13} + q^{16} - q^{17} - 4q^{19} + 2q^{20} - q^{22} - q^{25} + 2q^{26} + 2q^{29} - 8q^{31} - q^{32} + q^{34} - 10q^{37} + 4q^{38} - 2q^{40} + 6q^{41} + 4q^{43} + q^{44} - 8q^{47} - 7q^{49} + q^{50} - 2q^{52} - 6q^{53} + 2q^{55} - 2q^{58} + 12q^{59} - 10q^{61} + 8q^{62} + q^{64} - 4q^{65} + 4q^{67} - q^{68} - 16q^{71} + 2q^{73} + 10q^{74} - 4q^{76} - 8q^{79} + 2q^{80} - 6q^{82} + 12q^{83} - 2q^{85} - 4q^{86} - q^{88} - 10q^{89} + 8q^{94} - 8q^{95} + 2q^{97} + 7q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 2.00000 0 0 −1.00000 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(11\) \(-1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3366.2.a.k 1
3.b odd 2 1 1122.2.a.e 1
12.b even 2 1 8976.2.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1122.2.a.e 1 3.b odd 2 1
3366.2.a.k 1 1.a even 1 1 trivial
8976.2.a.w 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3366))\):

\( T_{5} - 2 \)
\( T_{7} \)
\( T_{13} + 2 \)
\( T_{19} + 4 \)
\( T_{23} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( -2 + T \)
$7$ \( T \)
$11$ \( -1 + T \)
$13$ \( 2 + T \)
$17$ \( 1 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( -2 + T \)
$31$ \( 8 + T \)
$37$ \( 10 + T \)
$41$ \( -6 + T \)
$43$ \( -4 + T \)
$47$ \( 8 + T \)
$53$ \( 6 + T \)
$59$ \( -12 + T \)
$61$ \( 10 + T \)
$67$ \( -4 + T \)
$71$ \( 16 + T \)
$73$ \( -2 + T \)
$79$ \( 8 + T \)
$83$ \( -12 + T \)
$89$ \( 10 + T \)
$97$ \( -2 + T \)
show more
show less