Properties

Label 3366.2.a.c.1.1
Level $3366$
Weight $2$
Character 3366.1
Self dual yes
Analytic conductor $26.878$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3366 = 2 \cdot 3^{2} \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3366.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.8776453204\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1122)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3366.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -2.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -2.00000 q^{7} -1.00000 q^{8} +2.00000 q^{10} +1.00000 q^{11} +4.00000 q^{13} +2.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} +2.00000 q^{19} -2.00000 q^{20} -1.00000 q^{22} -2.00000 q^{23} -1.00000 q^{25} -4.00000 q^{26} -2.00000 q^{28} -2.00000 q^{29} -4.00000 q^{31} -1.00000 q^{32} +1.00000 q^{34} +4.00000 q^{35} +6.00000 q^{37} -2.00000 q^{38} +2.00000 q^{40} -6.00000 q^{41} +2.00000 q^{43} +1.00000 q^{44} +2.00000 q^{46} -3.00000 q^{49} +1.00000 q^{50} +4.00000 q^{52} +12.0000 q^{53} -2.00000 q^{55} +2.00000 q^{56} +2.00000 q^{58} +14.0000 q^{59} +6.00000 q^{61} +4.00000 q^{62} +1.00000 q^{64} -8.00000 q^{65} -4.00000 q^{67} -1.00000 q^{68} -4.00000 q^{70} +2.00000 q^{71} -8.00000 q^{73} -6.00000 q^{74} +2.00000 q^{76} -2.00000 q^{77} -2.00000 q^{79} -2.00000 q^{80} +6.00000 q^{82} +12.0000 q^{83} +2.00000 q^{85} -2.00000 q^{86} -1.00000 q^{88} -6.00000 q^{89} -8.00000 q^{91} -2.00000 q^{92} -4.00000 q^{95} -6.00000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 2.00000 0.267261
\(57\) 0 0
\(58\) 2.00000 0.262613
\(59\) 14.0000 1.82264 0.911322 0.411693i \(-0.135063\pi\)
0.911322 + 0.411693i \(0.135063\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) −4.00000 −0.478091
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) −2.00000 −0.208514
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) −14.0000 −1.28880
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −6.00000 −0.543214
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 8.00000 0.701646
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) −2.00000 −0.167836
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 8.00000 0.662085
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 2.00000 0.159111
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) 2.00000 0.152499
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 8.00000 0.592999
\(183\) 0 0
\(184\) 2.00000 0.147442
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) −1.00000 −0.0731272
\(188\) 0 0
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 2.00000 0.140720
\(203\) 4.00000 0.280745
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 12.0000 0.824163
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 6.00000 0.406371
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.0000 0.911322
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 6.00000 0.384111
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) −12.0000 −0.745644
\(260\) −8.00000 −0.496139
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −4.00000 −0.239046
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −4.00000 −0.234888
\(291\) 0 0
\(292\) −8.00000 −0.468165
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −28.0000 −1.63022
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 4.00000 0.230174
\(303\) 0 0
\(304\) 2.00000 0.114708
\(305\) −12.0000 −0.687118
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) −2.00000 −0.113961
\(309\) 0 0
\(310\) −8.00000 −0.454369
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) 34.0000 1.92179 0.960897 0.276907i \(-0.0893093\pi\)
0.960897 + 0.276907i \(0.0893093\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) −2.00000 −0.112509
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 12.0000 0.664619
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) −3.00000 −0.163178
\(339\) 0 0
\(340\) 2.00000 0.108465
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) −2.00000 −0.107833
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −4.00000 −0.214115 −0.107058 0.994253i \(-0.534143\pi\)
−0.107058 + 0.994253i \(0.534143\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −4.00000 −0.212298
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −10.0000 −0.528516
\(359\) 32.0000 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) −8.00000 −0.419314
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) −2.00000 −0.104257
\(369\) 0 0
\(370\) 12.0000 0.623850
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) 1.00000 0.0517088
\(375\) 0 0
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 4.00000 0.203595
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −28.0000 −1.39825 −0.699127 0.714998i \(-0.746428\pi\)
−0.699127 + 0.714998i \(0.746428\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) −4.00000 −0.198517
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) −12.0000 −0.592638
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) −28.0000 −1.37779
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) −2.00000 −0.0978232
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) −12.0000 −0.582772
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) −6.00000 −0.287348
\(437\) −4.00000 −0.191346
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) −34.0000 −1.61539 −0.807694 0.589601i \(-0.799285\pi\)
−0.807694 + 0.589601i \(0.799285\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) −2.00000 −0.0944911
\(449\) −32.0000 −1.51017 −0.755087 0.655625i \(-0.772405\pi\)
−0.755087 + 0.655625i \(0.772405\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) −12.0000 −0.564433
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) −14.0000 −0.644402
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) 4.00000 0.182195
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) 28.0000 1.26880 0.634401 0.773004i \(-0.281247\pi\)
0.634401 + 0.773004i \(0.281247\pi\)
\(488\) −6.00000 −0.271607
\(489\) 0 0
\(490\) −6.00000 −0.271052
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 2.00000 0.0900755
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −4.00000 −0.179425
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) −2.00000 −0.0892644
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 2.00000 0.0889108
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 16.0000 0.707798
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −22.0000 −0.970378
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 0 0
\(518\) 12.0000 0.527250
\(519\) 0 0
\(520\) 8.00000 0.350823
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) −2.00000 −0.0874539 −0.0437269 0.999044i \(-0.513923\pi\)
−0.0437269 + 0.999044i \(0.513923\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) 4.00000 0.174243
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 24.0000 1.04249
\(531\) 0 0
\(532\) −4.00000 −0.173422
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) 10.0000 0.431131
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 14.0000 0.594803
\(555\) 0 0
\(556\) 0 0
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 22.0000 0.928014
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 24.0000 1.00969
\(566\) −8.00000 −0.336265
\(567\) 0 0
\(568\) −2.00000 −0.0839181
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −8.00000 −0.334790 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 2.00000 0.0834058
\(576\) 0 0
\(577\) 46.0000 1.91501 0.957503 0.288425i \(-0.0931316\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 4.00000 0.166091
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 8.00000 0.331042
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 28.0000 1.15274
\(591\) 0 0
\(592\) 6.00000 0.246598
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) 8.00000 0.327144
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) −4.00000 −0.162758
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) −42.0000 −1.70473 −0.852364 0.522949i \(-0.824832\pi\)
−0.852364 + 0.522949i \(0.824832\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) 12.0000 0.485866
\(611\) 0 0
\(612\) 0 0
\(613\) 12.0000 0.484675 0.242338 0.970192i \(-0.422086\pi\)
0.242338 + 0.970192i \(0.422086\pi\)
\(614\) −22.0000 −0.887848
\(615\) 0 0
\(616\) 2.00000 0.0805823
\(617\) −16.0000 −0.644136 −0.322068 0.946717i \(-0.604378\pi\)
−0.322068 + 0.946717i \(0.604378\pi\)
\(618\) 0 0
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) 30.0000 1.20289
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −34.0000 −1.35891
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 2.00000 0.0795557
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) 2.00000 0.0791808
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) −28.0000 −1.10593 −0.552967 0.833203i \(-0.686504\pi\)
−0.552967 + 0.833203i \(0.686504\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) 2.00000 0.0786889
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) 0 0
\(649\) 14.0000 0.549548
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 40.0000 1.56293
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 4.00000 0.154881
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) −8.00000 −0.309067
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 44.0000 1.69608 0.848038 0.529936i \(-0.177784\pi\)
0.848038 + 0.529936i \(0.177784\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) 4.00000 0.153168
\(683\) 28.0000 1.07139 0.535695 0.844411i \(-0.320050\pi\)
0.535695 + 0.844411i \(0.320050\pi\)
\(684\) 0 0
\(685\) 36.0000 1.37549
\(686\) −20.0000 −0.763604
\(687\) 0 0
\(688\) 2.00000 0.0762493
\(689\) 48.0000 1.82865
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 4.00000 0.151402
\(699\) 0 0
\(700\) 2.00000 0.0755929
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) 12.0000 0.452589
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 4.00000 0.150117
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 10.0000 0.373718
\(717\) 0 0
\(718\) −32.0000 −1.19423
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 15.0000 0.558242
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 8.00000 0.296500
\(729\) 0 0
\(730\) −16.0000 −0.592187
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) −36.0000 −1.32969 −0.664845 0.746981i \(-0.731502\pi\)
−0.664845 + 0.746981i \(0.731502\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) 2.00000 0.0737210
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) −12.0000 −0.441129
\(741\) 0 0
\(742\) 24.0000 0.881068
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) −20.0000 −0.732252
\(747\) 0 0
\(748\) −1.00000 −0.0365636
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 8.00000 0.291343
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 4.00000 0.144526
\(767\) 56.0000 2.02204
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) −4.00000 −0.144150
\(771\) 0 0
\(772\) −4.00000 −0.143963
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 24.0000 0.860442
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) −2.00000 −0.0715199
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 28.0000 0.999363
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) −4.00000 −0.142314
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) 20.0000 0.708436 0.354218 0.935163i \(-0.384747\pi\)
0.354218 + 0.935163i \(0.384747\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 28.0000 0.988714
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) 2.00000 0.0703598
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 4.00000 0.140372
\(813\) 0 0
\(814\) −6.00000 −0.210300
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) −30.0000 −1.04893
\(819\) 0 0
\(820\) 12.0000 0.419058
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 28.0000 0.974245
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 24.0000 0.833052
\(831\) 0 0
\(832\) 4.00000 0.138675
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) 24.0000 0.830554
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) −20.0000 −0.690889
\(839\) 2.00000 0.0690477 0.0345238 0.999404i \(-0.489009\pi\)
0.0345238 + 0.999404i \(0.489009\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 34.0000 1.17172
\(843\) 0 0
\(844\) 8.00000 0.275371
\(845\) −6.00000 −0.206406
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 12.0000 0.412082
\(849\) 0 0
\(850\) −1.00000 −0.0342997
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 12.0000 0.410632
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 52.0000 1.77422 0.887109 0.461561i \(-0.152710\pi\)
0.887109 + 0.461561i \(0.152710\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) −16.0000 −0.544962
\(863\) 44.0000 1.49778 0.748889 0.662696i \(-0.230588\pi\)
0.748889 + 0.662696i \(0.230588\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) −2.00000 −0.0678454
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 6.00000 0.203186
\(873\) 0 0
\(874\) 4.00000 0.135302
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 10.0000 0.337484
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 34.0000 1.14225
\(887\) 36.0000 1.20876 0.604381 0.796696i \(-0.293421\pi\)
0.604381 + 0.796696i \(0.293421\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −20.0000 −0.668526
\(896\) 2.00000 0.0668153
\(897\) 0 0
\(898\) 32.0000 1.06785
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) 12.0000 0.398234
\(909\) 0 0
\(910\) −16.0000 −0.530395
\(911\) −46.0000 −1.52405 −0.762024 0.647549i \(-0.775794\pi\)
−0.762024 + 0.647549i \(0.775794\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) 40.0000 1.32092
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) −4.00000 −0.131876
\(921\) 0 0
\(922\) −18.0000 −0.592798
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 16.0000 0.525793
\(927\) 0 0
\(928\) 2.00000 0.0656532
\(929\) 24.0000 0.787414 0.393707 0.919236i \(-0.371192\pi\)
0.393707 + 0.919236i \(0.371192\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 18.0000 0.589610
\(933\) 0 0
\(934\) −6.00000 −0.196326
\(935\) 2.00000 0.0654070
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) −8.00000 −0.261209
\(939\) 0 0
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) 12.0000 0.390774
\(944\) 14.0000 0.455661
\(945\) 0 0
\(946\) −2.00000 −0.0650256
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 0 0
\(949\) −32.0000 −1.03876
\(950\) 2.00000 0.0648886
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) 0 0
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −24.0000 −0.773791
\(963\) 0 0
\(964\) −4.00000 −0.128831
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −12.0000 −0.385297
\(971\) −10.0000 −0.320915 −0.160458 0.987043i \(-0.551297\pi\)
−0.160458 + 0.987043i \(0.551297\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −28.0000 −0.897178
\(975\) 0 0
\(976\) 6.00000 0.192055
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 6.00000 0.191663
\(981\) 0 0
\(982\) −8.00000 −0.255290
\(983\) −18.0000 −0.574111 −0.287055 0.957914i \(-0.592676\pi\)
−0.287055 + 0.957914i \(0.592676\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) −2.00000 −0.0636930
\(987\) 0 0
\(988\) 8.00000 0.254514
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 4.00000 0.126872
\(995\) 40.0000 1.26809
\(996\) 0 0
\(997\) 46.0000 1.45683 0.728417 0.685134i \(-0.240256\pi\)
0.728417 + 0.685134i \(0.240256\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3366.2.a.c.1.1 1
3.2 odd 2 1122.2.a.l.1.1 1
12.11 even 2 8976.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1122.2.a.l.1.1 1 3.2 odd 2
3366.2.a.c.1.1 1 1.1 even 1 trivial
8976.2.a.r.1.1 1 12.11 even 2