# Properties

 Label 3360.2.t.e.2689.1 Level $3360$ Weight $2$ Character 3360.2689 Analytic conductor $26.830$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3360.t (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$26.8297350792$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 2689.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 3360.2689 Dual form 3360.2.t.e.2689.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000i q^{3} +(1.00000 - 2.00000i) q^{5} -1.00000i q^{7} -1.00000 q^{9} +O(q^{10})$$ $$q-1.00000i q^{3} +(1.00000 - 2.00000i) q^{5} -1.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} +2.00000i q^{13} +(-2.00000 - 1.00000i) q^{15} -6.00000 q^{19} -1.00000 q^{21} +8.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} +1.00000i q^{27} -6.00000 q^{29} -10.0000 q^{31} -2.00000i q^{33} +(-2.00000 - 1.00000i) q^{35} -8.00000i q^{37} +2.00000 q^{39} -6.00000 q^{41} -4.00000i q^{43} +(-1.00000 + 2.00000i) q^{45} -8.00000i q^{47} -1.00000 q^{49} -2.00000i q^{53} +(2.00000 - 4.00000i) q^{55} +6.00000i q^{57} -12.0000 q^{59} +14.0000 q^{61} +1.00000i q^{63} +(4.00000 + 2.00000i) q^{65} +8.00000i q^{67} +8.00000 q^{69} -2.00000 q^{71} +2.00000i q^{73} +(-4.00000 + 3.00000i) q^{75} -2.00000i q^{77} -8.00000 q^{79} +1.00000 q^{81} +6.00000i q^{87} -6.00000 q^{89} +2.00000 q^{91} +10.0000i q^{93} +(-6.00000 + 12.0000i) q^{95} -14.0000i q^{97} -2.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{5} - 2 q^{9} + O(q^{10})$$ $$2 q + 2 q^{5} - 2 q^{9} + 4 q^{11} - 4 q^{15} - 12 q^{19} - 2 q^{21} - 6 q^{25} - 12 q^{29} - 20 q^{31} - 4 q^{35} + 4 q^{39} - 12 q^{41} - 2 q^{45} - 2 q^{49} + 4 q^{55} - 24 q^{59} + 28 q^{61} + 8 q^{65} + 16 q^{69} - 4 q^{71} - 8 q^{75} - 16 q^{79} + 2 q^{81} - 12 q^{89} + 4 q^{91} - 12 q^{95} - 4 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times$$.

 $$n$$ $$421$$ $$1121$$ $$1471$$ $$1921$$ $$2017$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000i 0.577350i
$$4$$ 0 0
$$5$$ 1.00000 2.00000i 0.447214 0.894427i
$$6$$ 0 0
$$7$$ 1.00000i 0.377964i
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 0 0
$$13$$ 2.00000i 0.554700i 0.960769 + 0.277350i $$0.0894562\pi$$
−0.960769 + 0.277350i $$0.910544\pi$$
$$14$$ 0 0
$$15$$ −2.00000 1.00000i −0.516398 0.258199i
$$16$$ 0 0
$$17$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$18$$ 0 0
$$19$$ −6.00000 −1.37649 −0.688247 0.725476i $$-0.741620\pi$$
−0.688247 + 0.725476i $$0.741620\pi$$
$$20$$ 0 0
$$21$$ −1.00000 −0.218218
$$22$$ 0 0
$$23$$ 8.00000i 1.66812i 0.551677 + 0.834058i $$0.313988\pi$$
−0.551677 + 0.834058i $$0.686012\pi$$
$$24$$ 0 0
$$25$$ −3.00000 4.00000i −0.600000 0.800000i
$$26$$ 0 0
$$27$$ 1.00000i 0.192450i
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −10.0000 −1.79605 −0.898027 0.439941i $$-0.854999\pi$$
−0.898027 + 0.439941i $$0.854999\pi$$
$$32$$ 0 0
$$33$$ 2.00000i 0.348155i
$$34$$ 0 0
$$35$$ −2.00000 1.00000i −0.338062 0.169031i
$$36$$ 0 0
$$37$$ 8.00000i 1.31519i −0.753371 0.657596i $$-0.771573\pi$$
0.753371 0.657596i $$-0.228427\pi$$
$$38$$ 0 0
$$39$$ 2.00000 0.320256
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ 4.00000i 0.609994i −0.952353 0.304997i $$-0.901344\pi$$
0.952353 0.304997i $$-0.0986555\pi$$
$$44$$ 0 0
$$45$$ −1.00000 + 2.00000i −0.149071 + 0.298142i
$$46$$ 0 0
$$47$$ 8.00000i 1.16692i −0.812142 0.583460i $$-0.801699\pi$$
0.812142 0.583460i $$-0.198301\pi$$
$$48$$ 0 0
$$49$$ −1.00000 −0.142857
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 2.00000i 0.274721i −0.990521 0.137361i $$-0.956138\pi$$
0.990521 0.137361i $$-0.0438619\pi$$
$$54$$ 0 0
$$55$$ 2.00000 4.00000i 0.269680 0.539360i
$$56$$ 0 0
$$57$$ 6.00000i 0.794719i
$$58$$ 0 0
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ 14.0000 1.79252 0.896258 0.443533i $$-0.146275\pi$$
0.896258 + 0.443533i $$0.146275\pi$$
$$62$$ 0 0
$$63$$ 1.00000i 0.125988i
$$64$$ 0 0
$$65$$ 4.00000 + 2.00000i 0.496139 + 0.248069i
$$66$$ 0 0
$$67$$ 8.00000i 0.977356i 0.872464 + 0.488678i $$0.162521\pi$$
−0.872464 + 0.488678i $$0.837479\pi$$
$$68$$ 0 0
$$69$$ 8.00000 0.963087
$$70$$ 0 0
$$71$$ −2.00000 −0.237356 −0.118678 0.992933i $$-0.537866\pi$$
−0.118678 + 0.992933i $$0.537866\pi$$
$$72$$ 0 0
$$73$$ 2.00000i 0.234082i 0.993127 + 0.117041i $$0.0373409\pi$$
−0.993127 + 0.117041i $$0.962659\pi$$
$$74$$ 0 0
$$75$$ −4.00000 + 3.00000i −0.461880 + 0.346410i
$$76$$ 0 0
$$77$$ 2.00000i 0.227921i
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 6.00000i 0.643268i
$$88$$ 0 0
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ 2.00000 0.209657
$$92$$ 0 0
$$93$$ 10.0000i 1.03695i
$$94$$ 0 0
$$95$$ −6.00000 + 12.0000i −0.615587 + 1.23117i
$$96$$ 0 0
$$97$$ 14.0000i 1.42148i −0.703452 0.710742i $$-0.748359\pi$$
0.703452 0.710742i $$-0.251641\pi$$
$$98$$ 0 0
$$99$$ −2.00000 −0.201008
$$100$$ 0 0
$$101$$ −6.00000 −0.597022 −0.298511 0.954406i $$-0.596490\pi$$
−0.298511 + 0.954406i $$0.596490\pi$$
$$102$$ 0 0
$$103$$ 16.0000i 1.57653i 0.615338 + 0.788263i $$0.289020\pi$$
−0.615338 + 0.788263i $$0.710980\pi$$
$$104$$ 0 0
$$105$$ −1.00000 + 2.00000i −0.0975900 + 0.195180i
$$106$$ 0 0
$$107$$ 12.0000i 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 14.0000 1.34096 0.670478 0.741929i $$-0.266089\pi$$
0.670478 + 0.741929i $$0.266089\pi$$
$$110$$ 0 0
$$111$$ −8.00000 −0.759326
$$112$$ 0 0
$$113$$ 6.00000i 0.564433i −0.959351 0.282216i $$-0.908930\pi$$
0.959351 0.282216i $$-0.0910696\pi$$
$$114$$ 0 0
$$115$$ 16.0000 + 8.00000i 1.49201 + 0.746004i
$$116$$ 0 0
$$117$$ 2.00000i 0.184900i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ 0 0
$$123$$ 6.00000i 0.541002i
$$124$$ 0 0
$$125$$ −11.0000 + 2.00000i −0.983870 + 0.178885i
$$126$$ 0 0
$$127$$ 4.00000i 0.354943i −0.984126 0.177471i $$-0.943208\pi$$
0.984126 0.177471i $$-0.0567917\pi$$
$$128$$ 0 0
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ −8.00000 −0.698963 −0.349482 0.936943i $$-0.613642\pi$$
−0.349482 + 0.936943i $$0.613642\pi$$
$$132$$ 0 0
$$133$$ 6.00000i 0.520266i
$$134$$ 0 0
$$135$$ 2.00000 + 1.00000i 0.172133 + 0.0860663i
$$136$$ 0 0
$$137$$ 22.0000i 1.87959i −0.341743 0.939793i $$-0.611017\pi$$
0.341743 0.939793i $$-0.388983\pi$$
$$138$$ 0 0
$$139$$ 2.00000 0.169638 0.0848189 0.996396i $$-0.472969\pi$$
0.0848189 + 0.996396i $$0.472969\pi$$
$$140$$ 0 0
$$141$$ −8.00000 −0.673722
$$142$$ 0 0
$$143$$ 4.00000i 0.334497i
$$144$$ 0 0
$$145$$ −6.00000 + 12.0000i −0.498273 + 0.996546i
$$146$$ 0 0
$$147$$ 1.00000i 0.0824786i
$$148$$ 0 0
$$149$$ 22.0000 1.80231 0.901155 0.433497i $$-0.142720\pi$$
0.901155 + 0.433497i $$0.142720\pi$$
$$150$$ 0 0
$$151$$ −20.0000 −1.62758 −0.813788 0.581161i $$-0.802599\pi$$
−0.813788 + 0.581161i $$0.802599\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −10.0000 + 20.0000i −0.803219 + 1.60644i
$$156$$ 0 0
$$157$$ 18.0000i 1.43656i 0.695756 + 0.718278i $$0.255069\pi$$
−0.695756 + 0.718278i $$0.744931\pi$$
$$158$$ 0 0
$$159$$ −2.00000 −0.158610
$$160$$ 0 0
$$161$$ 8.00000 0.630488
$$162$$ 0 0
$$163$$ 4.00000i 0.313304i 0.987654 + 0.156652i $$0.0500701\pi$$
−0.987654 + 0.156652i $$0.949930\pi$$
$$164$$ 0 0
$$165$$ −4.00000 2.00000i −0.311400 0.155700i
$$166$$ 0 0
$$167$$ 4.00000i 0.309529i 0.987951 + 0.154765i $$0.0494619\pi$$
−0.987951 + 0.154765i $$0.950538\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ 6.00000 0.458831
$$172$$ 0 0
$$173$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$174$$ 0 0
$$175$$ −4.00000 + 3.00000i −0.302372 + 0.226779i
$$176$$ 0 0
$$177$$ 12.0000i 0.901975i
$$178$$ 0 0
$$179$$ 14.0000 1.04641 0.523205 0.852207i $$-0.324736\pi$$
0.523205 + 0.852207i $$0.324736\pi$$
$$180$$ 0 0
$$181$$ −6.00000 −0.445976 −0.222988 0.974821i $$-0.571581\pi$$
−0.222988 + 0.974821i $$0.571581\pi$$
$$182$$ 0 0
$$183$$ 14.0000i 1.03491i
$$184$$ 0 0
$$185$$ −16.0000 8.00000i −1.17634 0.588172i
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 1.00000 0.0727393
$$190$$ 0 0
$$191$$ 18.0000 1.30243 0.651217 0.758891i $$-0.274259\pi$$
0.651217 + 0.758891i $$0.274259\pi$$
$$192$$ 0 0
$$193$$ 16.0000i 1.15171i −0.817554 0.575853i $$-0.804670\pi$$
0.817554 0.575853i $$-0.195330\pi$$
$$194$$ 0 0
$$195$$ 2.00000 4.00000i 0.143223 0.286446i
$$196$$ 0 0
$$197$$ 22.0000i 1.56744i 0.621117 + 0.783718i $$0.286679\pi$$
−0.621117 + 0.783718i $$0.713321\pi$$
$$198$$ 0 0
$$199$$ −14.0000 −0.992434 −0.496217 0.868199i $$-0.665278\pi$$
−0.496217 + 0.868199i $$0.665278\pi$$
$$200$$ 0 0
$$201$$ 8.00000 0.564276
$$202$$ 0 0
$$203$$ 6.00000i 0.421117i
$$204$$ 0 0
$$205$$ −6.00000 + 12.0000i −0.419058 + 0.838116i
$$206$$ 0 0
$$207$$ 8.00000i 0.556038i
$$208$$ 0 0
$$209$$ −12.0000 −0.830057
$$210$$ 0 0
$$211$$ 8.00000 0.550743 0.275371 0.961338i $$-0.411199\pi$$
0.275371 + 0.961338i $$0.411199\pi$$
$$212$$ 0 0
$$213$$ 2.00000i 0.137038i
$$214$$ 0 0
$$215$$ −8.00000 4.00000i −0.545595 0.272798i
$$216$$ 0 0
$$217$$ 10.0000i 0.678844i
$$218$$ 0 0
$$219$$ 2.00000 0.135147
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 24.0000i 1.60716i 0.595198 + 0.803579i $$0.297074\pi$$
−0.595198 + 0.803579i $$0.702926\pi$$
$$224$$ 0 0
$$225$$ 3.00000 + 4.00000i 0.200000 + 0.266667i
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 0 0
$$229$$ 2.00000 0.132164 0.0660819 0.997814i $$-0.478950\pi$$
0.0660819 + 0.997814i $$0.478950\pi$$
$$230$$ 0 0
$$231$$ −2.00000 −0.131590
$$232$$ 0 0
$$233$$ 14.0000i 0.917170i −0.888650 0.458585i $$-0.848356\pi$$
0.888650 0.458585i $$-0.151644\pi$$
$$234$$ 0 0
$$235$$ −16.0000 8.00000i −1.04372 0.521862i
$$236$$ 0 0
$$237$$ 8.00000i 0.519656i
$$238$$ 0 0
$$239$$ −6.00000 −0.388108 −0.194054 0.980991i $$-0.562164\pi$$
−0.194054 + 0.980991i $$0.562164\pi$$
$$240$$ 0 0
$$241$$ 14.0000 0.901819 0.450910 0.892570i $$-0.351100\pi$$
0.450910 + 0.892570i $$0.351100\pi$$
$$242$$ 0 0
$$243$$ 1.00000i 0.0641500i
$$244$$ 0 0
$$245$$ −1.00000 + 2.00000i −0.0638877 + 0.127775i
$$246$$ 0 0
$$247$$ 12.0000i 0.763542i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −28.0000 −1.76734 −0.883672 0.468106i $$-0.844936\pi$$
−0.883672 + 0.468106i $$0.844936\pi$$
$$252$$ 0 0
$$253$$ 16.0000i 1.00591i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 12.0000i 0.748539i −0.927320 0.374270i $$-0.877893\pi$$
0.927320 0.374270i $$-0.122107\pi$$
$$258$$ 0 0
$$259$$ −8.00000 −0.497096
$$260$$ 0 0
$$261$$ 6.00000 0.371391
$$262$$ 0 0
$$263$$ 8.00000i 0.493301i −0.969104 0.246651i $$-0.920670\pi$$
0.969104 0.246651i $$-0.0793300\pi$$
$$264$$ 0 0
$$265$$ −4.00000 2.00000i −0.245718 0.122859i
$$266$$ 0 0
$$267$$ 6.00000i 0.367194i
$$268$$ 0 0
$$269$$ 14.0000 0.853595 0.426798 0.904347i $$-0.359642\pi$$
0.426798 + 0.904347i $$0.359642\pi$$
$$270$$ 0 0
$$271$$ 10.0000 0.607457 0.303728 0.952759i $$-0.401768\pi$$
0.303728 + 0.952759i $$0.401768\pi$$
$$272$$ 0 0
$$273$$ 2.00000i 0.121046i
$$274$$ 0 0
$$275$$ −6.00000 8.00000i −0.361814 0.482418i
$$276$$ 0 0
$$277$$ 8.00000i 0.480673i 0.970690 + 0.240337i $$0.0772579\pi$$
−0.970690 + 0.240337i $$0.922742\pi$$
$$278$$ 0 0
$$279$$ 10.0000 0.598684
$$280$$ 0 0
$$281$$ −10.0000 −0.596550 −0.298275 0.954480i $$-0.596411\pi$$
−0.298275 + 0.954480i $$0.596411\pi$$
$$282$$ 0 0
$$283$$ 4.00000i 0.237775i 0.992908 + 0.118888i $$0.0379328\pi$$
−0.992908 + 0.118888i $$0.962067\pi$$
$$284$$ 0 0
$$285$$ 12.0000 + 6.00000i 0.710819 + 0.355409i
$$286$$ 0 0
$$287$$ 6.00000i 0.354169i
$$288$$ 0 0
$$289$$ 17.0000 1.00000
$$290$$ 0 0
$$291$$ −14.0000 −0.820695
$$292$$ 0 0
$$293$$ 32.0000i 1.86946i −0.355359 0.934730i $$-0.615641\pi$$
0.355359 0.934730i $$-0.384359\pi$$
$$294$$ 0 0
$$295$$ −12.0000 + 24.0000i −0.698667 + 1.39733i
$$296$$ 0 0
$$297$$ 2.00000i 0.116052i
$$298$$ 0 0
$$299$$ −16.0000 −0.925304
$$300$$ 0 0
$$301$$ −4.00000 −0.230556
$$302$$ 0 0
$$303$$ 6.00000i 0.344691i
$$304$$ 0 0
$$305$$ 14.0000 28.0000i 0.801638 1.60328i
$$306$$ 0 0
$$307$$ 28.0000i 1.59804i −0.601302 0.799022i $$-0.705351\pi$$
0.601302 0.799022i $$-0.294649\pi$$
$$308$$ 0 0
$$309$$ 16.0000 0.910208
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 18.0000i 1.01742i −0.860938 0.508710i $$-0.830123\pi$$
0.860938 0.508710i $$-0.169877\pi$$
$$314$$ 0 0
$$315$$ 2.00000 + 1.00000i 0.112687 + 0.0563436i
$$316$$ 0 0
$$317$$ 10.0000i 0.561656i 0.959758 + 0.280828i $$0.0906090\pi$$
−0.959758 + 0.280828i $$0.909391\pi$$
$$318$$ 0 0
$$319$$ −12.0000 −0.671871
$$320$$ 0 0
$$321$$ −12.0000 −0.669775
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 8.00000 6.00000i 0.443760 0.332820i
$$326$$ 0 0
$$327$$ 14.0000i 0.774202i
$$328$$ 0 0
$$329$$ −8.00000 −0.441054
$$330$$ 0 0
$$331$$ 8.00000 0.439720 0.219860 0.975531i $$-0.429440\pi$$
0.219860 + 0.975531i $$0.429440\pi$$
$$332$$ 0 0
$$333$$ 8.00000i 0.438397i
$$334$$ 0 0
$$335$$ 16.0000 + 8.00000i 0.874173 + 0.437087i
$$336$$ 0 0
$$337$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$338$$ 0 0
$$339$$ −6.00000 −0.325875
$$340$$ 0 0
$$341$$ −20.0000 −1.08306
$$342$$ 0 0
$$343$$ 1.00000i 0.0539949i
$$344$$ 0 0
$$345$$ 8.00000 16.0000i 0.430706 0.861411i
$$346$$ 0 0
$$347$$ 12.0000i 0.644194i −0.946707 0.322097i $$-0.895612\pi$$
0.946707 0.322097i $$-0.104388\pi$$
$$348$$ 0 0
$$349$$ −22.0000 −1.17763 −0.588817 0.808267i $$-0.700406\pi$$
−0.588817 + 0.808267i $$0.700406\pi$$
$$350$$ 0 0
$$351$$ −2.00000 −0.106752
$$352$$ 0 0
$$353$$ 8.00000i 0.425797i 0.977074 + 0.212899i $$0.0682904\pi$$
−0.977074 + 0.212899i $$0.931710\pi$$
$$354$$ 0 0
$$355$$ −2.00000 + 4.00000i −0.106149 + 0.212298i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 6.00000 0.316668 0.158334 0.987386i $$-0.449388\pi$$
0.158334 + 0.987386i $$0.449388\pi$$
$$360$$ 0 0
$$361$$ 17.0000 0.894737
$$362$$ 0 0
$$363$$ 7.00000i 0.367405i
$$364$$ 0 0
$$365$$ 4.00000 + 2.00000i 0.209370 + 0.104685i
$$366$$ 0 0
$$367$$ 24.0000i 1.25279i −0.779506 0.626395i $$-0.784530\pi$$
0.779506 0.626395i $$-0.215470\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ 0 0
$$371$$ −2.00000 −0.103835
$$372$$ 0 0
$$373$$ 36.0000i 1.86401i 0.362446 + 0.932005i $$0.381942\pi$$
−0.362446 + 0.932005i $$0.618058\pi$$
$$374$$ 0 0
$$375$$ 2.00000 + 11.0000i 0.103280 + 0.568038i
$$376$$ 0 0
$$377$$ 12.0000i 0.618031i
$$378$$ 0 0
$$379$$ 20.0000 1.02733 0.513665 0.857991i $$-0.328287\pi$$
0.513665 + 0.857991i $$0.328287\pi$$
$$380$$ 0 0
$$381$$ −4.00000 −0.204926
$$382$$ 0 0
$$383$$ 12.0000i 0.613171i 0.951843 + 0.306586i $$0.0991866\pi$$
−0.951843 + 0.306586i $$0.900813\pi$$
$$384$$ 0 0
$$385$$ −4.00000 2.00000i −0.203859 0.101929i
$$386$$ 0 0
$$387$$ 4.00000i 0.203331i
$$388$$ 0 0
$$389$$ −10.0000 −0.507020 −0.253510 0.967333i $$-0.581585\pi$$
−0.253510 + 0.967333i $$0.581585\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 8.00000i 0.403547i
$$394$$ 0 0
$$395$$ −8.00000 + 16.0000i −0.402524 + 0.805047i
$$396$$ 0 0
$$397$$ 38.0000i 1.90717i 0.301131 + 0.953583i $$0.402636\pi$$
−0.301131 + 0.953583i $$0.597364\pi$$
$$398$$ 0 0
$$399$$ 6.00000 0.300376
$$400$$ 0 0
$$401$$ −22.0000 −1.09863 −0.549314 0.835616i $$-0.685111\pi$$
−0.549314 + 0.835616i $$0.685111\pi$$
$$402$$ 0 0
$$403$$ 20.0000i 0.996271i
$$404$$ 0 0
$$405$$ 1.00000 2.00000i 0.0496904 0.0993808i
$$406$$ 0 0
$$407$$ 16.0000i 0.793091i
$$408$$ 0 0
$$409$$ −34.0000 −1.68119 −0.840596 0.541663i $$-0.817795\pi$$
−0.840596 + 0.541663i $$0.817795\pi$$
$$410$$ 0 0
$$411$$ −22.0000 −1.08518
$$412$$ 0 0
$$413$$ 12.0000i 0.590481i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 2.00000i 0.0979404i
$$418$$ 0 0
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ 10.0000 0.487370 0.243685 0.969854i $$-0.421644\pi$$
0.243685 + 0.969854i $$0.421644\pi$$
$$422$$ 0 0
$$423$$ 8.00000i 0.388973i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 14.0000i 0.677507i
$$428$$ 0 0
$$429$$ 4.00000 0.193122
$$430$$ 0 0
$$431$$ −18.0000 −0.867029 −0.433515 0.901146i $$-0.642727\pi$$
−0.433515 + 0.901146i $$0.642727\pi$$
$$432$$ 0 0
$$433$$ 22.0000i 1.05725i 0.848855 + 0.528626i $$0.177293\pi$$
−0.848855 + 0.528626i $$0.822707\pi$$
$$434$$ 0 0
$$435$$ 12.0000 + 6.00000i 0.575356 + 0.287678i
$$436$$ 0 0
$$437$$ 48.0000i 2.29615i
$$438$$ 0 0
$$439$$ 26.0000 1.24091 0.620456 0.784241i $$-0.286947\pi$$
0.620456 + 0.784241i $$0.286947\pi$$
$$440$$ 0 0
$$441$$ 1.00000 0.0476190
$$442$$ 0 0
$$443$$ 4.00000i 0.190046i −0.995475 0.0950229i $$-0.969708\pi$$
0.995475 0.0950229i $$-0.0302924\pi$$
$$444$$ 0 0
$$445$$ −6.00000 + 12.0000i −0.284427 + 0.568855i
$$446$$ 0 0
$$447$$ 22.0000i 1.04056i
$$448$$ 0 0
$$449$$ −2.00000 −0.0943858 −0.0471929 0.998886i $$-0.515028\pi$$
−0.0471929 + 0.998886i $$0.515028\pi$$
$$450$$ 0 0
$$451$$ −12.0000 −0.565058
$$452$$ 0 0
$$453$$ 20.0000i 0.939682i
$$454$$ 0 0
$$455$$ 2.00000 4.00000i 0.0937614 0.187523i
$$456$$ 0 0
$$457$$ 4.00000i 0.187112i 0.995614 + 0.0935561i $$0.0298234\pi$$
−0.995614 + 0.0935561i $$0.970177\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −2.00000 −0.0931493 −0.0465746 0.998915i $$-0.514831\pi$$
−0.0465746 + 0.998915i $$0.514831\pi$$
$$462$$ 0 0
$$463$$ 12.0000i 0.557687i −0.960337 0.278844i $$-0.910049\pi$$
0.960337 0.278844i $$-0.0899511\pi$$
$$464$$ 0 0
$$465$$ 20.0000 + 10.0000i 0.927478 + 0.463739i
$$466$$ 0 0
$$467$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$468$$ 0 0
$$469$$ 8.00000 0.369406
$$470$$ 0 0
$$471$$ 18.0000 0.829396
$$472$$ 0 0
$$473$$ 8.00000i 0.367840i
$$474$$ 0 0
$$475$$ 18.0000 + 24.0000i 0.825897 + 1.10120i
$$476$$ 0 0
$$477$$ 2.00000i 0.0915737i
$$478$$ 0 0
$$479$$ −24.0000 −1.09659 −0.548294 0.836286i $$-0.684723\pi$$
−0.548294 + 0.836286i $$0.684723\pi$$
$$480$$ 0 0
$$481$$ 16.0000 0.729537
$$482$$ 0 0
$$483$$ 8.00000i 0.364013i
$$484$$ 0 0
$$485$$ −28.0000 14.0000i −1.27141 0.635707i
$$486$$ 0 0
$$487$$ 12.0000i 0.543772i −0.962329 0.271886i $$-0.912353\pi$$
0.962329 0.271886i $$-0.0876473\pi$$
$$488$$ 0 0
$$489$$ 4.00000 0.180886
$$490$$ 0 0
$$491$$ 18.0000 0.812329 0.406164 0.913800i $$-0.366866\pi$$
0.406164 + 0.913800i $$0.366866\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ −2.00000 + 4.00000i −0.0898933 + 0.179787i
$$496$$ 0 0
$$497$$ 2.00000i 0.0897123i
$$498$$ 0 0
$$499$$ 20.0000 0.895323 0.447661 0.894203i $$-0.352257\pi$$
0.447661 + 0.894203i $$0.352257\pi$$
$$500$$ 0 0
$$501$$ 4.00000 0.178707
$$502$$ 0 0
$$503$$ 20.0000i 0.891756i −0.895094 0.445878i $$-0.852892\pi$$
0.895094 0.445878i $$-0.147108\pi$$
$$504$$ 0 0
$$505$$ −6.00000 + 12.0000i −0.266996 + 0.533993i
$$506$$ 0 0
$$507$$ 9.00000i 0.399704i
$$508$$ 0 0
$$509$$ 34.0000 1.50702 0.753512 0.657434i $$-0.228358\pi$$
0.753512 + 0.657434i $$0.228358\pi$$
$$510$$ 0 0
$$511$$ 2.00000 0.0884748
$$512$$ 0 0
$$513$$ 6.00000i 0.264906i
$$514$$ 0 0
$$515$$ 32.0000 + 16.0000i 1.41009 + 0.705044i
$$516$$ 0 0
$$517$$ 16.0000i 0.703679i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −18.0000 −0.788594 −0.394297 0.918983i $$-0.629012\pi$$
−0.394297 + 0.918983i $$0.629012\pi$$
$$522$$ 0 0
$$523$$ 28.0000i 1.22435i 0.790721 + 0.612177i $$0.209706\pi$$
−0.790721 + 0.612177i $$0.790294\pi$$
$$524$$ 0 0
$$525$$ 3.00000 + 4.00000i 0.130931 + 0.174574i
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −41.0000 −1.78261
$$530$$ 0 0
$$531$$ 12.0000 0.520756
$$532$$ 0 0
$$533$$ 12.0000i 0.519778i
$$534$$ 0 0
$$535$$ −24.0000 12.0000i −1.03761 0.518805i
$$536$$ 0 0
$$537$$ 14.0000i 0.604145i
$$538$$ 0 0
$$539$$ −2.00000 −0.0861461
$$540$$ 0 0
$$541$$ 30.0000 1.28980 0.644900 0.764267i $$-0.276899\pi$$
0.644900 + 0.764267i $$0.276899\pi$$
$$542$$ 0 0
$$543$$ 6.00000i 0.257485i
$$544$$ 0 0
$$545$$ 14.0000 28.0000i 0.599694 1.19939i
$$546$$ 0 0
$$547$$ 8.00000i 0.342055i 0.985266 + 0.171028i $$0.0547087\pi$$
−0.985266 + 0.171028i $$0.945291\pi$$
$$548$$ 0 0
$$549$$ −14.0000 −0.597505
$$550$$ 0 0
$$551$$ 36.0000 1.53365
$$552$$ 0 0
$$553$$ 8.00000i 0.340195i
$$554$$ 0 0
$$555$$ −8.00000 + 16.0000i −0.339581 + 0.679162i
$$556$$ 0 0
$$557$$ 38.0000i 1.61011i −0.593199 0.805056i $$-0.702135\pi$$
0.593199 0.805056i $$-0.297865\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 4.00000i 0.168580i 0.996441 + 0.0842900i $$0.0268622\pi$$
−0.996441 + 0.0842900i $$0.973138\pi$$
$$564$$ 0 0
$$565$$ −12.0000 6.00000i −0.504844 0.252422i
$$566$$ 0 0
$$567$$ 1.00000i 0.0419961i
$$568$$ 0 0
$$569$$ 6.00000 0.251533 0.125767 0.992060i $$-0.459861\pi$$
0.125767 + 0.992060i $$0.459861\pi$$
$$570$$ 0 0
$$571$$ 12.0000 0.502184 0.251092 0.967963i $$-0.419210\pi$$
0.251092 + 0.967963i $$0.419210\pi$$
$$572$$ 0 0
$$573$$ 18.0000i 0.751961i
$$574$$ 0 0
$$575$$ 32.0000 24.0000i 1.33449 1.00087i
$$576$$ 0 0
$$577$$ 14.0000i 0.582828i −0.956597 0.291414i $$-0.905874\pi$$
0.956597 0.291414i $$-0.0941257\pi$$
$$578$$ 0 0
$$579$$ −16.0000 −0.664937
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 4.00000i 0.165663i
$$584$$ 0 0
$$585$$ −4.00000 2.00000i −0.165380 0.0826898i
$$586$$ 0 0
$$587$$ 12.0000i 0.495293i −0.968850 0.247647i $$-0.920343\pi$$
0.968850 0.247647i $$-0.0796572\pi$$
$$588$$ 0 0
$$589$$ 60.0000 2.47226
$$590$$ 0 0
$$591$$ 22.0000 0.904959
$$592$$ 0 0
$$593$$ 8.00000i 0.328521i −0.986417 0.164260i $$-0.947476\pi$$
0.986417 0.164260i $$-0.0525237\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 14.0000i 0.572982i
$$598$$ 0 0
$$599$$ 46.0000 1.87951 0.939755 0.341850i $$-0.111053\pi$$
0.939755 + 0.341850i $$0.111053\pi$$
$$600$$ 0 0
$$601$$ −10.0000 −0.407909 −0.203954 0.978980i $$-0.565379\pi$$
−0.203954 + 0.978980i $$0.565379\pi$$
$$602$$ 0 0
$$603$$ 8.00000i 0.325785i
$$604$$ 0 0
$$605$$ −7.00000 + 14.0000i −0.284590 + 0.569181i
$$606$$ 0 0
$$607$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$608$$ 0 0
$$609$$ 6.00000 0.243132
$$610$$ 0 0
$$611$$ 16.0000 0.647291
$$612$$ 0 0
$$613$$ 32.0000i 1.29247i −0.763139 0.646234i $$-0.776343\pi$$
0.763139 0.646234i $$-0.223657\pi$$
$$614$$ 0 0
$$615$$ 12.0000 + 6.00000i 0.483887 + 0.241943i
$$616$$ 0 0
$$617$$ 18.0000i 0.724653i −0.932051 0.362326i $$-0.881983\pi$$
0.932051 0.362326i $$-0.118017\pi$$
$$618$$ 0 0
$$619$$ 26.0000 1.04503 0.522514 0.852631i $$-0.324994\pi$$
0.522514 + 0.852631i $$0.324994\pi$$
$$620$$ 0 0
$$621$$ −8.00000 −0.321029
$$622$$ 0 0
$$623$$ 6.00000i 0.240385i
$$624$$ 0 0
$$625$$ −7.00000 + 24.0000i −0.280000 + 0.960000i
$$626$$ 0 0
$$627$$ 12.0000i 0.479234i
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 32.0000 1.27390 0.636950 0.770905i $$-0.280196\pi$$
0.636950 + 0.770905i $$0.280196\pi$$
$$632$$ 0 0
$$633$$ 8.00000i 0.317971i
$$634$$ 0 0
$$635$$ −8.00000 4.00000i −0.317470 0.158735i
$$636$$ 0 0
$$637$$ 2.00000i 0.0792429i
$$638$$ 0 0
$$639$$ 2.00000 0.0791188
$$640$$ 0 0
$$641$$ −42.0000 −1.65890 −0.829450 0.558581i $$-0.811346\pi$$
−0.829450 + 0.558581i $$0.811346\pi$$
$$642$$ 0 0
$$643$$ 28.0000i 1.10421i −0.833774 0.552106i $$-0.813824\pi$$
0.833774 0.552106i $$-0.186176\pi$$
$$644$$ 0 0
$$645$$ −4.00000 + 8.00000i −0.157500 + 0.315000i
$$646$$ 0 0
$$647$$ 28.0000i 1.10079i −0.834903 0.550397i $$-0.814476\pi$$
0.834903 0.550397i $$-0.185524\pi$$
$$648$$ 0 0
$$649$$ −24.0000 −0.942082
$$650$$ 0 0
$$651$$ 10.0000 0.391931
$$652$$ 0 0
$$653$$ 18.0000i 0.704394i 0.935926 + 0.352197i $$0.114565\pi$$
−0.935926 + 0.352197i $$0.885435\pi$$
$$654$$ 0 0
$$655$$ −8.00000 + 16.0000i −0.312586 + 0.625172i
$$656$$ 0 0
$$657$$ 2.00000i 0.0780274i
$$658$$ 0 0
$$659$$ −30.0000 −1.16863 −0.584317 0.811525i $$-0.698638\pi$$
−0.584317 + 0.811525i $$0.698638\pi$$
$$660$$ 0 0
$$661$$ −18.0000 −0.700119 −0.350059 0.936727i $$-0.613839\pi$$
−0.350059 + 0.936727i $$0.613839\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 12.0000 + 6.00000i 0.465340 + 0.232670i
$$666$$ 0 0
$$667$$ 48.0000i 1.85857i
$$668$$ 0 0
$$669$$ 24.0000 0.927894
$$670$$ 0 0
$$671$$ 28.0000 1.08093
$$672$$ 0 0
$$673$$ 36.0000i 1.38770i 0.720121 + 0.693849i $$0.244086\pi$$
−0.720121 + 0.693849i $$0.755914\pi$$
$$674$$ 0 0
$$675$$ 4.00000 3.00000i 0.153960 0.115470i
$$676$$ 0 0
$$677$$ 32.0000i 1.22986i 0.788582 + 0.614930i $$0.210816\pi$$
−0.788582 + 0.614930i $$0.789184\pi$$
$$678$$ 0 0
$$679$$ −14.0000 −0.537271
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 4.00000i 0.153056i 0.997067 + 0.0765279i $$0.0243834\pi$$
−0.997067 + 0.0765279i $$0.975617\pi$$
$$684$$ 0 0
$$685$$ −44.0000 22.0000i −1.68115 0.840577i
$$686$$ 0 0
$$687$$ 2.00000i 0.0763048i
$$688$$ 0 0
$$689$$ 4.00000 0.152388
$$690$$ 0 0
$$691$$ 2.00000 0.0760836 0.0380418 0.999276i $$-0.487888\pi$$
0.0380418 + 0.999276i $$0.487888\pi$$
$$692$$ 0 0
$$693$$ 2.00000i 0.0759737i
$$694$$ 0 0
$$695$$ 2.00000 4.00000i 0.0758643 0.151729i
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ −14.0000 −0.529529
$$700$$ 0 0
$$701$$ −10.0000 −0.377695 −0.188847 0.982006i $$-0.560475\pi$$
−0.188847 + 0.982006i $$0.560475\pi$$
$$702$$ 0 0
$$703$$ 48.0000i 1.81035i
$$704$$ 0 0
$$705$$ −8.00000 + 16.0000i −0.301297 + 0.602595i
$$706$$ 0 0
$$707$$ 6.00000i 0.225653i
$$708$$ 0 0
$$709$$ 14.0000 0.525781 0.262891 0.964826i $$-0.415324\pi$$
0.262891 + 0.964826i $$0.415324\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 0 0
$$713$$ 80.0000i 2.99602i
$$714$$ 0 0
$$715$$ 8.00000 + 4.00000i 0.299183 + 0.149592i
$$716$$ 0 0
$$717$$ 6.00000i 0.224074i
$$718$$ 0 0
$$719$$ 36.0000 1.34257 0.671287 0.741198i $$-0.265742\pi$$
0.671287 + 0.741198i $$0.265742\pi$$
$$720$$ 0 0
$$721$$ 16.0000 0.595871
$$722$$ 0 0
$$723$$ 14.0000i 0.520666i
$$724$$ 0 0
$$725$$ 18.0000 + 24.0000i 0.668503 + 0.891338i
$$726$$ 0 0
$$727$$ 8.00000i 0.296704i −0.988935 0.148352i $$-0.952603\pi$$
0.988935 0.148352i $$-0.0473968\pi$$
$$728$$ 0 0
$$729$$ −1.00000 −0.0370370
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 2.00000i 0.0738717i 0.999318 + 0.0369358i $$0.0117597\pi$$
−0.999318 + 0.0369358i $$0.988240\pi$$
$$734$$ 0 0
$$735$$ 2.00000 + 1.00000i 0.0737711 + 0.0368856i
$$736$$ 0 0
$$737$$ 16.0000i 0.589368i
$$738$$ 0 0
$$739$$ 20.0000 0.735712 0.367856 0.929883i $$-0.380092\pi$$
0.367856 + 0.929883i $$0.380092\pi$$
$$740$$ 0 0
$$741$$ −12.0000 −0.440831
$$742$$ 0 0
$$743$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$744$$ 0 0
$$745$$ 22.0000 44.0000i 0.806018 1.61204i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −12.0000 −0.438470
$$750$$ 0 0
$$751$$ −40.0000 −1.45962 −0.729810 0.683650i $$-0.760392\pi$$
−0.729810 + 0.683650i $$0.760392\pi$$
$$752$$ 0 0
$$753$$ 28.0000i 1.02038i
$$754$$ 0 0
$$755$$ −20.0000 + 40.0000i −0.727875 + 1.45575i
$$756$$ 0 0
$$757$$ 20.0000i 0.726912i 0.931611 + 0.363456i $$0.118403\pi$$
−0.931611 + 0.363456i $$0.881597\pi$$
$$758$$ 0 0
$$759$$ 16.0000 0.580763
$$760$$ 0 0
$$761$$ 26.0000 0.942499 0.471250 0.882000i $$-0.343803\pi$$
0.471250 + 0.882000i $$0.343803\pi$$
$$762$$ 0 0
$$763$$ 14.0000i 0.506834i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 24.0000i 0.866590i
$$768$$ 0 0
$$769$$ 18.0000 0.649097 0.324548 0.945869i $$-0.394788\pi$$
0.324548 + 0.945869i $$0.394788\pi$$
$$770$$ 0 0
$$771$$ −12.0000 −0.432169
$$772$$ 0 0
$$773$$ 48.0000i 1.72644i −0.504828 0.863220i $$-0.668444\pi$$
0.504828 0.863220i $$-0.331556\pi$$
$$774$$ 0 0
$$775$$ 30.0000 + 40.0000i 1.07763 + 1.43684i
$$776$$ 0 0
$$777$$ 8.00000i 0.286998i
$$778$$ 0 0
$$779$$ 36.0000 1.28983
$$780$$ 0 0
$$781$$ −4.00000 −0.143131
$$782$$ 0 0
$$783$$ 6.00000i 0.214423i
$$784$$ 0 0
$$785$$ 36.0000 + 18.0000i 1.28490 + 0.642448i
$$786$$ 0 0
$$787$$ 20.0000i 0.712923i −0.934310 0.356462i $$-0.883983\pi$$
0.934310 0.356462i $$-0.116017\pi$$
$$788$$ 0 0
$$789$$ −8.00000 −0.284808
$$790$$ 0 0
$$791$$ −6.00000 −0.213335
$$792$$ 0 0
$$793$$ 28.0000i 0.994309i
$$794$$ 0 0
$$795$$ −2.00000 + 4.00000i −0.0709327 + 0.141865i
$$796$$ 0 0
$$797$$ 48.0000i 1.70025i −0.526583 0.850124i $$-0.676527\pi$$
0.526583 0.850124i $$-0.323473\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 6.00000 0.212000
$$802$$ 0 0
$$803$$ 4.00000i 0.141157i