Properties

Label 3360.2.t.e.2689.1
Level $3360$
Weight $2$
Character 3360.2689
Analytic conductor $26.830$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.t (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2689.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3360.2689
Dual form 3360.2.t.e.2689.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} +(1.00000 - 2.00000i) q^{5} -1.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +(1.00000 - 2.00000i) q^{5} -1.00000i q^{7} -1.00000 q^{9} +2.00000 q^{11} +2.00000i q^{13} +(-2.00000 - 1.00000i) q^{15} -6.00000 q^{19} -1.00000 q^{21} +8.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} +1.00000i q^{27} -6.00000 q^{29} -10.0000 q^{31} -2.00000i q^{33} +(-2.00000 - 1.00000i) q^{35} -8.00000i q^{37} +2.00000 q^{39} -6.00000 q^{41} -4.00000i q^{43} +(-1.00000 + 2.00000i) q^{45} -8.00000i q^{47} -1.00000 q^{49} -2.00000i q^{53} +(2.00000 - 4.00000i) q^{55} +6.00000i q^{57} -12.0000 q^{59} +14.0000 q^{61} +1.00000i q^{63} +(4.00000 + 2.00000i) q^{65} +8.00000i q^{67} +8.00000 q^{69} -2.00000 q^{71} +2.00000i q^{73} +(-4.00000 + 3.00000i) q^{75} -2.00000i q^{77} -8.00000 q^{79} +1.00000 q^{81} +6.00000i q^{87} -6.00000 q^{89} +2.00000 q^{91} +10.0000i q^{93} +(-6.00000 + 12.0000i) q^{95} -14.0000i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9} + O(q^{10}) \) \( 2 q + 2 q^{5} - 2 q^{9} + 4 q^{11} - 4 q^{15} - 12 q^{19} - 2 q^{21} - 6 q^{25} - 12 q^{29} - 20 q^{31} - 4 q^{35} + 4 q^{39} - 12 q^{41} - 2 q^{45} - 2 q^{49} + 4 q^{55} - 24 q^{59} + 28 q^{61} + 8 q^{65} + 16 q^{69} - 4 q^{71} - 8 q^{75} - 16 q^{79} + 2 q^{81} - 12 q^{89} + 4 q^{91} - 12 q^{95} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) −2.00000 1.00000i −0.516398 0.258199i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) −2.00000 1.00000i −0.338062 0.169031i
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) −1.00000 + 2.00000i −0.149071 + 0.298142i
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000i 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 0 0
\(55\) 2.00000 4.00000i 0.269680 0.539360i
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 4.00000 + 2.00000i 0.496139 + 0.248069i
\(66\) 0 0
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i 0.993127 + 0.117041i \(0.0373409\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) 0 0
\(75\) −4.00000 + 3.00000i −0.461880 + 0.346410i
\(76\) 0 0
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 10.0000i 1.03695i
\(94\) 0 0
\(95\) −6.00000 + 12.0000i −0.615587 + 1.23117i
\(96\) 0 0
\(97\) 14.0000i 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 0 0
\(105\) −1.00000 + 2.00000i −0.0975900 + 0.195180i
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 16.0000 + 8.00000i 1.49201 + 0.746004i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 4.00000i 0.354943i −0.984126 0.177471i \(-0.943208\pi\)
0.984126 0.177471i \(-0.0567917\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 6.00000i 0.520266i
\(134\) 0 0
\(135\) 2.00000 + 1.00000i 0.172133 + 0.0860663i
\(136\) 0 0
\(137\) 22.0000i 1.87959i −0.341743 0.939793i \(-0.611017\pi\)
0.341743 0.939793i \(-0.388983\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) −6.00000 + 12.0000i −0.498273 + 0.996546i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.0000 + 20.0000i −0.803219 + 1.60644i
\(156\) 0 0
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) −4.00000 2.00000i −0.311400 0.155700i
\(166\) 0 0
\(167\) 4.00000i 0.309529i 0.987951 + 0.154765i \(0.0494619\pi\)
−0.987951 + 0.154765i \(0.950538\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −4.00000 + 3.00000i −0.302372 + 0.226779i
\(176\) 0 0
\(177\) 12.0000i 0.901975i
\(178\) 0 0
\(179\) 14.0000 1.04641 0.523205 0.852207i \(-0.324736\pi\)
0.523205 + 0.852207i \(0.324736\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 14.0000i 1.03491i
\(184\) 0 0
\(185\) −16.0000 8.00000i −1.17634 0.588172i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i −0.817554 0.575853i \(-0.804670\pi\)
0.817554 0.575853i \(-0.195330\pi\)
\(194\) 0 0
\(195\) 2.00000 4.00000i 0.143223 0.286446i
\(196\) 0 0
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) 0 0
\(205\) −6.00000 + 12.0000i −0.419058 + 0.838116i
\(206\) 0 0
\(207\) 8.00000i 0.556038i
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 2.00000i 0.137038i
\(214\) 0 0
\(215\) −8.00000 4.00000i −0.545595 0.272798i
\(216\) 0 0
\(217\) 10.0000i 0.678844i
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 24.0000i 1.60716i 0.595198 + 0.803579i \(0.297074\pi\)
−0.595198 + 0.803579i \(0.702926\pi\)
\(224\) 0 0
\(225\) 3.00000 + 4.00000i 0.200000 + 0.266667i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) −2.00000 −0.131590
\(232\) 0 0
\(233\) 14.0000i 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 0 0
\(235\) −16.0000 8.00000i −1.04372 0.521862i
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −1.00000 + 2.00000i −0.0638877 + 0.127775i
\(246\) 0 0
\(247\) 12.0000i 0.763542i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000i 0.748539i −0.927320 0.374270i \(-0.877893\pi\)
0.927320 0.374270i \(-0.122107\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 8.00000i 0.493301i −0.969104 0.246651i \(-0.920670\pi\)
0.969104 0.246651i \(-0.0793300\pi\)
\(264\) 0 0
\(265\) −4.00000 2.00000i −0.245718 0.122859i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) 0 0
\(273\) 2.00000i 0.121046i
\(274\) 0 0
\(275\) −6.00000 8.00000i −0.361814 0.482418i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 12.0000 + 6.00000i 0.710819 + 0.355409i
\(286\) 0 0
\(287\) 6.00000i 0.354169i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 32.0000i 1.86946i −0.355359 0.934730i \(-0.615641\pi\)
0.355359 0.934730i \(-0.384359\pi\)
\(294\) 0 0
\(295\) −12.0000 + 24.0000i −0.698667 + 1.39733i
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 6.00000i 0.344691i
\(304\) 0 0
\(305\) 14.0000 28.0000i 0.801638 1.60328i
\(306\) 0 0
\(307\) 28.0000i 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 18.0000i 1.01742i −0.860938 0.508710i \(-0.830123\pi\)
0.860938 0.508710i \(-0.169877\pi\)
\(314\) 0 0
\(315\) 2.00000 + 1.00000i 0.112687 + 0.0563436i
\(316\) 0 0
\(317\) 10.0000i 0.561656i 0.959758 + 0.280828i \(0.0906090\pi\)
−0.959758 + 0.280828i \(0.909391\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8.00000 6.00000i 0.443760 0.332820i
\(326\) 0 0
\(327\) 14.0000i 0.774202i
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 8.00000i 0.438397i
\(334\) 0 0
\(335\) 16.0000 + 8.00000i 0.874173 + 0.437087i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 8.00000 16.0000i 0.430706 0.861411i
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 8.00000i 0.425797i 0.977074 + 0.212899i \(0.0682904\pi\)
−0.977074 + 0.212899i \(0.931710\pi\)
\(354\) 0 0
\(355\) −2.00000 + 4.00000i −0.106149 + 0.212298i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 4.00000 + 2.00000i 0.209370 + 0.104685i
\(366\) 0 0
\(367\) 24.0000i 1.25279i −0.779506 0.626395i \(-0.784530\pi\)
0.779506 0.626395i \(-0.215470\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −2.00000 −0.103835
\(372\) 0 0
\(373\) 36.0000i 1.86401i 0.362446 + 0.932005i \(0.381942\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 2.00000 + 11.0000i 0.103280 + 0.568038i
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) 12.0000i 0.613171i 0.951843 + 0.306586i \(0.0991866\pi\)
−0.951843 + 0.306586i \(0.900813\pi\)
\(384\) 0 0
\(385\) −4.00000 2.00000i −0.203859 0.101929i
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 8.00000i 0.403547i
\(394\) 0 0
\(395\) −8.00000 + 16.0000i −0.402524 + 0.805047i
\(396\) 0 0
\(397\) 38.0000i 1.90717i 0.301131 + 0.953583i \(0.402636\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(398\) 0 0
\(399\) 6.00000 0.300376
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 20.0000i 0.996271i
\(404\) 0 0
\(405\) 1.00000 2.00000i 0.0496904 0.0993808i
\(406\) 0 0
\(407\) 16.0000i 0.793091i
\(408\) 0 0
\(409\) −34.0000 −1.68119 −0.840596 0.541663i \(-0.817795\pi\)
−0.840596 + 0.541663i \(0.817795\pi\)
\(410\) 0 0
\(411\) −22.0000 −1.08518
\(412\) 0 0
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.00000i 0.0979404i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 14.0000i 0.677507i
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) 22.0000i 1.05725i 0.848855 + 0.528626i \(0.177293\pi\)
−0.848855 + 0.528626i \(0.822707\pi\)
\(434\) 0 0
\(435\) 12.0000 + 6.00000i 0.575356 + 0.287678i
\(436\) 0 0
\(437\) 48.0000i 2.29615i
\(438\) 0 0
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 4.00000i 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) −6.00000 + 12.0000i −0.284427 + 0.568855i
\(446\) 0 0
\(447\) 22.0000i 1.04056i
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 0 0
\(453\) 20.0000i 0.939682i
\(454\) 0 0
\(455\) 2.00000 4.00000i 0.0937614 0.187523i
\(456\) 0 0
\(457\) 4.00000i 0.187112i 0.995614 + 0.0935561i \(0.0298234\pi\)
−0.995614 + 0.0935561i \(0.970177\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i −0.960337 0.278844i \(-0.910049\pi\)
0.960337 0.278844i \(-0.0899511\pi\)
\(464\) 0 0
\(465\) 20.0000 + 10.0000i 0.927478 + 0.463739i
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 0 0
\(473\) 8.00000i 0.367840i
\(474\) 0 0
\(475\) 18.0000 + 24.0000i 0.825897 + 1.10120i
\(476\) 0 0
\(477\) 2.00000i 0.0915737i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) 8.00000i 0.364013i
\(484\) 0 0
\(485\) −28.0000 14.0000i −1.27141 0.635707i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.00000 + 4.00000i −0.0898933 + 0.179787i
\(496\) 0 0
\(497\) 2.00000i 0.0897123i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 4.00000 0.178707
\(502\) 0 0
\(503\) 20.0000i 0.891756i −0.895094 0.445878i \(-0.852892\pi\)
0.895094 0.445878i \(-0.147108\pi\)
\(504\) 0 0
\(505\) −6.00000 + 12.0000i −0.266996 + 0.533993i
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 0 0
\(513\) 6.00000i 0.264906i
\(514\) 0 0
\(515\) 32.0000 + 16.0000i 1.41009 + 0.705044i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i 0.790721 + 0.612177i \(0.209706\pi\)
−0.790721 + 0.612177i \(0.790294\pi\)
\(524\) 0 0
\(525\) 3.00000 + 4.00000i 0.130931 + 0.174574i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) −24.0000 12.0000i −1.03761 0.518805i
\(536\) 0 0
\(537\) 14.0000i 0.604145i
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 0 0
\(543\) 6.00000i 0.257485i
\(544\) 0 0
\(545\) 14.0000 28.0000i 0.599694 1.19939i
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) −14.0000 −0.597505
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 0 0
\(555\) −8.00000 + 16.0000i −0.339581 + 0.679162i
\(556\) 0 0
\(557\) 38.0000i 1.61011i −0.593199 0.805056i \(-0.702135\pi\)
0.593199 0.805056i \(-0.297865\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) 0 0
\(565\) −12.0000 6.00000i −0.504844 0.252422i
\(566\) 0 0
\(567\) 1.00000i 0.0419961i
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 18.0000i 0.751961i
\(574\) 0 0
\(575\) 32.0000 24.0000i 1.33449 1.00087i
\(576\) 0 0
\(577\) 14.0000i 0.582828i −0.956597 0.291414i \(-0.905874\pi\)
0.956597 0.291414i \(-0.0941257\pi\)
\(578\) 0 0
\(579\) −16.0000 −0.664937
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000i 0.165663i
\(584\) 0 0
\(585\) −4.00000 2.00000i −0.165380 0.0826898i
\(586\) 0 0
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 60.0000 2.47226
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) 0 0
\(593\) 8.00000i 0.328521i −0.986417 0.164260i \(-0.947476\pi\)
0.986417 0.164260i \(-0.0525237\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.0000i 0.572982i
\(598\) 0 0
\(599\) 46.0000 1.87951 0.939755 0.341850i \(-0.111053\pi\)
0.939755 + 0.341850i \(0.111053\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) 0 0
\(605\) −7.00000 + 14.0000i −0.284590 + 0.569181i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 32.0000i 1.29247i −0.763139 0.646234i \(-0.776343\pi\)
0.763139 0.646234i \(-0.223657\pi\)
\(614\) 0 0
\(615\) 12.0000 + 6.00000i 0.483887 + 0.241943i
\(616\) 0 0
\(617\) 18.0000i 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) 0 0
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) 6.00000i 0.240385i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 12.0000i 0.479234i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 8.00000i 0.317971i
\(634\) 0 0
\(635\) −8.00000 4.00000i −0.317470 0.158735i
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 28.0000i 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) −4.00000 + 8.00000i −0.157500 + 0.315000i
\(646\) 0 0
\(647\) 28.0000i 1.10079i −0.834903 0.550397i \(-0.814476\pi\)
0.834903 0.550397i \(-0.185524\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) 10.0000 0.391931
\(652\) 0 0
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) 0 0
\(655\) −8.00000 + 16.0000i −0.312586 + 0.625172i
\(656\) 0 0
\(657\) 2.00000i 0.0780274i
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.0000 + 6.00000i 0.465340 + 0.232670i
\(666\) 0 0
\(667\) 48.0000i 1.85857i
\(668\) 0 0
\(669\) 24.0000 0.927894
\(670\) 0 0
\(671\) 28.0000 1.08093
\(672\) 0 0
\(673\) 36.0000i 1.38770i 0.720121 + 0.693849i \(0.244086\pi\)
−0.720121 + 0.693849i \(0.755914\pi\)
\(674\) 0 0
\(675\) 4.00000 3.00000i 0.153960 0.115470i
\(676\) 0 0
\(677\) 32.0000i 1.22986i 0.788582 + 0.614930i \(0.210816\pi\)
−0.788582 + 0.614930i \(0.789184\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) −44.0000 22.0000i −1.68115 0.840577i
\(686\) 0 0
\(687\) 2.00000i 0.0763048i
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 2.00000 0.0760836 0.0380418 0.999276i \(-0.487888\pi\)
0.0380418 + 0.999276i \(0.487888\pi\)
\(692\) 0 0
\(693\) 2.00000i 0.0759737i
\(694\) 0 0
\(695\) 2.00000 4.00000i 0.0758643 0.151729i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −14.0000 −0.529529
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 48.0000i 1.81035i
\(704\) 0 0
\(705\) −8.00000 + 16.0000i −0.301297 + 0.602595i
\(706\) 0 0
\(707\) 6.00000i 0.225653i
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) 80.0000i 2.99602i
\(714\) 0 0
\(715\) 8.00000 + 4.00000i 0.299183 + 0.149592i
\(716\) 0 0
\(717\) 6.00000i 0.224074i
\(718\) 0 0
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 14.0000i 0.520666i
\(724\) 0 0
\(725\) 18.0000 + 24.0000i 0.668503 + 0.891338i
\(726\) 0 0
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 2.00000i 0.0738717i 0.999318 + 0.0369358i \(0.0117597\pi\)
−0.999318 + 0.0369358i \(0.988240\pi\)
\(734\) 0 0
\(735\) 2.00000 + 1.00000i 0.0737711 + 0.0368856i
\(736\) 0 0
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 22.0000 44.0000i 0.806018 1.61204i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 28.0000i 1.02038i
\(754\) 0 0
\(755\) −20.0000 + 40.0000i −0.727875 + 1.45575i
\(756\) 0 0
\(757\) 20.0000i 0.726912i 0.931611 + 0.363456i \(0.118403\pi\)
−0.931611 + 0.363456i \(0.881597\pi\)
\(758\) 0 0
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) 26.0000 0.942499 0.471250 0.882000i \(-0.343803\pi\)
0.471250 + 0.882000i \(0.343803\pi\)
\(762\) 0 0
\(763\) 14.0000i 0.506834i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000i 0.866590i
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) 48.0000i 1.72644i −0.504828 0.863220i \(-0.668444\pi\)
0.504828 0.863220i \(-0.331556\pi\)
\(774\) 0 0
\(775\) 30.0000 + 40.0000i 1.07763 + 1.43684i
\(776\) 0 0
\(777\) 8.00000i 0.286998i
\(778\) 0 0
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 36.0000 + 18.0000i 1.28490 + 0.642448i
\(786\) 0 0
\(787\) 20.0000i 0.712923i −0.934310 0.356462i \(-0.883983\pi\)
0.934310 0.356462i \(-0.116017\pi\)
\(788\) 0 0
\(789\) −8.00000 −0.284808
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 28.0000i 0.994309i
\(794\) 0 0
\(795\) −2.00000 + 4.00000i −0.0709327 + 0.141865i
\(796\) 0 0
\(797\) 48.0000i 1.70025i −0.526583 0.850124i \(-0.676527\pi\)
0.526583 0.850124i \(-0.323473\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 4.00000i 0.141157i