# Properties

 Label 3360.2.j.a Level $3360$ Weight $2$ Character orbit 3360.j Analytic conductor $26.830$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3360.j (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$26.8297350792$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 840) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{3} + ( -2 + i ) q^{5} -i q^{7} + q^{9} +O(q^{10})$$ $$q - q^{3} + ( -2 + i ) q^{5} -i q^{7} + q^{9} -6 q^{13} + ( 2 - i ) q^{15} -2 i q^{17} -4 i q^{19} + i q^{21} + 4 i q^{23} + ( 3 - 4 i ) q^{25} - q^{27} -6 i q^{29} + 8 q^{31} + ( 1 + 2 i ) q^{35} -2 q^{37} + 6 q^{39} -8 q^{41} + 6 q^{43} + ( -2 + i ) q^{45} + 2 i q^{47} - q^{49} + 2 i q^{51} -6 q^{53} + 4 i q^{57} + 6 i q^{59} + 10 i q^{61} -i q^{63} + ( 12 - 6 i ) q^{65} + 2 q^{67} -4 i q^{69} + 8 q^{71} + 6 i q^{73} + ( -3 + 4 i ) q^{75} -10 q^{79} + q^{81} -4 q^{83} + ( 2 + 4 i ) q^{85} + 6 i q^{87} + 6 i q^{91} -8 q^{93} + ( 4 + 8 i ) q^{95} -2 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} - 4 q^{5} + 2 q^{9} + O(q^{10})$$ $$2 q - 2 q^{3} - 4 q^{5} + 2 q^{9} - 12 q^{13} + 4 q^{15} + 6 q^{25} - 2 q^{27} + 16 q^{31} + 2 q^{35} - 4 q^{37} + 12 q^{39} - 16 q^{41} + 12 q^{43} - 4 q^{45} - 2 q^{49} - 12 q^{53} + 24 q^{65} + 4 q^{67} + 16 q^{71} - 6 q^{75} - 20 q^{79} + 2 q^{81} - 8 q^{83} + 4 q^{85} - 16 q^{93} + 8 q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times$$.

 $$n$$ $$421$$ $$1121$$ $$1471$$ $$1921$$ $$2017$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1009.1
 − 1.00000i 1.00000i
0 −1.00000 0 −2.00000 1.00000i 0 1.00000i 0 1.00000 0
1009.2 0 −1.00000 0 −2.00000 + 1.00000i 0 1.00000i 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3360.2.j.a 2
4.b odd 2 1 840.2.j.b 2
5.b even 2 1 3360.2.j.d 2
8.b even 2 1 3360.2.j.d 2
8.d odd 2 1 840.2.j.c yes 2
20.d odd 2 1 840.2.j.c yes 2
40.e odd 2 1 840.2.j.b 2
40.f even 2 1 inner 3360.2.j.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.j.b 2 4.b odd 2 1
840.2.j.b 2 40.e odd 2 1
840.2.j.c yes 2 8.d odd 2 1
840.2.j.c yes 2 20.d odd 2 1
3360.2.j.a 2 1.a even 1 1 trivial
3360.2.j.a 2 40.f even 2 1 inner
3360.2.j.d 2 5.b even 2 1
3360.2.j.d 2 8.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3360, [\chi])$$:

 $$T_{11}$$ $$T_{13} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$( 1 + T )^{2}$$
$5$ $$5 + 4 T + T^{2}$$
$7$ $$1 + T^{2}$$
$11$ $$T^{2}$$
$13$ $$( 6 + T )^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$16 + T^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$36 + T^{2}$$
$31$ $$( -8 + T )^{2}$$
$37$ $$( 2 + T )^{2}$$
$41$ $$( 8 + T )^{2}$$
$43$ $$( -6 + T )^{2}$$
$47$ $$4 + T^{2}$$
$53$ $$( 6 + T )^{2}$$
$59$ $$36 + T^{2}$$
$61$ $$100 + T^{2}$$
$67$ $$( -2 + T )^{2}$$
$71$ $$( -8 + T )^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$( 10 + T )^{2}$$
$83$ $$( 4 + T )^{2}$$
$89$ $$T^{2}$$
$97$ $$4 + T^{2}$$