Properties

Label 3360.2.dv
Level $3360$
Weight $2$
Character orbit 3360.dv
Rep. character $\chi_{3360}(1601,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $256$
Sturm bound $1536$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.dv (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1536\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3360, [\chi])\).

Total New Old
Modular forms 1600 256 1344
Cusp forms 1472 256 1216
Eisenstein series 128 0 128

Trace form

\( 256 q + 8 q^{21} - 128 q^{25} + 16 q^{37} - 24 q^{45} + 16 q^{49} - 48 q^{73} - 24 q^{81} + 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(840, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1680, [\chi])\)\(^{\oplus 2}\)