Properties

Label 3360.2.cx
Level $3360$
Weight $2$
Character orbit 3360.cx
Rep. character $\chi_{3360}(463,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $144$
Sturm bound $1536$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.cx (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Sturm bound: \(1536\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3360, [\chi])\).

Total New Old
Modular forms 1600 144 1456
Cusp forms 1472 144 1328
Eisenstein series 128 0 128

Trace form

\( 144 q - 16 q^{17} + 16 q^{25} - 64 q^{43} - 32 q^{51} + 16 q^{65} + 80 q^{73} - 144 q^{81} + 160 q^{83} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(840, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1120, [\chi])\)\(^{\oplus 2}\)