Properties

Label 3360.2.a.bg
Level $3360$
Weight $2$
Character orbit 3360.a
Self dual yes
Analytic conductor $26.830$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - q^{5} + q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} - q^{5} + q^{7} + q^{9} + ( 1 + \beta ) q^{11} + ( 1 - \beta ) q^{13} - q^{15} + 2 q^{17} + ( 3 - \beta ) q^{19} + q^{21} + q^{25} + q^{27} -2 q^{29} + ( 1 + \beta ) q^{31} + ( 1 + \beta ) q^{33} - q^{35} -2 q^{37} + ( 1 - \beta ) q^{39} + 2 q^{41} + ( 2 + 2 \beta ) q^{43} - q^{45} + q^{49} + 2 q^{51} + ( 1 + 3 \beta ) q^{53} + ( -1 - \beta ) q^{55} + ( 3 - \beta ) q^{57} -4 q^{59} -2 \beta q^{61} + q^{63} + ( -1 + \beta ) q^{65} + ( 6 - 2 \beta ) q^{67} + ( -1 - \beta ) q^{71} + ( 11 + \beta ) q^{73} + q^{75} + ( 1 + \beta ) q^{77} + ( 6 - 2 \beta ) q^{79} + q^{81} -4 q^{83} -2 q^{85} -2 q^{87} + ( 8 - 2 \beta ) q^{89} + ( 1 - \beta ) q^{91} + ( 1 + \beta ) q^{93} + ( -3 + \beta ) q^{95} + ( 9 - \beta ) q^{97} + ( 1 + \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} - 2q^{5} + 2q^{7} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{3} - 2q^{5} + 2q^{7} + 2q^{9} + 2q^{11} + 2q^{13} - 2q^{15} + 4q^{17} + 6q^{19} + 2q^{21} + 2q^{25} + 2q^{27} - 4q^{29} + 2q^{31} + 2q^{33} - 2q^{35} - 4q^{37} + 2q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{49} + 4q^{51} + 2q^{53} - 2q^{55} + 6q^{57} - 8q^{59} + 2q^{63} - 2q^{65} + 12q^{67} - 2q^{71} + 22q^{73} + 2q^{75} + 2q^{77} + 12q^{79} + 2q^{81} - 8q^{83} - 4q^{85} - 4q^{87} + 16q^{89} + 2q^{91} + 2q^{93} - 6q^{95} + 18q^{97} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 1.00000 0 −1.00000 0 1.00000 0 1.00000 0
1.2 0 1.00000 0 −1.00000 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3360.2.a.bg yes 2
4.b odd 2 1 3360.2.a.ba 2
8.b even 2 1 6720.2.a.ct 2
8.d odd 2 1 6720.2.a.cw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3360.2.a.ba 2 4.b odd 2 1
3360.2.a.bg yes 2 1.a even 1 1 trivial
6720.2.a.ct 2 8.b even 2 1
6720.2.a.cw 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3360))\):

\( T_{11}^{2} - 2 T_{11} - 16 \)
\( T_{13}^{2} - 2 T_{13} - 16 \)
\( T_{17} - 2 \)
\( T_{19}^{2} - 6 T_{19} - 8 \)
\( T_{23} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( ( 1 + T )^{2} \)
$7$ \( ( -1 + T )^{2} \)
$11$ \( -16 - 2 T + T^{2} \)
$13$ \( -16 - 2 T + T^{2} \)
$17$ \( ( -2 + T )^{2} \)
$19$ \( -8 - 6 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( -16 - 2 T + T^{2} \)
$37$ \( ( 2 + T )^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( -64 - 4 T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( -152 - 2 T + T^{2} \)
$59$ \( ( 4 + T )^{2} \)
$61$ \( -68 + T^{2} \)
$67$ \( -32 - 12 T + T^{2} \)
$71$ \( -16 + 2 T + T^{2} \)
$73$ \( 104 - 22 T + T^{2} \)
$79$ \( -32 - 12 T + T^{2} \)
$83$ \( ( 4 + T )^{2} \)
$89$ \( -4 - 16 T + T^{2} \)
$97$ \( 64 - 18 T + T^{2} \)
show more
show less