Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.bh (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(77.2981720963\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 | 0 | −13.5000 | + | 7.79423i | 0 | −195.955 | − | 113.135i | 0 | 341.837 | + | 28.2190i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.2 | 0 | −13.5000 | + | 7.79423i | 0 | −190.240 | − | 109.835i | 0 | −15.6818 | − | 342.641i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.3 | 0 | −13.5000 | + | 7.79423i | 0 | −114.861 | − | 66.3152i | 0 | −74.7758 | + | 334.750i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.4 | 0 | −13.5000 | + | 7.79423i | 0 | −58.1747 | − | 33.5872i | 0 | −336.398 | − | 66.9742i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.5 | 0 | −13.5000 | + | 7.79423i | 0 | −23.8745 | − | 13.7839i | 0 | −162.412 | + | 302.112i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.6 | 0 | −13.5000 | + | 7.79423i | 0 | −17.6311 | − | 10.1793i | 0 | 342.439 | − | 19.6179i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.7 | 0 | −13.5000 | + | 7.79423i | 0 | −6.08028 | − | 3.51045i | 0 | 75.1444 | − | 334.667i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.8 | 0 | −13.5000 | + | 7.79423i | 0 | 102.544 | + | 59.2040i | 0 | 191.470 | + | 284.585i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.9 | 0 | −13.5000 | + | 7.79423i | 0 | 103.966 | + | 60.0248i | 0 | 139.570 | − | 313.320i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.10 | 0 | −13.5000 | + | 7.79423i | 0 | 122.266 | + | 70.5906i | 0 | −306.427 | − | 154.115i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.11 | 0 | −13.5000 | + | 7.79423i | 0 | 154.657 | + | 89.2912i | 0 | 337.056 | + | 63.5791i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
145.12 | 0 | −13.5000 | + | 7.79423i | 0 | 186.383 | + | 107.608i | 0 | −255.821 | + | 228.483i | 0 | 121.500 | − | 210.444i | 0 | ||||||||||
241.1 | 0 | −13.5000 | − | 7.79423i | 0 | −195.955 | + | 113.135i | 0 | 341.837 | − | 28.2190i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.2 | 0 | −13.5000 | − | 7.79423i | 0 | −190.240 | + | 109.835i | 0 | −15.6818 | + | 342.641i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.3 | 0 | −13.5000 | − | 7.79423i | 0 | −114.861 | + | 66.3152i | 0 | −74.7758 | − | 334.750i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.4 | 0 | −13.5000 | − | 7.79423i | 0 | −58.1747 | + | 33.5872i | 0 | −336.398 | + | 66.9742i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.5 | 0 | −13.5000 | − | 7.79423i | 0 | −23.8745 | + | 13.7839i | 0 | −162.412 | − | 302.112i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.6 | 0 | −13.5000 | − | 7.79423i | 0 | −17.6311 | + | 10.1793i | 0 | 342.439 | + | 19.6179i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.7 | 0 | −13.5000 | − | 7.79423i | 0 | −6.08028 | + | 3.51045i | 0 | 75.1444 | + | 334.667i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
241.8 | 0 | −13.5000 | − | 7.79423i | 0 | 102.544 | − | 59.2040i | 0 | 191.470 | − | 284.585i | 0 | 121.500 | + | 210.444i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.7.bh.g | 24 | |
4.b | odd | 2 | 1 | 168.7.z.b | ✓ | 24 | |
7.d | odd | 6 | 1 | inner | 336.7.bh.g | 24 | |
28.f | even | 6 | 1 | 168.7.z.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.7.z.b | ✓ | 24 | 4.b | odd | 2 | 1 | |
168.7.z.b | ✓ | 24 | 28.f | even | 6 | 1 | |
336.7.bh.g | 24 | 1.a | even | 1 | 1 | trivial | |
336.7.bh.g | 24 | 7.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{24} - 126 T_{5}^{23} - 116739 T_{5}^{22} + 15375906 T_{5}^{21} + 9104072958 T_{5}^{20} - 1367538811338 T_{5}^{19} - 382448561894519 T_{5}^{18} + \cdots + 18\!\cdots\!00 \)
acting on \(S_{7}^{\mathrm{new}}(336, [\chi])\).