Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.q (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(53.8889634572\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) |
Defining polynomial: |
\( x^{10} - x^{9} + 1094 x^{8} - 12883 x^{7} + 1063781 x^{6} - 7555708 x^{5} + 199315216 x^{4} + 540268032 x^{3} + 20356706304 x^{2} - 26680098816 x + 37456183296 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{12}\cdot 7^{2} \) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{10} - x^{9} + 1094 x^{8} - 12883 x^{7} + 1063781 x^{6} - 7555708 x^{5} + 199315216 x^{4} + 540268032 x^{3} + 20356706304 x^{2} - 26680098816 x + 37456183296 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 11\!\cdots\!03 \nu^{9} + \cdots - 28\!\cdots\!00 ) / 30\!\cdots\!68 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 13\!\cdots\!15 \nu^{9} + \cdots - 30\!\cdots\!16 ) / 58\!\cdots\!20 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 77\!\cdots\!61 \nu^{9} + \cdots - 36\!\cdots\!24 ) / 64\!\cdots\!80 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 91\!\cdots\!39 \nu^{9} + \cdots - 17\!\cdots\!60 ) / 61\!\cdots\!60 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 48\!\cdots\!29 \nu^{9} + \cdots + 23\!\cdots\!12 ) / 30\!\cdots\!80 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 23\!\cdots\!23 \nu^{9} + \cdots - 16\!\cdots\!12 ) / 12\!\cdots\!20 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 27\!\cdots\!49 \nu^{9} + \cdots - 86\!\cdots\!36 ) / 12\!\cdots\!20 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 36\!\cdots\!33 \nu^{9} + \cdots + 16\!\cdots\!28 ) / 12\!\cdots\!20 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 12\!\cdots\!17 \nu^{9} + \cdots + 23\!\cdots\!16 ) / 61\!\cdots\!60 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{8} - 2\beta_{7} + 3\beta_{6} + 2\beta_{5} + 7\beta_{4} + 4\beta _1 + 4 ) / 28 \)
|
\(\nu^{2}\) | \(=\) |
\( ( - 14 \beta_{9} + 36 \beta_{8} + 45 \beta_{7} - 36 \beta_{6} + 9 \beta_{5} - 63 \beta_{4} - 14 \beta_{3} + 63 \beta_{2} + 12220 \beta_1 ) / 28 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -983\beta_{8} + 983\beta_{7} - 267\beta_{6} + 267\beta_{5} + 168\beta_{3} - 3605\beta_{2} + 49948 ) / 14 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 12950 \beta_{9} - 40235 \beta_{8} - 45460 \beta_{7} + 5225 \beta_{6} + 45460 \beta_{5} + 127365 \beta_{4} - 10140868 \beta _1 - 10140868 ) / 28 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 452130 \beta_{9} + 1495572 \beta_{8} - 171581 \beta_{7} - 1495572 \beta_{6} - 1667153 \beta_{5} - 7228417 \beta_{4} - 452130 \beta_{3} + 7228417 \beta_{2} + 179571236 \beta_1 ) / 28 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 4610569 \beta_{8} + 4610569 \beta_{7} + 8601715 \beta_{6} - 8601715 \beta_{5} + 3530051 \beta_{3} - 43081332 \beta_{2} + 2479661140 ) / 7 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 521523366 \beta_{9} - 124123271 \beta_{8} - 1695108452 \beta_{7} + 1570985181 \beta_{6} + 1695108452 \beta_{5} + 7612226545 \beta_{4} - 241080829076 \beta _1 - 241080829076 ) / 28 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 16221080750 \beta_{9} + 59975977020 \beta_{8} + 30840278745 \beta_{7} - 59975977020 \beta_{6} - 29135698275 \beta_{5} - 212298110955 \beta_{4} + \cdots + 10437528500908 \beta_1 ) / 28 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 792993729839 \beta_{8} + 792993729839 \beta_{7} + 180564071757 \beta_{6} - 180564071757 \beta_{5} + 293820409680 \beta_{3} + \cdots + 147828855262588 ) / 14 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).
\(n\) | \(85\) | \(113\) | \(127\) | \(241\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(\beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 |
|
0 | 4.50000 | − | 7.79423i | 0 | −46.5372 | − | 80.6048i | 0 | −119.738 | + | 49.6971i | 0 | −40.5000 | − | 70.1481i | 0 | ||||||||||||||||||||||||||||||||||||||||
193.2 | 0 | 4.50000 | − | 7.79423i | 0 | −33.1247 | − | 57.3737i | 0 | 115.972 | − | 57.9444i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
193.3 | 0 | 4.50000 | − | 7.79423i | 0 | 9.56607 | + | 16.5689i | 0 | 126.222 | − | 29.5814i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
193.4 | 0 | 4.50000 | − | 7.79423i | 0 | 10.3382 | + | 17.9063i | 0 | −74.2549 | − | 106.270i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
193.5 | 0 | 4.50000 | − | 7.79423i | 0 | 22.2576 | + | 38.5514i | 0 | 8.29943 | + | 129.376i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.1 | 0 | 4.50000 | + | 7.79423i | 0 | −46.5372 | + | 80.6048i | 0 | −119.738 | − | 49.6971i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.2 | 0 | 4.50000 | + | 7.79423i | 0 | −33.1247 | + | 57.3737i | 0 | 115.972 | + | 57.9444i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.3 | 0 | 4.50000 | + | 7.79423i | 0 | 9.56607 | − | 16.5689i | 0 | 126.222 | + | 29.5814i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.4 | 0 | 4.50000 | + | 7.79423i | 0 | 10.3382 | − | 17.9063i | 0 | −74.2549 | + | 106.270i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.5 | 0 | 4.50000 | + | 7.79423i | 0 | 22.2576 | − | 38.5514i | 0 | 8.29943 | − | 129.376i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.6.q.m | 10 | |
4.b | odd | 2 | 1 | 168.6.q.b | ✓ | 10 | |
7.c | even | 3 | 1 | inner | 336.6.q.m | 10 | |
12.b | even | 2 | 1 | 504.6.s.e | 10 | ||
28.g | odd | 6 | 1 | 168.6.q.b | ✓ | 10 | |
84.n | even | 6 | 1 | 504.6.s.e | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.6.q.b | ✓ | 10 | 4.b | odd | 2 | 1 | |
168.6.q.b | ✓ | 10 | 28.g | odd | 6 | 1 | |
336.6.q.m | 10 | 1.a | even | 1 | 1 | trivial | |
336.6.q.m | 10 | 7.c | even | 3 | 1 | inner | |
504.6.s.e | 10 | 12.b | even | 2 | 1 | ||
504.6.s.e | 10 | 84.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{10} + 75 T_{5}^{9} + 10726 T_{5}^{8} + 1823 T_{5}^{7} + 29874586 T_{5}^{6} - 712256737 T_{5}^{5} + 98953482841 T_{5}^{4} - 3137487320332 T_{5}^{3} + 90655492595236 T_{5}^{2} + \cdots + 11\!\cdots\!96 \)
acting on \(S_{6}^{\mathrm{new}}(336, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} \)
$3$
\( (T^{2} - 9 T + 81)^{5} \)
$5$
\( T^{10} + 75 T^{9} + \cdots + 11\!\cdots\!96 \)
$7$
\( T^{10} - 113 T^{9} + \cdots + 13\!\cdots\!07 \)
$11$
\( T^{10} + 91 T^{9} + \cdots + 22\!\cdots\!04 \)
$13$
\( (T^{5} - 290 T^{4} + \cdots + 20518255200000)^{2} \)
$17$
\( T^{10} + 1128 T^{9} + \cdots + 30\!\cdots\!16 \)
$19$
\( T^{10} + 282 T^{9} + \cdots + 26\!\cdots\!00 \)
$23$
\( T^{10} - 1808 T^{9} + \cdots + 34\!\cdots\!56 \)
$29$
\( (T^{5} - 2513 T^{4} + \cdots + 21\!\cdots\!12)^{2} \)
$31$
\( T^{10} - 5069 T^{9} + \cdots + 53\!\cdots\!41 \)
$37$
\( T^{10} + 5010 T^{9} + \cdots + 51\!\cdots\!24 \)
$41$
\( (T^{5} - 6436 T^{4} + \cdots - 16\!\cdots\!08)^{2} \)
$43$
\( (T^{5} + 8664 T^{4} + \cdots + 36\!\cdots\!32)^{2} \)
$47$
\( T^{10} - 50 T^{9} + \cdots + 19\!\cdots\!00 \)
$53$
\( T^{10} - 1167 T^{9} + \cdots + 10\!\cdots\!00 \)
$59$
\( T^{10} - 42797 T^{9} + \cdots + 82\!\cdots\!00 \)
$61$
\( T^{10} + 26546 T^{9} + \cdots + 58\!\cdots\!00 \)
$67$
\( T^{10} - 13440 T^{9} + \cdots + 20\!\cdots\!00 \)
$71$
\( (T^{5} - 19678 T^{4} + \cdots + 45\!\cdots\!04)^{2} \)
$73$
\( T^{10} + 27768 T^{9} + \cdots + 34\!\cdots\!64 \)
$79$
\( T^{10} - 123369 T^{9} + \cdots + 11\!\cdots\!21 \)
$83$
\( (T^{5} + 167125 T^{4} + \cdots + 27\!\cdots\!68)^{2} \)
$89$
\( T^{10} + 59350 T^{9} + \cdots + 71\!\cdots\!00 \)
$97$
\( (T^{5} - 262641 T^{4} + \cdots - 39\!\cdots\!96)^{2} \)
show more
show less