Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.q (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(53.8889634572\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) |
Defining polynomial: |
\( x^{10} + 564x^{8} + 117814x^{6} + 11067780x^{4} + 427918225x^{2} + 3489248448 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{12}\cdot 3^{3}\cdot 7^{2} \) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{10} + 564x^{8} + 117814x^{6} + 11067780x^{4} + 427918225x^{2} + 3489248448 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -625\nu^{9} - 281450\nu^{7} - 41638514\nu^{5} - 2184633898\nu^{3} - 19307731905\nu + 221300856 ) / 442601712 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 1520 \nu^{9} - 22127 \nu^{8} - 671941 \nu^{7} - 9881431 \nu^{6} - 97198651 \nu^{5} - 1446793789 \nu^{4} - 4998355379 \nu^{3} + \cdots - 661674519576 ) / 21076272 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 29349 \nu^{9} + 923650 \nu^{8} + 13163751 \nu^{7} + 413303534 \nu^{6} + 1937609757 \nu^{5} + 60656075606 \nu^{4} + 101054602125 \nu^{3} + \cdots + 27626932442592 ) / 221300856 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 92943 \nu^{9} + 1382633 \nu^{8} + 41485257 \nu^{7} + 619097017 \nu^{6} + 6068335779 \nu^{5} + 90929481643 \nu^{4} + 314369414091 \nu^{3} + \cdots + 41458506660144 ) / 442601712 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 29927 \nu^{9} - 75719 \nu^{8} + 13393927 \nu^{7} - 33593455 \nu^{6} + 1966231681 \nu^{5} - 4876676917 \nu^{4} + 102290395157 \nu^{3} + \cdots - 2191308184800 ) / 126457632 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 29927 \nu^{9} + 75719 \nu^{8} + 13393927 \nu^{7} + 33593455 \nu^{6} + 1966231681 \nu^{5} + 4876676917 \nu^{4} + 102290395157 \nu^{3} + \cdots + 2191308184800 ) / 126457632 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 249 \nu^{9} - 763 \nu^{8} + 111351 \nu^{7} - 340739 \nu^{6} + 16327677 \nu^{5} - 49889441 \nu^{4} + 848076549 \nu^{3} - 2588431825 \nu^{2} + \cdots - 22652476560 ) / 726768 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 249 \nu^{9} + 763 \nu^{8} + 111351 \nu^{7} + 340739 \nu^{6} + 16327677 \nu^{5} + 49889441 \nu^{4} + 848076549 \nu^{3} + 2588431825 \nu^{2} + \cdots + 22652476560 ) / 726768 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 8741 \nu^{9} - 44254 \nu^{8} + 3901120 \nu^{7} - 19762862 \nu^{6} + 570701284 \nu^{5} - 2893587578 \nu^{4} + 29592575300 \nu^{3} + \cdots - 1318596339816 ) / 21076272 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{9} + \beta_{8} + 4\beta_{7} - 4\beta_{6} - 4\beta_{5} - 4\beta_{4} + 4\beta_{3} - \beta_{2} - 2\beta _1 + 1 ) / 72 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{9} - \beta_{8} + 2\beta_{7} - \beta_{2} - 451 ) / 4 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 101 \beta_{9} - 29 \beta_{8} - 656 \beta_{7} + 404 \beta_{6} + 404 \beta_{5} + 728 \beta_{4} - 728 \beta_{3} + 101 \beta_{2} - 25718 \beta _1 + 12859 ) / 72 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 75 \beta_{9} + 158 \beta_{8} - 217 \beta_{7} - 34 \beta_{6} + 34 \beta_{5} - 16 \beta_{4} - 16 \beta_{3} + 75 \beta_{2} + 32979 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 14737 \beta_{9} - 16367 \beta_{8} + 108412 \beta_{7} - 37348 \beta_{6} - 37348 \beta_{5} - 139516 \beta_{4} + 139516 \beta_{3} - 14737 \beta_{2} + 7250590 \beta _1 - 3625295 ) / 72 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 22521 \beta_{9} - 77665 \beta_{8} + 89430 \beta_{7} + 21712 \beta_{6} - 21712 \beta_{5} + 10756 \beta_{4} + 10756 \beta_{3} - 22521 \beta_{2} - 10614395 ) / 4 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 2418317 \beta_{9} + 5917627 \beta_{8} - 19082264 \beta_{7} + 2430356 \beta_{6} + 2430356 \beta_{5} + 27418208 \beta_{4} - 27418208 \beta_{3} + 2418317 \beta_{2} + \cdots + 855464563 ) / 72 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 1820969 \beta_{9} + 8707940 \beta_{8} - 9173387 \beta_{7} - 2624930 \beta_{6} + 2624930 \beta_{5} - 1355522 \beta_{4} - 1355522 \beta_{3} + 1820969 \beta_{2} + 919333837 ) / 2 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 429358129 \beta_{9} - 1503955055 \beta_{8} + 3539964052 \beta_{7} + 105168572 \beta_{6} + 105168572 \beta_{5} - 5473277236 \beta_{4} + 5473277236 \beta_{3} + \cdots - 188662697615 ) / 72 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).
\(n\) | \(85\) | \(113\) | \(127\) | \(241\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1 + \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 |
|
0 | −4.50000 | + | 7.79423i | 0 | −50.8171 | − | 88.0179i | 0 | 119.572 | + | 50.0952i | 0 | −40.5000 | − | 70.1481i | 0 | ||||||||||||||||||||||||||||||||||||||||
193.2 | 0 | −4.50000 | + | 7.79423i | 0 | −19.4585 | − | 33.7032i | 0 | −106.179 | − | 74.3848i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
193.3 | 0 | −4.50000 | + | 7.79423i | 0 | 8.04054 | + | 13.9266i | 0 | 77.3451 | + | 104.042i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
193.4 | 0 | −4.50000 | + | 7.79423i | 0 | 13.3782 | + | 23.1717i | 0 | 66.5893 | − | 111.233i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
193.5 | 0 | −4.50000 | + | 7.79423i | 0 | 45.8569 | + | 79.4265i | 0 | −108.828 | + | 70.4522i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.1 | 0 | −4.50000 | − | 7.79423i | 0 | −50.8171 | + | 88.0179i | 0 | 119.572 | − | 50.0952i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.2 | 0 | −4.50000 | − | 7.79423i | 0 | −19.4585 | + | 33.7032i | 0 | −106.179 | + | 74.3848i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.3 | 0 | −4.50000 | − | 7.79423i | 0 | 8.04054 | − | 13.9266i | 0 | 77.3451 | − | 104.042i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.4 | 0 | −4.50000 | − | 7.79423i | 0 | 13.3782 | − | 23.1717i | 0 | 66.5893 | + | 111.233i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
289.5 | 0 | −4.50000 | − | 7.79423i | 0 | 45.8569 | − | 79.4265i | 0 | −108.828 | − | 70.4522i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.6.q.l | 10 | |
4.b | odd | 2 | 1 | 168.6.q.c | ✓ | 10 | |
7.c | even | 3 | 1 | inner | 336.6.q.l | 10 | |
12.b | even | 2 | 1 | 504.6.s.c | 10 | ||
28.g | odd | 6 | 1 | 168.6.q.c | ✓ | 10 | |
84.n | even | 6 | 1 | 504.6.s.c | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.6.q.c | ✓ | 10 | 4.b | odd | 2 | 1 | |
168.6.q.c | ✓ | 10 | 28.g | odd | 6 | 1 | |
336.6.q.l | 10 | 1.a | even | 1 | 1 | trivial | |
336.6.q.l | 10 | 7.c | even | 3 | 1 | inner | |
504.6.s.c | 10 | 12.b | even | 2 | 1 | ||
504.6.s.c | 10 | 84.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{10} + 6 T_{5}^{9} + 10633 T_{5}^{8} - 145618 T_{5}^{7} + 100355305 T_{5}^{6} - 731091322 T_{5}^{5} + 126550850680 T_{5}^{4} - 2828330981128 T_{5}^{3} + \cdots + 24\!\cdots\!76 \)
acting on \(S_{6}^{\mathrm{new}}(336, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} \)
$3$
\( (T^{2} + 9 T + 81)^{5} \)
$5$
\( T^{10} + 6 T^{9} + \cdots + 24\!\cdots\!76 \)
$7$
\( T^{10} - 97 T^{9} + \cdots + 13\!\cdots\!07 \)
$11$
\( T^{10} + 424 T^{9} + \cdots + 68\!\cdots\!36 \)
$13$
\( (T^{5} - 187 T^{4} + \cdots + 735027021216)^{2} \)
$17$
\( T^{10} + 952 T^{9} + \cdots + 15\!\cdots\!24 \)
$19$
\( T^{10} + 139 T^{9} + \cdots + 13\!\cdots\!84 \)
$23$
\( T^{10} + 4288 T^{9} + \cdots + 26\!\cdots\!76 \)
$29$
\( (T^{5} + 2108 T^{4} + \cdots + 12\!\cdots\!76)^{2} \)
$31$
\( T^{10} + 8131 T^{9} + \cdots + 68\!\cdots\!25 \)
$37$
\( T^{10} + 5425 T^{9} + \cdots + 12\!\cdots\!64 \)
$41$
\( (T^{5} - 14682 T^{4} + \cdots + 25\!\cdots\!44)^{2} \)
$43$
\( (T^{5} - 23431 T^{4} + \cdots + 33\!\cdots\!72)^{2} \)
$47$
\( T^{10} - 17190 T^{9} + \cdots + 13\!\cdots\!24 \)
$53$
\( T^{10} - 15064 T^{9} + \cdots + 40\!\cdots\!04 \)
$59$
\( T^{10} - 83242 T^{9} + \cdots + 22\!\cdots\!24 \)
$61$
\( T^{10} - 14954 T^{9} + \cdots + 36\!\cdots\!36 \)
$67$
\( T^{10} + 39501 T^{9} + \cdots + 50\!\cdots\!84 \)
$71$
\( (T^{5} - 28010 T^{4} + \cdots - 29\!\cdots\!68)^{2} \)
$73$
\( T^{10} + 90395 T^{9} + \cdots + 13\!\cdots\!16 \)
$79$
\( T^{10} - 43067 T^{9} + \cdots + 49\!\cdots\!89 \)
$83$
\( (T^{5} - 37836 T^{4} + \cdots - 10\!\cdots\!96)^{2} \)
$89$
\( T^{10} + 72608 T^{9} + \cdots + 64\!\cdots\!96 \)
$97$
\( (T^{5} - 91500 T^{4} + \cdots - 14\!\cdots\!48)^{2} \)
show more
show less