Properties

Label 336.6.q.j.289.2
Level $336$
Weight $6$
Character 336.289
Analytic conductor $53.889$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(193,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.193");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.8889634572\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 98x^{6} + 83x^{5} + 9122x^{4} - 91x^{3} + 28567x^{2} + 2058x + 86436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(-4.61193 - 7.98809i\) of defining polynomial
Character \(\chi\) \(=\) 336.289
Dual form 336.6.q.j.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{3} +(-11.8764 + 20.5705i) q^{5} +(-30.6840 + 125.958i) q^{7} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(4.50000 + 7.79423i) q^{3} +(-11.8764 + 20.5705i) q^{5} +(-30.6840 + 125.958i) q^{7} +(-40.5000 + 70.1481i) q^{9} +(232.763 + 403.157i) q^{11} -1019.30 q^{13} -213.775 q^{15} +(-280.878 - 486.496i) q^{17} +(-693.789 + 1201.68i) q^{19} +(-1119.83 + 327.654i) q^{21} +(2056.81 - 3562.50i) q^{23} +(1280.40 + 2217.72i) q^{25} -729.000 q^{27} -2381.37 q^{29} +(1475.33 + 2555.34i) q^{31} +(-2094.87 + 3628.42i) q^{33} +(-2226.61 - 2127.12i) q^{35} +(4954.48 - 8581.40i) q^{37} +(-4586.85 - 7944.66i) q^{39} -4477.13 q^{41} -5181.48 q^{43} +(-961.989 - 1666.21i) q^{45} +(-1560.80 + 2703.38i) q^{47} +(-14924.0 - 7729.82i) q^{49} +(2527.91 - 4378.46i) q^{51} +(-570.499 - 988.133i) q^{53} -11057.6 q^{55} -12488.2 q^{57} +(13748.5 + 23813.2i) q^{59} +(10551.8 - 18276.2i) q^{61} +(-7593.03 - 7253.74i) q^{63} +(12105.6 - 20967.6i) q^{65} +(-27794.2 - 48141.0i) q^{67} +37022.6 q^{69} +6076.90 q^{71} +(8389.82 + 14531.6i) q^{73} +(-11523.6 + 19959.5i) q^{75} +(-57923.1 + 16947.9i) q^{77} +(-2422.63 + 4196.12i) q^{79} +(-3280.50 - 5681.99i) q^{81} -60145.4 q^{83} +13343.3 q^{85} +(-10716.2 - 18561.0i) q^{87} +(31248.7 - 54124.4i) q^{89} +(31276.2 - 128389. i) q^{91} +(-13277.9 + 22998.1i) q^{93} +(-16479.4 - 28543.2i) q^{95} -63653.8 q^{97} -37707.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{3} - 258 q^{7} - 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 36 q^{3} - 258 q^{7} - 324 q^{9} + 402 q^{11} + 924 q^{13} - 276 q^{17} + 510 q^{19} - 3564 q^{21} + 6900 q^{23} - 2814 q^{25} - 5832 q^{27} + 1080 q^{29} - 6410 q^{31} - 3618 q^{33} + 33108 q^{35} - 15250 q^{37} + 4158 q^{39} + 8616 q^{41} - 58396 q^{43} - 15060 q^{47} - 64252 q^{49} + 2484 q^{51} - 13692 q^{53} - 146248 q^{55} + 9180 q^{57} + 34830 q^{59} + 5364 q^{61} - 11178 q^{63} - 66864 q^{65} - 5994 q^{67} + 124200 q^{69} - 178536 q^{71} - 59638 q^{73} + 25326 q^{75} - 75660 q^{77} - 44062 q^{79} - 26244 q^{81} + 416892 q^{83} + 72648 q^{85} + 4860 q^{87} + 77520 q^{89} - 104722 q^{91} + 57690 q^{93} - 221376 q^{95} - 377260 q^{97} - 65124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −11.8764 + 20.5705i −0.212452 + 0.367977i −0.952481 0.304597i \(-0.901478\pi\)
0.740030 + 0.672574i \(0.234811\pi\)
\(6\) 0 0
\(7\) −30.6840 + 125.958i −0.236683 + 0.971587i
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 232.763 + 403.157i 0.580006 + 1.00460i 0.995478 + 0.0949934i \(0.0302830\pi\)
−0.415472 + 0.909606i \(0.636384\pi\)
\(12\) 0 0
\(13\) −1019.30 −1.67280 −0.836399 0.548121i \(-0.815343\pi\)
−0.836399 + 0.548121i \(0.815343\pi\)
\(14\) 0 0
\(15\) −213.775 −0.245318
\(16\) 0 0
\(17\) −280.878 486.496i −0.235720 0.408279i 0.723762 0.690050i \(-0.242411\pi\)
−0.959482 + 0.281771i \(0.909078\pi\)
\(18\) 0 0
\(19\) −693.789 + 1201.68i −0.440903 + 0.763667i −0.997757 0.0669438i \(-0.978675\pi\)
0.556853 + 0.830611i \(0.312009\pi\)
\(20\) 0 0
\(21\) −1119.83 + 327.654i −0.554118 + 0.162131i
\(22\) 0 0
\(23\) 2056.81 3562.50i 0.810727 1.40422i −0.101630 0.994822i \(-0.532406\pi\)
0.912356 0.409397i \(-0.134261\pi\)
\(24\) 0 0
\(25\) 1280.40 + 2217.72i 0.409729 + 0.709671i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −2381.37 −0.525814 −0.262907 0.964821i \(-0.584681\pi\)
−0.262907 + 0.964821i \(0.584681\pi\)
\(30\) 0 0
\(31\) 1475.33 + 2555.34i 0.275730 + 0.477579i 0.970319 0.241828i \(-0.0777471\pi\)
−0.694589 + 0.719407i \(0.744414\pi\)
\(32\) 0 0
\(33\) −2094.87 + 3628.42i −0.334866 + 0.580006i
\(34\) 0 0
\(35\) −2226.61 2127.12i −0.307238 0.293509i
\(36\) 0 0
\(37\) 4954.48 8581.40i 0.594968 1.03051i −0.398584 0.917132i \(-0.630498\pi\)
0.993551 0.113382i \(-0.0361685\pi\)
\(38\) 0 0
\(39\) −4586.85 7944.66i −0.482895 0.836399i
\(40\) 0 0
\(41\) −4477.13 −0.415949 −0.207974 0.978134i \(-0.566687\pi\)
−0.207974 + 0.978134i \(0.566687\pi\)
\(42\) 0 0
\(43\) −5181.48 −0.427349 −0.213675 0.976905i \(-0.568543\pi\)
−0.213675 + 0.976905i \(0.568543\pi\)
\(44\) 0 0
\(45\) −961.989 1666.21i −0.0708172 0.122659i
\(46\) 0 0
\(47\) −1560.80 + 2703.38i −0.103063 + 0.178510i −0.912945 0.408082i \(-0.866198\pi\)
0.809882 + 0.586592i \(0.199531\pi\)
\(48\) 0 0
\(49\) −14924.0 7729.82i −0.887962 0.459917i
\(50\) 0 0
\(51\) 2527.91 4378.46i 0.136093 0.235720i
\(52\) 0 0
\(53\) −570.499 988.133i −0.0278975 0.0483198i 0.851740 0.523965i \(-0.175548\pi\)
−0.879637 + 0.475645i \(0.842215\pi\)
\(54\) 0 0
\(55\) −11057.6 −0.492893
\(56\) 0 0
\(57\) −12488.2 −0.509111
\(58\) 0 0
\(59\) 13748.5 + 23813.2i 0.514194 + 0.890610i 0.999864 + 0.0164678i \(0.00524209\pi\)
−0.485671 + 0.874142i \(0.661425\pi\)
\(60\) 0 0
\(61\) 10551.8 18276.2i 0.363078 0.628870i −0.625387 0.780314i \(-0.715059\pi\)
0.988466 + 0.151444i \(0.0483924\pi\)
\(62\) 0 0
\(63\) −7593.03 7253.74i −0.241026 0.230256i
\(64\) 0 0
\(65\) 12105.6 20967.6i 0.355389 0.615551i
\(66\) 0 0
\(67\) −27794.2 48141.0i −0.756428 1.31017i −0.944661 0.328047i \(-0.893610\pi\)
0.188234 0.982124i \(-0.439724\pi\)
\(68\) 0 0
\(69\) 37022.6 0.936146
\(70\) 0 0
\(71\) 6076.90 0.143066 0.0715330 0.997438i \(-0.477211\pi\)
0.0715330 + 0.997438i \(0.477211\pi\)
\(72\) 0 0
\(73\) 8389.82 + 14531.6i 0.184266 + 0.319158i 0.943329 0.331859i \(-0.107676\pi\)
−0.759063 + 0.651017i \(0.774343\pi\)
\(74\) 0 0
\(75\) −11523.6 + 19959.5i −0.236557 + 0.409729i
\(76\) 0 0
\(77\) −57923.1 + 16947.9i −1.11333 + 0.325754i
\(78\) 0 0
\(79\) −2422.63 + 4196.12i −0.0436737 + 0.0756450i −0.887036 0.461700i \(-0.847240\pi\)
0.843362 + 0.537345i \(0.180573\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −60145.4 −0.958313 −0.479156 0.877730i \(-0.659057\pi\)
−0.479156 + 0.877730i \(0.659057\pi\)
\(84\) 0 0
\(85\) 13343.3 0.200316
\(86\) 0 0
\(87\) −10716.2 18561.0i −0.151790 0.262907i
\(88\) 0 0
\(89\) 31248.7 54124.4i 0.418174 0.724299i −0.577582 0.816333i \(-0.696004\pi\)
0.995756 + 0.0920340i \(0.0293368\pi\)
\(90\) 0 0
\(91\) 31276.2 128389.i 0.395923 1.62527i
\(92\) 0 0
\(93\) −13277.9 + 22998.1i −0.159193 + 0.275730i
\(94\) 0 0
\(95\) −16479.4 28543.2i −0.187341 0.324485i
\(96\) 0 0
\(97\) −63653.8 −0.686903 −0.343451 0.939170i \(-0.611596\pi\)
−0.343451 + 0.939170i \(0.611596\pi\)
\(98\) 0 0
\(99\) −37707.6 −0.386670
\(100\) 0 0
\(101\) −92311.4 159888.i −0.900434 1.55960i −0.826932 0.562302i \(-0.809916\pi\)
−0.0735022 0.997295i \(-0.523418\pi\)
\(102\) 0 0
\(103\) 26021.9 45071.2i 0.241683 0.418607i −0.719511 0.694481i \(-0.755634\pi\)
0.961194 + 0.275874i \(0.0889674\pi\)
\(104\) 0 0
\(105\) 6559.49 26926.8i 0.0580627 0.238348i
\(106\) 0 0
\(107\) 24088.9 41723.2i 0.203403 0.352304i −0.746220 0.665700i \(-0.768133\pi\)
0.949623 + 0.313395i \(0.101466\pi\)
\(108\) 0 0
\(109\) 18217.8 + 31554.1i 0.146869 + 0.254384i 0.930069 0.367386i \(-0.119747\pi\)
−0.783200 + 0.621770i \(0.786414\pi\)
\(110\) 0 0
\(111\) 89180.6 0.687010
\(112\) 0 0
\(113\) −96711.1 −0.712492 −0.356246 0.934392i \(-0.615944\pi\)
−0.356246 + 0.934392i \(0.615944\pi\)
\(114\) 0 0
\(115\) 48855.0 + 84619.4i 0.344480 + 0.596658i
\(116\) 0 0
\(117\) 41281.6 71501.9i 0.278800 0.482895i
\(118\) 0 0
\(119\) 69896.6 20451.3i 0.452469 0.132390i
\(120\) 0 0
\(121\) −27831.7 + 48206.0i −0.172813 + 0.299321i
\(122\) 0 0
\(123\) −20147.1 34895.7i −0.120074 0.207974i
\(124\) 0 0
\(125\) −135054. −0.773093
\(126\) 0 0
\(127\) −23322.9 −0.128314 −0.0641568 0.997940i \(-0.520436\pi\)
−0.0641568 + 0.997940i \(0.520436\pi\)
\(128\) 0 0
\(129\) −23316.7 40385.7i −0.123365 0.213675i
\(130\) 0 0
\(131\) −169379. + 293373.i −0.862345 + 1.49363i 0.00731374 + 0.999973i \(0.497672\pi\)
−0.869659 + 0.493653i \(0.835661\pi\)
\(132\) 0 0
\(133\) −130073. 124261.i −0.637614 0.609123i
\(134\) 0 0
\(135\) 8657.90 14995.9i 0.0408863 0.0708172i
\(136\) 0 0
\(137\) 31438.4 + 54452.9i 0.143106 + 0.247867i 0.928665 0.370920i \(-0.120958\pi\)
−0.785559 + 0.618787i \(0.787624\pi\)
\(138\) 0 0
\(139\) −211927. −0.930356 −0.465178 0.885217i \(-0.654010\pi\)
−0.465178 + 0.885217i \(0.654010\pi\)
\(140\) 0 0
\(141\) −28094.3 −0.119007
\(142\) 0 0
\(143\) −237255. 410938.i −0.970233 1.68049i
\(144\) 0 0
\(145\) 28282.2 48986.1i 0.111710 0.193488i
\(146\) 0 0
\(147\) −6909.92 151105.i −0.0263742 0.576748i
\(148\) 0 0
\(149\) −70136.4 + 121480.i −0.258808 + 0.448269i −0.965923 0.258830i \(-0.916663\pi\)
0.707115 + 0.707099i \(0.249996\pi\)
\(150\) 0 0
\(151\) −81995.7 142021.i −0.292650 0.506885i 0.681785 0.731552i \(-0.261204\pi\)
−0.974436 + 0.224667i \(0.927870\pi\)
\(152\) 0 0
\(153\) 45502.3 0.157147
\(154\) 0 0
\(155\) −70086.4 −0.234317
\(156\) 0 0
\(157\) −278272. 481981.i −0.900990 1.56056i −0.826212 0.563360i \(-0.809508\pi\)
−0.0747781 0.997200i \(-0.523825\pi\)
\(158\) 0 0
\(159\) 5134.49 8893.19i 0.0161066 0.0278975i
\(160\) 0 0
\(161\) 385615. + 368384.i 1.17244 + 1.12005i
\(162\) 0 0
\(163\) −9863.32 + 17083.8i −0.0290773 + 0.0503634i −0.880198 0.474607i \(-0.842590\pi\)
0.851121 + 0.524970i \(0.175924\pi\)
\(164\) 0 0
\(165\) −49759.0 86185.1i −0.142286 0.246446i
\(166\) 0 0
\(167\) −94776.2 −0.262971 −0.131486 0.991318i \(-0.541975\pi\)
−0.131486 + 0.991318i \(0.541975\pi\)
\(168\) 0 0
\(169\) 667679. 1.79825
\(170\) 0 0
\(171\) −56196.9 97335.9i −0.146968 0.254556i
\(172\) 0 0
\(173\) −169420. + 293445.i −0.430379 + 0.745437i −0.996906 0.0786055i \(-0.974953\pi\)
0.566527 + 0.824043i \(0.308287\pi\)
\(174\) 0 0
\(175\) −318628. + 93228.6i −0.786483 + 0.230120i
\(176\) 0 0
\(177\) −123737. + 214319.i −0.296870 + 0.514194i
\(178\) 0 0
\(179\) 388096. + 672203.i 0.905330 + 1.56808i 0.820473 + 0.571685i \(0.193710\pi\)
0.0848573 + 0.996393i \(0.472957\pi\)
\(180\) 0 0
\(181\) −132697. −0.301067 −0.150534 0.988605i \(-0.548099\pi\)
−0.150534 + 0.988605i \(0.548099\pi\)
\(182\) 0 0
\(183\) 189932. 0.419247
\(184\) 0 0
\(185\) 117683. + 203833.i 0.252804 + 0.437869i
\(186\) 0 0
\(187\) 130756. 226476.i 0.273438 0.473608i
\(188\) 0 0
\(189\) 22368.7 91823.6i 0.0455497 0.186982i
\(190\) 0 0
\(191\) 3318.71 5748.17i 0.00658242 0.0114011i −0.862715 0.505690i \(-0.831238\pi\)
0.869298 + 0.494289i \(0.164571\pi\)
\(192\) 0 0
\(193\) −226295. 391954.i −0.437302 0.757430i 0.560178 0.828372i \(-0.310733\pi\)
−0.997480 + 0.0709425i \(0.977399\pi\)
\(194\) 0 0
\(195\) 217901. 0.410368
\(196\) 0 0
\(197\) 816952. 1.49979 0.749896 0.661556i \(-0.230104\pi\)
0.749896 + 0.661556i \(0.230104\pi\)
\(198\) 0 0
\(199\) 403208. + 698378.i 0.721767 + 1.25014i 0.960291 + 0.279000i \(0.0900031\pi\)
−0.238524 + 0.971137i \(0.576664\pi\)
\(200\) 0 0
\(201\) 250148. 433269.i 0.436724 0.756428i
\(202\) 0 0
\(203\) 73070.2 299954.i 0.124451 0.510874i
\(204\) 0 0
\(205\) 53172.2 92096.9i 0.0883690 0.153060i
\(206\) 0 0
\(207\) 166602. + 288562.i 0.270242 + 0.468073i
\(208\) 0 0
\(209\) −645954. −1.02291
\(210\) 0 0
\(211\) −68773.9 −0.106345 −0.0531726 0.998585i \(-0.516933\pi\)
−0.0531726 + 0.998585i \(0.516933\pi\)
\(212\) 0 0
\(213\) 27346.1 + 47364.8i 0.0412996 + 0.0715330i
\(214\) 0 0
\(215\) 61537.4 106586.i 0.0907911 0.157255i
\(216\) 0 0
\(217\) −367136. + 107421.i −0.529270 + 0.154861i
\(218\) 0 0
\(219\) −75508.4 + 130784.i −0.106386 + 0.184266i
\(220\) 0 0
\(221\) 286299. + 495885.i 0.394312 + 0.682968i
\(222\) 0 0
\(223\) 620227. 0.835196 0.417598 0.908632i \(-0.362872\pi\)
0.417598 + 0.908632i \(0.362872\pi\)
\(224\) 0 0
\(225\) −207425. −0.273152
\(226\) 0 0
\(227\) 501116. + 867959.i 0.645467 + 1.11798i 0.984193 + 0.177096i \(0.0566705\pi\)
−0.338727 + 0.940885i \(0.609996\pi\)
\(228\) 0 0
\(229\) −442931. + 767178.i −0.558145 + 0.966735i 0.439506 + 0.898239i \(0.355153\pi\)
−0.997651 + 0.0684960i \(0.978180\pi\)
\(230\) 0 0
\(231\) −392750. 375200.i −0.484269 0.462629i
\(232\) 0 0
\(233\) −298082. + 516293.i −0.359704 + 0.623026i −0.987911 0.155020i \(-0.950456\pi\)
0.628207 + 0.778046i \(0.283789\pi\)
\(234\) 0 0
\(235\) −37073.3 64212.9i −0.0437917 0.0758495i
\(236\) 0 0
\(237\) −43607.4 −0.0504300
\(238\) 0 0
\(239\) −743111. −0.841509 −0.420754 0.907175i \(-0.638235\pi\)
−0.420754 + 0.907175i \(0.638235\pi\)
\(240\) 0 0
\(241\) 587419. + 1.01744e6i 0.651487 + 1.12841i 0.982762 + 0.184874i \(0.0591877\pi\)
−0.331276 + 0.943534i \(0.607479\pi\)
\(242\) 0 0
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 336250. 215192.i 0.357888 0.229040i
\(246\) 0 0
\(247\) 707179. 1.22487e6i 0.737542 1.27746i
\(248\) 0 0
\(249\) −270654. 468787.i −0.276641 0.479156i
\(250\) 0 0
\(251\) −352992. −0.353655 −0.176828 0.984242i \(-0.556584\pi\)
−0.176828 + 0.984242i \(0.556584\pi\)
\(252\) 0 0
\(253\) 1.91500e6 1.88090
\(254\) 0 0
\(255\) 60044.9 + 104001.i 0.0578263 + 0.100158i
\(256\) 0 0
\(257\) −5006.34 + 8671.23i −0.00472811 + 0.00818932i −0.868380 0.495900i \(-0.834838\pi\)
0.863652 + 0.504089i \(0.168172\pi\)
\(258\) 0 0
\(259\) 928875. + 887369.i 0.860415 + 0.821968i
\(260\) 0 0
\(261\) 96445.6 167049.i 0.0876357 0.151790i
\(262\) 0 0
\(263\) 840900. + 1.45648e6i 0.749644 + 1.29842i 0.947993 + 0.318290i \(0.103109\pi\)
−0.198349 + 0.980131i \(0.563558\pi\)
\(264\) 0 0
\(265\) 27101.9 0.0237075
\(266\) 0 0
\(267\) 562477. 0.482866
\(268\) 0 0
\(269\) 958587. + 1.66032e6i 0.807702 + 1.39898i 0.914452 + 0.404694i \(0.132622\pi\)
−0.106750 + 0.994286i \(0.534045\pi\)
\(270\) 0 0
\(271\) 1.14500e6 1.98320e6i 0.947069 1.64037i 0.195515 0.980701i \(-0.437362\pi\)
0.751554 0.659672i \(-0.229305\pi\)
\(272\) 0 0
\(273\) 1.14144e6 333977.i 0.926928 0.271213i
\(274\) 0 0
\(275\) −596060. + 1.03241e6i −0.475290 + 0.823226i
\(276\) 0 0
\(277\) 197401. + 341908.i 0.154579 + 0.267738i 0.932906 0.360121i \(-0.117265\pi\)
−0.778327 + 0.627859i \(0.783931\pi\)
\(278\) 0 0
\(279\) −239003. −0.183820
\(280\) 0 0
\(281\) −1.77699e6 −1.34252 −0.671259 0.741223i \(-0.734246\pi\)
−0.671259 + 0.741223i \(0.734246\pi\)
\(282\) 0 0
\(283\) 607622. + 1.05243e6i 0.450991 + 0.781139i 0.998448 0.0556949i \(-0.0177374\pi\)
−0.547457 + 0.836834i \(0.684404\pi\)
\(284\) 0 0
\(285\) 148315. 256889.i 0.108162 0.187341i
\(286\) 0 0
\(287\) 137376. 563931.i 0.0984481 0.404130i
\(288\) 0 0
\(289\) 552143. 956340.i 0.388872 0.673547i
\(290\) 0 0
\(291\) −286442. 496132.i −0.198292 0.343451i
\(292\) 0 0
\(293\) −1.48897e6 −1.01325 −0.506627 0.862165i \(-0.669108\pi\)
−0.506627 + 0.862165i \(0.669108\pi\)
\(294\) 0 0
\(295\) −653133. −0.436965
\(296\) 0 0
\(297\) −169684. 293902.i −0.111622 0.193335i
\(298\) 0 0
\(299\) −2.09651e6 + 3.63125e6i −1.35618 + 2.34898i
\(300\) 0 0
\(301\) 158989. 652651.i 0.101146 0.415207i
\(302\) 0 0
\(303\) 830803. 1.43899e6i 0.519866 0.900434i
\(304\) 0 0
\(305\) 250634. + 434111.i 0.154273 + 0.267209i
\(306\) 0 0
\(307\) −2.03109e6 −1.22994 −0.614968 0.788552i \(-0.710831\pi\)
−0.614968 + 0.788552i \(0.710831\pi\)
\(308\) 0 0
\(309\) 468394. 0.279071
\(310\) 0 0
\(311\) 144892. + 250961.i 0.0849463 + 0.147131i 0.905368 0.424627i \(-0.139595\pi\)
−0.820422 + 0.571758i \(0.806261\pi\)
\(312\) 0 0
\(313\) −109105. + 188976.i −0.0629484 + 0.109030i −0.895782 0.444493i \(-0.853384\pi\)
0.832834 + 0.553523i \(0.186717\pi\)
\(314\) 0 0
\(315\) 239391. 70044.3i 0.135935 0.0397737i
\(316\) 0 0
\(317\) −645315. + 1.11772e6i −0.360681 + 0.624718i −0.988073 0.153985i \(-0.950789\pi\)
0.627392 + 0.778704i \(0.284122\pi\)
\(318\) 0 0
\(319\) −554296. 960068.i −0.304975 0.528233i
\(320\) 0 0
\(321\) 433600. 0.234870
\(322\) 0 0
\(323\) 779481. 0.415719
\(324\) 0 0
\(325\) −1.30511e6 2.26052e6i −0.685393 1.18714i
\(326\) 0 0
\(327\) −163960. + 283987.i −0.0847947 + 0.146869i
\(328\) 0 0
\(329\) −292621. 279546.i −0.149045 0.142385i
\(330\) 0 0
\(331\) −1.74280e6 + 3.01862e6i −0.874336 + 1.51439i −0.0168673 + 0.999858i \(0.505369\pi\)
−0.857469 + 0.514536i \(0.827964\pi\)
\(332\) 0 0
\(333\) 401313. + 695094.i 0.198323 + 0.343505i
\(334\) 0 0
\(335\) 1.32038e6 0.642817
\(336\) 0 0
\(337\) 249198. 0.119528 0.0597641 0.998213i \(-0.480965\pi\)
0.0597641 + 0.998213i \(0.480965\pi\)
\(338\) 0 0
\(339\) −435200. 753788.i −0.205679 0.356246i
\(340\) 0 0
\(341\) −686803. + 1.18958e6i −0.319850 + 0.553997i
\(342\) 0 0
\(343\) 1.43156e6 1.64262e6i 0.657015 0.753878i
\(344\) 0 0
\(345\) −439695. + 761574.i −0.198886 + 0.344480i
\(346\) 0 0
\(347\) −753007. 1.30425e6i −0.335719 0.581482i 0.647904 0.761722i \(-0.275646\pi\)
−0.983623 + 0.180240i \(0.942312\pi\)
\(348\) 0 0
\(349\) 1.54370e6 0.678423 0.339212 0.940710i \(-0.389840\pi\)
0.339212 + 0.940710i \(0.389840\pi\)
\(350\) 0 0
\(351\) 743070. 0.321930
\(352\) 0 0
\(353\) 838978. + 1.45315e6i 0.358355 + 0.620689i 0.987686 0.156448i \(-0.0500043\pi\)
−0.629331 + 0.777137i \(0.716671\pi\)
\(354\) 0 0
\(355\) −72171.8 + 125005.i −0.0303946 + 0.0526450i
\(356\) 0 0
\(357\) 473937. + 452760.i 0.196811 + 0.188017i
\(358\) 0 0
\(359\) −1.24987e6 + 2.16483e6i −0.511832 + 0.886519i 0.488074 + 0.872802i \(0.337700\pi\)
−0.999906 + 0.0137165i \(0.995634\pi\)
\(360\) 0 0
\(361\) 275363. + 476943.i 0.111208 + 0.192619i
\(362\) 0 0
\(363\) −500971. −0.199547
\(364\) 0 0
\(365\) −398564. −0.156591
\(366\) 0 0
\(367\) −1.05371e6 1.82507e6i −0.408370 0.707318i 0.586337 0.810067i \(-0.300569\pi\)
−0.994707 + 0.102749i \(0.967236\pi\)
\(368\) 0 0
\(369\) 181324. 314062.i 0.0693248 0.120074i
\(370\) 0 0
\(371\) 141969. 41539.1i 0.0535498 0.0156683i
\(372\) 0 0
\(373\) −1.36612e6 + 2.36619e6i −0.508414 + 0.880599i 0.491538 + 0.870856i \(0.336435\pi\)
−0.999953 + 0.00974333i \(0.996899\pi\)
\(374\) 0 0
\(375\) −607742. 1.05264e6i −0.223173 0.386547i
\(376\) 0 0
\(377\) 2.42733e6 0.879581
\(378\) 0 0
\(379\) 2.04295e6 0.730567 0.365283 0.930896i \(-0.380972\pi\)
0.365283 + 0.930896i \(0.380972\pi\)
\(380\) 0 0
\(381\) −104953. 181784.i −0.0370410 0.0641568i
\(382\) 0 0
\(383\) 754497. 1.30683e6i 0.262821 0.455220i −0.704169 0.710032i \(-0.748680\pi\)
0.966991 + 0.254812i \(0.0820137\pi\)
\(384\) 0 0
\(385\) 339290. 1.39279e6i 0.116659 0.478888i
\(386\) 0 0
\(387\) 209850. 363471.i 0.0712249 0.123365i
\(388\) 0 0
\(389\) −2.25033e6 3.89768e6i −0.754000 1.30597i −0.945870 0.324546i \(-0.894788\pi\)
0.191870 0.981420i \(-0.438545\pi\)
\(390\) 0 0
\(391\) −2.31085e6 −0.764417
\(392\) 0 0
\(393\) −3.04882e6 −0.995751
\(394\) 0 0
\(395\) −57544.3 99669.7i −0.0185571 0.0321418i
\(396\) 0 0
\(397\) 1.76068e6 3.04958e6i 0.560665 0.971101i −0.436773 0.899572i \(-0.643879\pi\)
0.997439 0.0715292i \(-0.0227879\pi\)
\(398\) 0 0
\(399\) 383189. 1.57299e6i 0.120498 0.494646i
\(400\) 0 0
\(401\) 453554. 785578.i 0.140853 0.243965i −0.786965 0.616998i \(-0.788349\pi\)
0.927818 + 0.373033i \(0.121682\pi\)
\(402\) 0 0
\(403\) −1.50380e6 2.60466e6i −0.461241 0.798893i
\(404\) 0 0
\(405\) 155842. 0.0472115
\(406\) 0 0
\(407\) 4.61287e6 1.38034
\(408\) 0 0
\(409\) −2.15927e6 3.73996e6i −0.638260 1.10550i −0.985814 0.167839i \(-0.946321\pi\)
0.347554 0.937660i \(-0.387012\pi\)
\(410\) 0 0
\(411\) −282945. + 490076.i −0.0826224 + 0.143106i
\(412\) 0 0
\(413\) −3.42133e6 + 1.00106e6i −0.987006 + 0.288791i
\(414\) 0 0
\(415\) 714311. 1.23722e6i 0.203595 0.352637i
\(416\) 0 0
\(417\) −953671. 1.65181e6i −0.268571 0.465178i
\(418\) 0 0
\(419\) 1.52041e6 0.423083 0.211541 0.977369i \(-0.432152\pi\)
0.211541 + 0.977369i \(0.432152\pi\)
\(420\) 0 0
\(421\) −4.42050e6 −1.21553 −0.607766 0.794116i \(-0.707934\pi\)
−0.607766 + 0.794116i \(0.707934\pi\)
\(422\) 0 0
\(423\) −126425. 218974.i −0.0343542 0.0595033i
\(424\) 0 0
\(425\) 719274. 1.24582e6i 0.193162 0.334567i
\(426\) 0 0
\(427\) 1.97827e6 + 1.88987e6i 0.525068 + 0.501605i
\(428\) 0 0
\(429\) 2.13530e6 3.69844e6i 0.560164 0.970233i
\(430\) 0 0
\(431\) −3.42393e6 5.93041e6i −0.887833 1.53777i −0.842432 0.538803i \(-0.818877\pi\)
−0.0454009 0.998969i \(-0.514457\pi\)
\(432\) 0 0
\(433\) −3.99328e6 −1.02355 −0.511777 0.859119i \(-0.671012\pi\)
−0.511777 + 0.859119i \(0.671012\pi\)
\(434\) 0 0
\(435\) 509079. 0.128992
\(436\) 0 0
\(437\) 2.85398e6 + 4.94324e6i 0.714904 + 1.23825i
\(438\) 0 0
\(439\) 742783. 1.28654e6i 0.183950 0.318611i −0.759272 0.650773i \(-0.774445\pi\)
0.943222 + 0.332162i \(0.107778\pi\)
\(440\) 0 0
\(441\) 1.14665e6 733830.i 0.280760 0.179680i
\(442\) 0 0
\(443\) −2.81097e6 + 4.86874e6i −0.680528 + 1.17871i 0.294291 + 0.955716i \(0.404916\pi\)
−0.974820 + 0.222994i \(0.928417\pi\)
\(444\) 0 0
\(445\) 742245. + 1.28561e6i 0.177684 + 0.307757i
\(446\) 0 0
\(447\) −1.26246e6 −0.298846
\(448\) 0 0
\(449\) 1.94883e6 0.456202 0.228101 0.973637i \(-0.426748\pi\)
0.228101 + 0.973637i \(0.426748\pi\)
\(450\) 0 0
\(451\) −1.04211e6 1.80499e6i −0.241253 0.417862i
\(452\) 0 0
\(453\) 737961. 1.27819e6i 0.168962 0.292650i
\(454\) 0 0
\(455\) 2.26959e6 + 2.16817e6i 0.513947 + 0.490982i
\(456\) 0 0
\(457\) 1.33656e6 2.31499e6i 0.299363 0.518511i −0.676628 0.736325i \(-0.736559\pi\)
0.975990 + 0.217814i \(0.0698926\pi\)
\(458\) 0 0
\(459\) 204760. + 354655.i 0.0453643 + 0.0785733i
\(460\) 0 0
\(461\) −4.65262e6 −1.01964 −0.509819 0.860282i \(-0.670287\pi\)
−0.509819 + 0.860282i \(0.670287\pi\)
\(462\) 0 0
\(463\) 5.18586e6 1.12426 0.562132 0.827047i \(-0.309981\pi\)
0.562132 + 0.827047i \(0.309981\pi\)
\(464\) 0 0
\(465\) −315389. 546269.i −0.0676416 0.117159i
\(466\) 0 0
\(467\) −2.52990e6 + 4.38192e6i −0.536799 + 0.929763i 0.462275 + 0.886737i \(0.347033\pi\)
−0.999074 + 0.0430263i \(0.986300\pi\)
\(468\) 0 0
\(469\) 6.91660e6 2.02375e6i 1.45198 0.424840i
\(470\) 0 0
\(471\) 2.50444e6 4.33783e6i 0.520187 0.900990i
\(472\) 0 0
\(473\) −1.20606e6 2.08895e6i −0.247865 0.429315i
\(474\) 0 0
\(475\) −3.55331e6 −0.722603
\(476\) 0 0
\(477\) 92420.8 0.0185983
\(478\) 0 0
\(479\) −2.77543e6 4.80718e6i −0.552702 0.957308i −0.998078 0.0619642i \(-0.980264\pi\)
0.445377 0.895343i \(-0.353070\pi\)
\(480\) 0 0
\(481\) −5.05010e6 + 8.74702e6i −0.995261 + 1.72384i
\(482\) 0 0
\(483\) −1.13600e6 + 4.66330e6i −0.221570 + 0.909548i
\(484\) 0 0
\(485\) 755979. 1.30939e6i 0.145934 0.252764i
\(486\) 0 0
\(487\) −3.43905e6 5.95661e6i −0.657077 1.13809i −0.981369 0.192133i \(-0.938459\pi\)
0.324292 0.945957i \(-0.394874\pi\)
\(488\) 0 0
\(489\) −177540. −0.0335756
\(490\) 0 0
\(491\) −7.44459e6 −1.39360 −0.696798 0.717267i \(-0.745393\pi\)
−0.696798 + 0.717267i \(0.745393\pi\)
\(492\) 0 0
\(493\) 668876. + 1.15853e6i 0.123945 + 0.214679i
\(494\) 0 0
\(495\) 447831. 775666.i 0.0821488 0.142286i
\(496\) 0 0
\(497\) −186464. + 765436.i −0.0338613 + 0.139001i
\(498\) 0 0
\(499\) 1.07665e6 1.86481e6i 0.193563 0.335261i −0.752866 0.658174i \(-0.771329\pi\)
0.946428 + 0.322914i \(0.104662\pi\)
\(500\) 0 0
\(501\) −426493. 738707.i −0.0759132 0.131486i
\(502\) 0 0
\(503\) −8.61012e6 −1.51736 −0.758681 0.651463i \(-0.774156\pi\)
−0.758681 + 0.651463i \(0.774156\pi\)
\(504\) 0 0
\(505\) 4.38531e6 0.765195
\(506\) 0 0
\(507\) 3.00456e6 + 5.20404e6i 0.519111 + 0.899127i
\(508\) 0 0
\(509\) −1.67100e6 + 2.89426e6i −0.285879 + 0.495157i −0.972822 0.231554i \(-0.925619\pi\)
0.686943 + 0.726712i \(0.258952\pi\)
\(510\) 0 0
\(511\) −2.08781e6 + 610879.i −0.353703 + 0.103491i
\(512\) 0 0
\(513\) 505772. 876023.i 0.0848519 0.146968i
\(514\) 0 0
\(515\) 618093. + 1.07057e6i 0.102692 + 0.177867i
\(516\) 0 0
\(517\) −1.45318e6 −0.239108
\(518\) 0 0
\(519\) −3.04957e6 −0.496958
\(520\) 0 0
\(521\) 1.34152e6 + 2.32359e6i 0.216523 + 0.375029i 0.953743 0.300624i \(-0.0971950\pi\)
−0.737220 + 0.675653i \(0.763862\pi\)
\(522\) 0 0
\(523\) −2.71178e6 + 4.69694e6i −0.433511 + 0.750863i −0.997173 0.0751429i \(-0.976059\pi\)
0.563662 + 0.826005i \(0.309392\pi\)
\(524\) 0 0
\(525\) −2.16047e6 2.06393e6i −0.342098 0.326811i
\(526\) 0 0
\(527\) 828775. 1.43548e6i 0.129990 0.225149i
\(528\) 0 0
\(529\) −5.24276e6 9.08072e6i −0.814555 1.41085i
\(530\) 0 0
\(531\) −2.22726e6 −0.342796
\(532\) 0 0
\(533\) 4.56353e6 0.695798
\(534\) 0 0
\(535\) 572179. + 991044.i 0.0864266 + 0.149695i
\(536\) 0 0
\(537\) −3.49287e6 + 6.04983e6i −0.522693 + 0.905330i
\(538\) 0 0
\(539\) −357417. 7.81593e6i −0.0529911 1.15880i
\(540\) 0 0
\(541\) −1.09228e6 + 1.89188e6i −0.160450 + 0.277908i −0.935030 0.354568i \(-0.884628\pi\)
0.774580 + 0.632476i \(0.217961\pi\)
\(542\) 0 0
\(543\) −597135. 1.03427e6i −0.0869106 0.150534i
\(544\) 0 0
\(545\) −865447. −0.124810
\(546\) 0 0
\(547\) 691437. 0.0988062 0.0494031 0.998779i \(-0.484268\pi\)
0.0494031 + 0.998779i \(0.484268\pi\)
\(548\) 0 0
\(549\) 854693. + 1.48037e6i 0.121026 + 0.209623i
\(550\) 0 0
\(551\) 1.65217e6 2.86164e6i 0.231833 0.401547i
\(552\) 0 0
\(553\) −454200. 433904.i −0.0631589 0.0603367i
\(554\) 0 0
\(555\) −1.05914e6 + 1.83449e6i −0.145956 + 0.252804i
\(556\) 0 0
\(557\) −2.73828e6 4.74284e6i −0.373973 0.647740i 0.616200 0.787590i \(-0.288671\pi\)
−0.990173 + 0.139850i \(0.955338\pi\)
\(558\) 0 0
\(559\) 5.28149e6 0.714869
\(560\) 0 0
\(561\) 2.35361e6 0.315739
\(562\) 0 0
\(563\) 199488. + 345523.i 0.0265244 + 0.0459416i 0.878983 0.476853i \(-0.158223\pi\)
−0.852459 + 0.522795i \(0.824889\pi\)
\(564\) 0 0
\(565\) 1.14858e6 1.98940e6i 0.151370 0.262181i
\(566\) 0 0
\(567\) 816353. 238860.i 0.106640 0.0312022i
\(568\) 0 0
\(569\) 2.11556e6 3.66426e6i 0.273934 0.474467i −0.695932 0.718108i \(-0.745008\pi\)
0.969866 + 0.243641i \(0.0783418\pi\)
\(570\) 0 0
\(571\) 4.37551e6 + 7.57861e6i 0.561615 + 0.972746i 0.997356 + 0.0726734i \(0.0231531\pi\)
−0.435741 + 0.900072i \(0.643514\pi\)
\(572\) 0 0
\(573\) 59736.7 0.00760072
\(574\) 0 0
\(575\) 1.05342e7 1.32871
\(576\) 0 0
\(577\) 883558. + 1.53037e6i 0.110483 + 0.191362i 0.915965 0.401258i \(-0.131427\pi\)
−0.805482 + 0.592620i \(0.798094\pi\)
\(578\) 0 0
\(579\) 2.03665e6 3.52759e6i 0.252477 0.437302i
\(580\) 0 0
\(581\) 1.84550e6 7.57581e6i 0.226817 0.931084i
\(582\) 0 0
\(583\) 265582. 460001.i 0.0323614 0.0560516i
\(584\) 0 0
\(585\) 980555. + 1.69837e6i 0.118463 + 0.205184i
\(586\) 0 0
\(587\) 8.65009e6 1.03616 0.518078 0.855333i \(-0.326648\pi\)
0.518078 + 0.855333i \(0.326648\pi\)
\(588\) 0 0
\(589\) −4.09426e6 −0.486281
\(590\) 0 0
\(591\) 3.67628e6 + 6.36751e6i 0.432953 + 0.749896i
\(592\) 0 0
\(593\) −7.72568e6 + 1.33813e7i −0.902194 + 1.56265i −0.0775549 + 0.996988i \(0.524711\pi\)
−0.824640 + 0.565659i \(0.808622\pi\)
\(594\) 0 0
\(595\) −409427. + 1.68070e6i −0.0474115 + 0.194625i
\(596\) 0 0
\(597\) −3.62888e6 + 6.28540e6i −0.416712 + 0.721767i
\(598\) 0 0
\(599\) −1.92400e6 3.33247e6i −0.219098 0.379489i 0.735434 0.677596i \(-0.236978\pi\)
−0.954533 + 0.298107i \(0.903645\pi\)
\(600\) 0 0
\(601\) 1.27578e7 1.44075 0.720376 0.693583i \(-0.243969\pi\)
0.720376 + 0.693583i \(0.243969\pi\)
\(602\) 0 0
\(603\) 4.50266e6 0.504285
\(604\) 0 0
\(605\) −661082. 1.14503e6i −0.0734289 0.127183i
\(606\) 0 0
\(607\) −6.81033e6 + 1.17958e7i −0.750233 + 1.29944i 0.197476 + 0.980308i \(0.436726\pi\)
−0.947709 + 0.319135i \(0.896608\pi\)
\(608\) 0 0
\(609\) 2.66672e6 780266.i 0.291363 0.0852510i
\(610\) 0 0
\(611\) 1.59092e6 2.75555e6i 0.172403 0.298611i
\(612\) 0 0
\(613\) −7.67372e6 1.32913e7i −0.824812 1.42862i −0.902063 0.431605i \(-0.857948\pi\)
0.0772508 0.997012i \(-0.475386\pi\)
\(614\) 0 0
\(615\) 957099. 0.102040
\(616\) 0 0
\(617\) 1.18485e7 1.25300 0.626500 0.779421i \(-0.284487\pi\)
0.626500 + 0.779421i \(0.284487\pi\)
\(618\) 0 0
\(619\) −437230. 757304.i −0.0458652 0.0794408i 0.842181 0.539194i \(-0.181271\pi\)
−0.888047 + 0.459753i \(0.847938\pi\)
\(620\) 0 0
\(621\) −1.49941e6 + 2.59706e6i −0.156024 + 0.270242i
\(622\) 0 0
\(623\) 5.85858e6 + 5.59679e6i 0.604744 + 0.577722i
\(624\) 0 0
\(625\) −2.39730e6 + 4.15225e6i −0.245484 + 0.425190i
\(626\) 0 0
\(627\) −2.90679e6 5.03471e6i −0.295287 0.511453i
\(628\) 0 0
\(629\) −5.56642e6 −0.560983
\(630\) 0 0
\(631\) 4.43859e6 0.443784 0.221892 0.975071i \(-0.428777\pi\)
0.221892 + 0.975071i \(0.428777\pi\)
\(632\) 0 0
\(633\) −309483. 536040.i −0.0306992 0.0531726i
\(634\) 0 0
\(635\) 276992. 479764.i 0.0272605 0.0472165i
\(636\) 0 0
\(637\) 1.52120e7 + 7.87900e6i 1.48538 + 0.769348i
\(638\) 0 0
\(639\) −246115. + 426283.i −0.0238443 + 0.0412996i
\(640\) 0 0
\(641\) −406276. 703690.i −0.0390549 0.0676451i 0.845837 0.533441i \(-0.179101\pi\)
−0.884892 + 0.465796i \(0.845768\pi\)
\(642\) 0 0
\(643\) 1.17941e7 1.12496 0.562481 0.826810i \(-0.309847\pi\)
0.562481 + 0.826810i \(0.309847\pi\)
\(644\) 0 0
\(645\) 1.10767e6 0.104837
\(646\) 0 0
\(647\) −1.21690e6 2.10773e6i −0.114286 0.197950i 0.803208 0.595699i \(-0.203125\pi\)
−0.917494 + 0.397749i \(0.869791\pi\)
\(648\) 0 0
\(649\) −6.40031e6 + 1.10857e7i −0.596471 + 1.03312i
\(650\) 0 0
\(651\) −2.48938e6 2.37814e6i −0.230217 0.219930i
\(652\) 0 0
\(653\) 4.73332e6 8.19835e6i 0.434393 0.752391i −0.562853 0.826557i \(-0.690296\pi\)
0.997246 + 0.0741664i \(0.0236296\pi\)
\(654\) 0 0
\(655\) −4.02323e6 6.96843e6i −0.366413 0.634647i
\(656\) 0 0
\(657\) −1.35915e6 −0.122844
\(658\) 0 0
\(659\) −1.40662e7 −1.26172 −0.630860 0.775896i \(-0.717298\pi\)
−0.630860 + 0.775896i \(0.717298\pi\)
\(660\) 0 0
\(661\) 8.58029e6 + 1.48615e7i 0.763832 + 1.32300i 0.940862 + 0.338791i \(0.110018\pi\)
−0.177029 + 0.984206i \(0.556649\pi\)
\(662\) 0 0
\(663\) −2.57669e6 + 4.46296e6i −0.227656 + 0.394312i
\(664\) 0 0
\(665\) 4.10091e6 1.19990e6i 0.359606 0.105218i
\(666\) 0 0
\(667\) −4.89803e6 + 8.48364e6i −0.426292 + 0.738359i
\(668\) 0 0
\(669\) 2.79102e6 + 4.83419e6i 0.241100 + 0.417598i
\(670\) 0 0
\(671\) 9.82424e6 0.842350
\(672\) 0 0
\(673\) 5.87113e6 0.499671 0.249836 0.968288i \(-0.419623\pi\)
0.249836 + 0.968288i \(0.419623\pi\)
\(674\) 0 0
\(675\) −933413. 1.61672e6i −0.0788523 0.136576i
\(676\) 0 0
\(677\) −6.96368e6 + 1.20614e7i −0.583938 + 1.01141i 0.411069 + 0.911604i \(0.365156\pi\)
−0.995007 + 0.0998062i \(0.968178\pi\)
\(678\) 0 0
\(679\) 1.95316e6 8.01773e6i 0.162578 0.667386i
\(680\) 0 0
\(681\) −4.51005e6 + 7.81163e6i −0.372660 + 0.645467i
\(682\) 0 0
\(683\) 9.15503e6 + 1.58570e7i 0.750945 + 1.30067i 0.947365 + 0.320155i \(0.103735\pi\)
−0.196421 + 0.980520i \(0.562932\pi\)
\(684\) 0 0
\(685\) −1.49350e6 −0.121613
\(686\) 0 0
\(687\) −7.97275e6 −0.644490
\(688\) 0 0
\(689\) 581509. + 1.00720e6i 0.0466669 + 0.0808294i
\(690\) 0 0
\(691\) −8.83583e6 + 1.53041e7i −0.703967 + 1.21931i 0.263096 + 0.964770i \(0.415256\pi\)
−0.967063 + 0.254537i \(0.918077\pi\)
\(692\) 0 0
\(693\) 1.15702e6 4.74959e6i 0.0915184 0.375684i
\(694\) 0 0
\(695\) 2.51693e6 4.35945e6i 0.197656 0.342350i
\(696\) 0 0
\(697\) 1.25753e6 + 2.17810e6i 0.0980473 + 0.169823i
\(698\) 0 0
\(699\) −5.36547e6 −0.415351
\(700\) 0 0
\(701\) 8.22993e6 0.632559 0.316279 0.948666i \(-0.397566\pi\)
0.316279 + 0.948666i \(0.397566\pi\)
\(702\) 0 0
\(703\) 6.87472e6 + 1.19074e7i 0.524646 + 0.908714i
\(704\) 0 0
\(705\) 333660. 577916.i 0.0252832 0.0437917i
\(706\) 0 0
\(707\) 2.29717e7 6.72137e6i 1.72840 0.505719i
\(708\) 0 0
\(709\) −1.23183e7 + 2.13360e7i −0.920314 + 1.59403i −0.121386 + 0.992605i \(0.538734\pi\)
−0.798929 + 0.601426i \(0.794600\pi\)
\(710\) 0 0
\(711\) −196233. 339886.i −0.0145579 0.0252150i
\(712\) 0 0
\(713\) 1.21379e7 0.894167
\(714\) 0 0
\(715\) 1.12710e7 0.824510
\(716\) 0 0
\(717\) −3.34400e6 5.79197e6i −0.242923 0.420754i
\(718\) 0 0
\(719\) −9.41269e6 + 1.63033e7i −0.679034 + 1.17612i 0.296238 + 0.955114i \(0.404268\pi\)
−0.975272 + 0.221007i \(0.929066\pi\)
\(720\) 0 0
\(721\) 4.87863e6 + 4.66064e6i 0.349510 + 0.333893i
\(722\) 0 0
\(723\) −5.28677e6 + 9.15696e6i −0.376136 + 0.651487i
\(724\) 0 0
\(725\) −3.04911e6 5.28122e6i −0.215441 0.373155i
\(726\) 0 0
\(727\) −6.77607e6 −0.475491 −0.237745 0.971328i \(-0.576408\pi\)
−0.237745 + 0.971328i \(0.576408\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 1.45537e6 + 2.52077e6i 0.100735 + 0.174478i
\(732\) 0 0
\(733\) 8.61136e6 1.49153e7i 0.591986 1.02535i −0.401978 0.915649i \(-0.631677\pi\)
0.993965 0.109701i \(-0.0349894\pi\)
\(734\) 0 0
\(735\) 3.19038e6 + 1.65244e6i 0.217833 + 0.112826i
\(736\) 0 0
\(737\) 1.29389e7 2.24109e7i 0.877465 1.51981i
\(738\) 0 0
\(739\) −8.82669e6 1.52883e7i −0.594548 1.02979i −0.993610 0.112864i \(-0.963998\pi\)
0.399062 0.916924i \(-0.369336\pi\)
\(740\) 0 0
\(741\) 1.27292e7 0.851641
\(742\) 0 0
\(743\) 1.36977e7 0.910281 0.455141 0.890420i \(-0.349589\pi\)
0.455141 + 0.890420i \(0.349589\pi\)
\(744\) 0 0
\(745\) −1.66594e6 2.88549e6i −0.109968 0.190471i
\(746\) 0 0
\(747\) 2.43589e6 4.21908e6i 0.159719 0.276641i
\(748\) 0 0
\(749\) 4.51624e6 + 4.31443e6i 0.294152 + 0.281008i
\(750\) 0 0
\(751\) 5.80446e6 1.00536e7i 0.375545 0.650463i −0.614864 0.788633i \(-0.710789\pi\)
0.990408 + 0.138171i \(0.0441223\pi\)
\(752\) 0 0
\(753\) −1.58846e6 2.75130e6i −0.102092 0.176828i
\(754\) 0 0
\(755\) 3.89526e6 0.248696
\(756\) 0 0
\(757\) 6.25226e6 0.396550 0.198275 0.980146i \(-0.436466\pi\)
0.198275 + 0.980146i \(0.436466\pi\)
\(758\) 0 0
\(759\) 8.61748e6 + 1.49259e7i 0.542970 + 0.940452i
\(760\) 0 0
\(761\) 1.51063e7 2.61648e7i 0.945574 1.63778i 0.190977 0.981595i \(-0.438834\pi\)
0.754597 0.656188i \(-0.227832\pi\)
\(762\) 0 0
\(763\) −4.53350e6 + 1.32647e6i −0.281918 + 0.0824873i
\(764\) 0 0
\(765\) −540404. + 936007.i −0.0333860 + 0.0578263i
\(766\) 0 0
\(767\) −1.40139e7 2.42728e7i −0.860142 1.48981i
\(768\) 0 0
\(769\) −2.58756e7 −1.57788 −0.788940 0.614470i \(-0.789370\pi\)
−0.788940 + 0.614470i \(0.789370\pi\)
\(770\) 0 0
\(771\) −90114.1 −0.00545955
\(772\) 0 0
\(773\) −1.27705e7 2.21191e7i −0.768701 1.33143i −0.938267 0.345911i \(-0.887570\pi\)
0.169566 0.985519i \(-0.445763\pi\)
\(774\) 0 0
\(775\) −3.77802e6 + 6.54373e6i −0.225949 + 0.391355i
\(776\) 0 0
\(777\) −2.73642e6 + 1.12330e7i −0.162604 + 0.667489i
\(778\) 0 0
\(779\) 3.10618e6 5.38006e6i 0.183393 0.317646i
\(780\) 0 0
\(781\) 1.41448e6 + 2.44995e6i 0.0829791 + 0.143724i
\(782\)