Newspace parameters
Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 336.q (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(53.8889634572\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
Defining polynomial: |
\( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2^{6}\cdot 3^{3}\cdot 7 \) |
Twist minimal: | no (minimal twist has level 84) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 202509581 \nu^{7} - 15579673694 \nu^{6} - 97000119635 \nu^{5} - 10465172425490 \nu^{4} - 122564145295465 \nu^{3} + \cdots - 66\!\cdots\!28 ) / 59\!\cdots\!80 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 4074390615 \nu^{7} - 75239346984 \nu^{6} - 2524519237925 \nu^{5} - 9170584770500 \nu^{4} + \cdots + 91\!\cdots\!92 ) / 13\!\cdots\!20 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 1106077550275 \nu^{7} - 64933012777282 \nu^{6} - 404277402169405 \nu^{5} + \cdots - 27\!\cdots\!84 ) / 36\!\cdots\!80 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2298609090161 \nu^{7} - 10640696920522 \nu^{6} - 380580964066225 \nu^{5} + \cdots - 12\!\cdots\!04 ) / 36\!\cdots\!80 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 3837039574679 \nu^{7} + 46767932099422 \nu^{6} + \cdots - 18\!\cdots\!96 ) / 18\!\cdots\!40 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 608647346745 \nu^{7} + 5497197755738 \nu^{6} - 365756430948295 \nu^{5} + 694293952024790 \nu^{4} + \cdots + 77\!\cdots\!76 ) / 17\!\cdots\!80 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 15200991659713 \nu^{7} + 29669373236422 \nu^{6} + \cdots + 12\!\cdots\!44 ) / 36\!\cdots\!80 \)
|
\(\nu\) | \(=\) |
\( ( -16\beta_{7} - 15\beta_{6} - \beta_{5} - 3\beta_{4} - 28\beta_{3} - 17\beta_{2} - 118\beta _1 - 2 ) / 252 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -2\beta_{7} + 6\beta_{6} - 29\beta_{5} + 39\beta_{4} + 217\beta_{3} + 221\beta_{2} - 22070\beta _1 - 22066 ) / 63 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 1033 \beta_{7} + 1968 \beta_{6} - 1220 \beta_{5} + 1407 \beta_{4} + 1594 \beta_{3} + 1289 \beta_{2} - 374 \beta _1 - 56104 ) / 36 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 3187 \beta_{7} + 3396 \beta_{6} - 209 \beta_{5} - 627 \beta_{4} - 12936 \beta_{3} + 2978 \beta_{2} + 1320066 \beta _1 - 418 ) / 7 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 995191 \beta_{7} - 2985573 \beta_{6} + 4334173 \beta_{5} - 9310128 \beta_{4} - 2044322 \beta_{3} - 4034704 \beta_{2} + 423230776 \beta _1 + 421240394 ) / 252 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 2915935 \beta_{7} - 4285635 \beta_{6} + 3189875 \beta_{5} - 3463815 \beta_{4} - 3737755 \beta_{3} - 16605650 \beta_{2} + 547880 \beta _1 + 1038478372 ) / 9 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 3473034028 \beta_{7} - 4111074465 \beta_{6} + 638040437 \beta_{5} + 1914121311 \beta_{4} - 2126412064 \beta_{3} - 2834993591 \beta_{2} + \cdots + 1276080874 ) / 252 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).
\(n\) | \(85\) | \(113\) | \(127\) | \(241\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1 - \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 |
|
0 | −4.50000 | + | 7.79423i | 0 | −39.3359 | − | 68.1317i | 0 | 100.606 | − | 81.7641i | 0 | −40.5000 | − | 70.1481i | 0 | ||||||||||||||||||||||||||||||||||
193.2 | 0 | −4.50000 | + | 7.79423i | 0 | −23.0577 | − | 39.9371i | 0 | −112.271 | − | 64.8240i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
193.3 | 0 | −4.50000 | + | 7.79423i | 0 | 15.9808 | + | 27.6796i | 0 | −85.7043 | + | 97.2716i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
193.4 | 0 | −4.50000 | + | 7.79423i | 0 | 46.4128 | + | 80.3893i | 0 | 118.369 | − | 52.8745i | 0 | −40.5000 | − | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
289.1 | 0 | −4.50000 | − | 7.79423i | 0 | −39.3359 | + | 68.1317i | 0 | 100.606 | + | 81.7641i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
289.2 | 0 | −4.50000 | − | 7.79423i | 0 | −23.0577 | + | 39.9371i | 0 | −112.271 | + | 64.8240i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
289.3 | 0 | −4.50000 | − | 7.79423i | 0 | 15.9808 | − | 27.6796i | 0 | −85.7043 | − | 97.2716i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
289.4 | 0 | −4.50000 | − | 7.79423i | 0 | 46.4128 | − | 80.3893i | 0 | 118.369 | + | 52.8745i | 0 | −40.5000 | + | 70.1481i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 336.6.q.i | 8 | |
4.b | odd | 2 | 1 | 84.6.i.c | ✓ | 8 | |
7.c | even | 3 | 1 | inner | 336.6.q.i | 8 | |
12.b | even | 2 | 1 | 252.6.k.f | 8 | ||
28.d | even | 2 | 1 | 588.6.i.o | 8 | ||
28.f | even | 6 | 1 | 588.6.a.p | 4 | ||
28.f | even | 6 | 1 | 588.6.i.o | 8 | ||
28.g | odd | 6 | 1 | 84.6.i.c | ✓ | 8 | |
28.g | odd | 6 | 1 | 588.6.a.n | 4 | ||
84.n | even | 6 | 1 | 252.6.k.f | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
84.6.i.c | ✓ | 8 | 4.b | odd | 2 | 1 | |
84.6.i.c | ✓ | 8 | 28.g | odd | 6 | 1 | |
252.6.k.f | 8 | 12.b | even | 2 | 1 | ||
252.6.k.f | 8 | 84.n | even | 6 | 1 | ||
336.6.q.i | 8 | 1.a | even | 1 | 1 | trivial | |
336.6.q.i | 8 | 7.c | even | 3 | 1 | inner | |
588.6.a.n | 4 | 28.g | odd | 6 | 1 | ||
588.6.a.p | 4 | 28.f | even | 6 | 1 | ||
588.6.i.o | 8 | 28.d | even | 2 | 1 | ||
588.6.i.o | 8 | 28.f | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 8977 T_{5}^{6} + 165000 T_{5}^{5} + 69822853 T_{5}^{4} + 740602500 T_{5}^{3} + 103431769452 T_{5}^{2} - 888003270000 T_{5} + 115856721032976 \)
acting on \(S_{6}^{\mathrm{new}}(336, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( (T^{2} + 9 T + 81)^{4} \)
$5$
\( T^{8} + \cdots + 115856721032976 \)
$7$
\( T^{8} - 42 T^{7} + \cdots + 79\!\cdots\!01 \)
$11$
\( T^{8} - 462 T^{7} + \cdots + 25\!\cdots\!24 \)
$13$
\( (T^{4} + 602 T^{3} + \cdots + 755795447424)^{2} \)
$17$
\( T^{8} - 228 T^{7} + \cdots + 23\!\cdots\!44 \)
$19$
\( T^{8} + 358 T^{7} + \cdots + 74\!\cdots\!76 \)
$23$
\( T^{8} - 2148 T^{7} + \cdots + 18\!\cdots\!64 \)
$29$
\( (T^{4} + 5532 T^{3} + \cdots - 333378202056336)^{2} \)
$31$
\( T^{8} + 830 T^{7} + \cdots + 10\!\cdots\!49 \)
$37$
\( T^{8} + 3914 T^{7} + \cdots + 16\!\cdots\!16 \)
$41$
\( (T^{4} + 8316 T^{3} + \cdots - 15\!\cdots\!88)^{2} \)
$43$
\( (T^{4} - 14518 T^{3} + \cdots - 359515701753932)^{2} \)
$47$
\( T^{8} + 41700 T^{7} + \cdots + 58\!\cdots\!76 \)
$53$
\( T^{8} - 22164 T^{7} + \cdots + 88\!\cdots\!64 \)
$59$
\( T^{8} + 32886 T^{7} + \cdots + 16\!\cdots\!84 \)
$61$
\( T^{8} - 83732 T^{7} + \cdots + 38\!\cdots\!56 \)
$67$
\( T^{8} - 80034 T^{7} + \cdots + 32\!\cdots\!16 \)
$71$
\( (T^{4} + 44772 T^{3} + \cdots + 41\!\cdots\!92)^{2} \)
$73$
\( T^{8} + 22470 T^{7} + \cdots + 20\!\cdots\!00 \)
$79$
\( T^{8} - 75286 T^{7} + \cdots + 34\!\cdots\!61 \)
$83$
\( (T^{4} - 17418 T^{3} + \cdots + 53\!\cdots\!08)^{2} \)
$89$
\( T^{8} - 28944 T^{7} + \cdots + 12\!\cdots\!84 \)
$97$
\( (T^{4} + 216678 T^{3} + \cdots - 37\!\cdots\!72)^{2} \)
show more
show less