Properties

Label 336.6.q.g.289.2
Level $336$
Weight $6$
Character 336.289
Analytic conductor $53.889$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(193,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.193");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.8889634572\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(21.2872 - 36.8705i\) of defining polynomial
Character \(\chi\) \(=\) 336.289
Dual form 336.6.q.g.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{3} +(9.28717 - 16.0858i) q^{5} +(127.649 - 22.6454i) q^{7} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(4.50000 + 7.79423i) q^{3} +(9.28717 - 16.0858i) q^{5} +(127.649 - 22.6454i) q^{7} +(-40.5000 + 70.1481i) q^{9} +(-80.7128 - 139.799i) q^{11} +14.1283 q^{13} +167.169 q^{15} +(382.851 + 663.118i) q^{17} +(707.146 - 1224.81i) q^{19} +(750.923 + 893.019i) q^{21} +(2092.72 - 3624.69i) q^{23} +(1390.00 + 2407.55i) q^{25} -729.000 q^{27} -4202.60 q^{29} +(-1193.68 - 2067.51i) q^{31} +(726.415 - 1258.19i) q^{33} +(821.224 - 2263.65i) q^{35} +(336.469 - 582.782i) q^{37} +(63.5774 + 110.119i) q^{39} -4173.45 q^{41} +5430.94 q^{43} +(752.261 + 1302.95i) q^{45} +(3151.34 - 5458.28i) q^{47} +(15781.4 - 5781.32i) q^{49} +(-3445.66 + 5968.06i) q^{51} +(-8208.34 - 14217.3i) q^{53} -2998.37 q^{55} +12728.6 q^{57} +(1983.24 + 3435.08i) q^{59} +(25169.4 - 43594.6i) q^{61} +(-3581.24 + 9871.45i) q^{63} +(131.212 - 227.266i) q^{65} +(6822.63 + 11817.1i) q^{67} +37668.9 q^{69} +83957.2 q^{71} +(14289.2 + 24749.6i) q^{73} +(-12510.0 + 21667.9i) q^{75} +(-13468.7 - 16017.3i) q^{77} +(-29977.7 + 51923.0i) q^{79} +(-3280.50 - 5681.99i) q^{81} +61583.0 q^{83} +14222.4 q^{85} +(-18911.7 - 32756.0i) q^{87} +(-21149.2 + 36631.4i) q^{89} +(1803.46 - 319.941i) q^{91} +(10743.1 - 18607.6i) q^{93} +(-13134.8 - 22750.1i) q^{95} +44638.1 q^{97} +13075.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} - 47 q^{5} + 174 q^{7} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 18 q^{3} - 47 q^{5} + 174 q^{7} - 162 q^{9} - 407 q^{11} + 898 q^{13} - 846 q^{15} + 1868 q^{17} - 1463 q^{19} - 783 q^{21} - 44 q^{23} + 1605 q^{25} - 2916 q^{27} + 1534 q^{29} - 11170 q^{31} + 3663 q^{33} - 9674 q^{35} + 3113 q^{37} + 4041 q^{39} - 15684 q^{41} + 25258 q^{43} - 3807 q^{45} + 9576 q^{47} + 4558 q^{49} - 16812 q^{51} - 13395 q^{53} + 26210 q^{55} - 26334 q^{57} - 47521 q^{59} + 63652 q^{61} - 21141 q^{63} - 28254 q^{65} + 44541 q^{67} - 792 q^{69} + 251680 q^{71} - 6039 q^{73} - 14445 q^{75} + 35407 q^{77} + 17588 q^{79} - 13122 q^{81} - 78650 q^{83} - 116120 q^{85} + 6903 q^{87} - 83082 q^{89} - 31747 q^{91} + 100530 q^{93} - 214946 q^{95} + 369570 q^{97} + 65934 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 9.28717 16.0858i 0.166134 0.287752i −0.770923 0.636928i \(-0.780205\pi\)
0.937057 + 0.349175i \(0.113538\pi\)
\(6\) 0 0
\(7\) 127.649 22.6454i 0.984626 0.174677i
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −80.7128 139.799i −0.201123 0.348355i 0.747768 0.663960i \(-0.231126\pi\)
−0.948890 + 0.315606i \(0.897792\pi\)
\(12\) 0 0
\(13\) 14.1283 0.0231863 0.0115932 0.999933i \(-0.496310\pi\)
0.0115932 + 0.999933i \(0.496310\pi\)
\(14\) 0 0
\(15\) 167.169 0.191835
\(16\) 0 0
\(17\) 382.851 + 663.118i 0.321298 + 0.556504i 0.980756 0.195237i \(-0.0625476\pi\)
−0.659458 + 0.751741i \(0.729214\pi\)
\(18\) 0 0
\(19\) 707.146 1224.81i 0.449392 0.778369i −0.548955 0.835852i \(-0.684974\pi\)
0.998346 + 0.0574830i \(0.0183075\pi\)
\(20\) 0 0
\(21\) 750.923 + 893.019i 0.371575 + 0.441888i
\(22\) 0 0
\(23\) 2092.72 3624.69i 0.824880 1.42873i −0.0771305 0.997021i \(-0.524576\pi\)
0.902011 0.431713i \(-0.142091\pi\)
\(24\) 0 0
\(25\) 1390.00 + 2407.55i 0.444799 + 0.770415i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −4202.60 −0.927947 −0.463974 0.885849i \(-0.653577\pi\)
−0.463974 + 0.885849i \(0.653577\pi\)
\(30\) 0 0
\(31\) −1193.68 2067.51i −0.223091 0.386405i 0.732654 0.680601i \(-0.238281\pi\)
−0.955745 + 0.294196i \(0.904948\pi\)
\(32\) 0 0
\(33\) 726.415 1258.19i 0.116118 0.201123i
\(34\) 0 0
\(35\) 821.224 2263.65i 0.113316 0.312348i
\(36\) 0 0
\(37\) 336.469 582.782i 0.0404056 0.0699845i −0.845115 0.534584i \(-0.820468\pi\)
0.885521 + 0.464599i \(0.153802\pi\)
\(38\) 0 0
\(39\) 63.5774 + 110.119i 0.00669331 + 0.0115932i
\(40\) 0 0
\(41\) −4173.45 −0.387735 −0.193868 0.981028i \(-0.562103\pi\)
−0.193868 + 0.981028i \(0.562103\pi\)
\(42\) 0 0
\(43\) 5430.94 0.447923 0.223962 0.974598i \(-0.428101\pi\)
0.223962 + 0.974598i \(0.428101\pi\)
\(44\) 0 0
\(45\) 752.261 + 1302.95i 0.0553780 + 0.0959175i
\(46\) 0 0
\(47\) 3151.34 5458.28i 0.208090 0.360422i −0.743023 0.669266i \(-0.766609\pi\)
0.951113 + 0.308844i \(0.0999421\pi\)
\(48\) 0 0
\(49\) 15781.4 5781.32i 0.938976 0.343983i
\(50\) 0 0
\(51\) −3445.66 + 5968.06i −0.185501 + 0.321298i
\(52\) 0 0
\(53\) −8208.34 14217.3i −0.401389 0.695226i 0.592505 0.805567i \(-0.298139\pi\)
−0.993894 + 0.110341i \(0.964806\pi\)
\(54\) 0 0
\(55\) −2998.37 −0.133653
\(56\) 0 0
\(57\) 12728.6 0.518913
\(58\) 0 0
\(59\) 1983.24 + 3435.08i 0.0741731 + 0.128472i 0.900726 0.434387i \(-0.143035\pi\)
−0.826553 + 0.562858i \(0.809702\pi\)
\(60\) 0 0
\(61\) 25169.4 43594.6i 0.866059 1.50006i 6.72450e−5 1.00000i \(-0.499979\pi\)
0.865992 0.500058i \(-0.166688\pi\)
\(62\) 0 0
\(63\) −3581.24 + 9871.45i −0.113679 + 0.313350i
\(64\) 0 0
\(65\) 131.212 227.266i 0.00385203 0.00667192i
\(66\) 0 0
\(67\) 6822.63 + 11817.1i 0.185680 + 0.321607i 0.943805 0.330502i \(-0.107218\pi\)
−0.758126 + 0.652109i \(0.773885\pi\)
\(68\) 0 0
\(69\) 37668.9 0.952490
\(70\) 0 0
\(71\) 83957.2 1.97657 0.988284 0.152624i \(-0.0487723\pi\)
0.988284 + 0.152624i \(0.0487723\pi\)
\(72\) 0 0
\(73\) 14289.2 + 24749.6i 0.313834 + 0.543576i 0.979189 0.202951i \(-0.0650532\pi\)
−0.665355 + 0.746527i \(0.731720\pi\)
\(74\) 0 0
\(75\) −12510.0 + 21667.9i −0.256805 + 0.444799i
\(76\) 0 0
\(77\) −13468.7 16017.3i −0.258880 0.307867i
\(78\) 0 0
\(79\) −29977.7 + 51923.0i −0.540420 + 0.936034i 0.458460 + 0.888715i \(0.348401\pi\)
−0.998880 + 0.0473193i \(0.984932\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 61583.0 0.981219 0.490610 0.871380i \(-0.336774\pi\)
0.490610 + 0.871380i \(0.336774\pi\)
\(84\) 0 0
\(85\) 14222.4 0.213514
\(86\) 0 0
\(87\) −18911.7 32756.0i −0.267875 0.463974i
\(88\) 0 0
\(89\) −21149.2 + 36631.4i −0.283021 + 0.490206i −0.972127 0.234454i \(-0.924670\pi\)
0.689107 + 0.724660i \(0.258003\pi\)
\(90\) 0 0
\(91\) 1803.46 319.941i 0.0228298 0.00405011i
\(92\) 0 0
\(93\) 10743.1 18607.6i 0.128802 0.223091i
\(94\) 0 0
\(95\) −13134.8 22750.1i −0.149318 0.258627i
\(96\) 0 0
\(97\) 44638.1 0.481700 0.240850 0.970562i \(-0.422574\pi\)
0.240850 + 0.970562i \(0.422574\pi\)
\(98\) 0 0
\(99\) 13075.5 0.134082
\(100\) 0 0
\(101\) 55962.2 + 96929.4i 0.545873 + 0.945480i 0.998551 + 0.0538058i \(0.0171352\pi\)
−0.452678 + 0.891674i \(0.649531\pi\)
\(102\) 0 0
\(103\) 83474.6 144582.i 0.775285 1.34283i −0.159350 0.987222i \(-0.550940\pi\)
0.934634 0.355610i \(-0.115727\pi\)
\(104\) 0 0
\(105\) 21338.9 3785.61i 0.188886 0.0335091i
\(106\) 0 0
\(107\) 51492.8 89188.2i 0.434798 0.753092i −0.562481 0.826810i \(-0.690153\pi\)
0.997279 + 0.0737182i \(0.0234865\pi\)
\(108\) 0 0
\(109\) 68910.6 + 119357.i 0.555546 + 0.962233i 0.997861 + 0.0653736i \(0.0208239\pi\)
−0.442315 + 0.896860i \(0.645843\pi\)
\(110\) 0 0
\(111\) 6056.45 0.0466563
\(112\) 0 0
\(113\) −129967. −0.957495 −0.478748 0.877953i \(-0.658909\pi\)
−0.478748 + 0.877953i \(0.658909\pi\)
\(114\) 0 0
\(115\) −38870.8 67326.3i −0.274081 0.474723i
\(116\) 0 0
\(117\) −572.196 + 991.073i −0.00386439 + 0.00669331i
\(118\) 0 0
\(119\) 63887.0 + 75976.3i 0.413567 + 0.491825i
\(120\) 0 0
\(121\) 67496.4 116907.i 0.419099 0.725901i
\(122\) 0 0
\(123\) −18780.5 32528.8i −0.111929 0.193868i
\(124\) 0 0
\(125\) 109681. 0.627853
\(126\) 0 0
\(127\) 243265. 1.33835 0.669177 0.743103i \(-0.266647\pi\)
0.669177 + 0.743103i \(0.266647\pi\)
\(128\) 0 0
\(129\) 24439.2 + 42330.0i 0.129304 + 0.223962i
\(130\) 0 0
\(131\) 97167.8 168300.i 0.494703 0.856850i −0.505279 0.862956i \(-0.668610\pi\)
0.999981 + 0.00610601i \(0.00194361\pi\)
\(132\) 0 0
\(133\) 62529.8 172359.i 0.306519 0.844900i
\(134\) 0 0
\(135\) −6770.35 + 11726.6i −0.0319725 + 0.0553780i
\(136\) 0 0
\(137\) 1546.85 + 2679.22i 0.00704121 + 0.0121957i 0.869525 0.493890i \(-0.164425\pi\)
−0.862483 + 0.506085i \(0.831092\pi\)
\(138\) 0 0
\(139\) −22600.4 −0.0992155 −0.0496078 0.998769i \(-0.515797\pi\)
−0.0496078 + 0.998769i \(0.515797\pi\)
\(140\) 0 0
\(141\) 56724.1 0.240281
\(142\) 0 0
\(143\) −1140.34 1975.12i −0.00466329 0.00807706i
\(144\) 0 0
\(145\) −39030.3 + 67602.4i −0.154164 + 0.267019i
\(146\) 0 0
\(147\) 116077. + 96987.7i 0.443050 + 0.370189i
\(148\) 0 0
\(149\) 176397. 305529.i 0.650917 1.12742i −0.331983 0.943285i \(-0.607718\pi\)
0.982901 0.184137i \(-0.0589489\pi\)
\(150\) 0 0
\(151\) 72548.2 + 125657.i 0.258931 + 0.448482i 0.965956 0.258707i \(-0.0832963\pi\)
−0.707025 + 0.707189i \(0.749963\pi\)
\(152\) 0 0
\(153\) −62021.9 −0.214199
\(154\) 0 0
\(155\) −44343.5 −0.148252
\(156\) 0 0
\(157\) 108948. + 188703.i 0.352751 + 0.610983i 0.986730 0.162367i \(-0.0519128\pi\)
−0.633979 + 0.773350i \(0.718579\pi\)
\(158\) 0 0
\(159\) 73875.0 127955.i 0.231742 0.401389i
\(160\) 0 0
\(161\) 185050. 510078.i 0.562632 1.55086i
\(162\) 0 0
\(163\) −161055. + 278956.i −0.474795 + 0.822370i −0.999583 0.0288633i \(-0.990811\pi\)
0.524788 + 0.851233i \(0.324145\pi\)
\(164\) 0 0
\(165\) −13492.7 23370.0i −0.0385823 0.0668266i
\(166\) 0 0
\(167\) −707392. −1.96277 −0.981384 0.192056i \(-0.938485\pi\)
−0.981384 + 0.192056i \(0.938485\pi\)
\(168\) 0 0
\(169\) −371093. −0.999462
\(170\) 0 0
\(171\) 57278.8 + 99209.8i 0.149797 + 0.259456i
\(172\) 0 0
\(173\) 85253.7 147664.i 0.216570 0.375110i −0.737187 0.675689i \(-0.763846\pi\)
0.953757 + 0.300579i \(0.0971798\pi\)
\(174\) 0 0
\(175\) 231951. + 275843.i 0.572534 + 0.680874i
\(176\) 0 0
\(177\) −17849.2 + 30915.7i −0.0428238 + 0.0741731i
\(178\) 0 0
\(179\) −207703. 359752.i −0.484519 0.839211i 0.515323 0.856996i \(-0.327672\pi\)
−0.999842 + 0.0177851i \(0.994339\pi\)
\(180\) 0 0
\(181\) −1162.38 −0.00263726 −0.00131863 0.999999i \(-0.500420\pi\)
−0.00131863 + 0.999999i \(0.500420\pi\)
\(182\) 0 0
\(183\) 453048. 1.00004
\(184\) 0 0
\(185\) −6249.70 10824.8i −0.0134255 0.0232536i
\(186\) 0 0
\(187\) 61802.0 107044.i 0.129241 0.223851i
\(188\) 0 0
\(189\) −93055.9 + 16508.5i −0.189491 + 0.0336166i
\(190\) 0 0
\(191\) −372807. + 645721.i −0.739436 + 1.28074i 0.213313 + 0.976984i \(0.431575\pi\)
−0.952749 + 0.303757i \(0.901759\pi\)
\(192\) 0 0
\(193\) 99186.5 + 171796.i 0.191672 + 0.331986i 0.945805 0.324737i \(-0.105276\pi\)
−0.754132 + 0.656722i \(0.771942\pi\)
\(194\) 0 0
\(195\) 2361.82 0.00444795
\(196\) 0 0
\(197\) −469368. −0.861684 −0.430842 0.902427i \(-0.641783\pi\)
−0.430842 + 0.902427i \(0.641783\pi\)
\(198\) 0 0
\(199\) −96796.7 167657.i −0.173272 0.300116i 0.766290 0.642495i \(-0.222101\pi\)
−0.939562 + 0.342379i \(0.888767\pi\)
\(200\) 0 0
\(201\) −61403.7 + 106354.i −0.107202 + 0.185680i
\(202\) 0 0
\(203\) −536457. + 95169.7i −0.913681 + 0.162091i
\(204\) 0 0
\(205\) −38759.5 + 67133.4i −0.0644160 + 0.111572i
\(206\) 0 0
\(207\) 169510. + 293600.i 0.274960 + 0.476245i
\(208\) 0 0
\(209\) −228303. −0.361531
\(210\) 0 0
\(211\) 298066. 0.460900 0.230450 0.973084i \(-0.425980\pi\)
0.230450 + 0.973084i \(0.425980\pi\)
\(212\) 0 0
\(213\) 377807. + 654381.i 0.570586 + 0.988284i
\(214\) 0 0
\(215\) 50438.0 87361.3i 0.0744153 0.128891i
\(216\) 0 0
\(217\) −199191. 236883.i −0.287157 0.341495i
\(218\) 0 0
\(219\) −128602. + 222746.i −0.181192 + 0.313834i
\(220\) 0 0
\(221\) 5409.04 + 9368.73i 0.00744971 + 0.0129033i
\(222\) 0 0
\(223\) 187215. 0.252103 0.126051 0.992024i \(-0.459770\pi\)
0.126051 + 0.992024i \(0.459770\pi\)
\(224\) 0 0
\(225\) −225180. −0.296533
\(226\) 0 0
\(227\) −669482. 1.15958e6i −0.862332 1.49360i −0.869672 0.493630i \(-0.835670\pi\)
0.00734045 0.999973i \(-0.497663\pi\)
\(228\) 0 0
\(229\) −475828. + 824158.i −0.599600 + 1.03854i 0.393280 + 0.919419i \(0.371340\pi\)
−0.992880 + 0.119119i \(0.961993\pi\)
\(230\) 0 0
\(231\) 64233.8 177056.i 0.0792015 0.218314i
\(232\) 0 0
\(233\) −371709. + 643820.i −0.448553 + 0.776917i −0.998292 0.0584197i \(-0.981394\pi\)
0.549739 + 0.835336i \(0.314727\pi\)
\(234\) 0 0
\(235\) −58534.0 101384.i −0.0691415 0.119757i
\(236\) 0 0
\(237\) −539599. −0.624023
\(238\) 0 0
\(239\) 625847. 0.708718 0.354359 0.935110i \(-0.384699\pi\)
0.354359 + 0.935110i \(0.384699\pi\)
\(240\) 0 0
\(241\) 666411. + 1.15426e6i 0.739094 + 1.28015i 0.952904 + 0.303273i \(0.0980793\pi\)
−0.213810 + 0.976875i \(0.568587\pi\)
\(242\) 0 0
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 53566.9 307549.i 0.0570140 0.327340i
\(246\) 0 0
\(247\) 9990.77 17304.5i 0.0104197 0.0180475i
\(248\) 0 0
\(249\) 277124. + 479992.i 0.283254 + 0.490610i
\(250\) 0 0
\(251\) −1.78809e6 −1.79145 −0.895726 0.444606i \(-0.853344\pi\)
−0.895726 + 0.444606i \(0.853344\pi\)
\(252\) 0 0
\(253\) −675636. −0.663608
\(254\) 0 0
\(255\) 64000.9 + 110853.i 0.0616362 + 0.106757i
\(256\) 0 0
\(257\) −254462. + 440741.i −0.240320 + 0.416247i −0.960805 0.277224i \(-0.910586\pi\)
0.720485 + 0.693470i \(0.243919\pi\)
\(258\) 0 0
\(259\) 29752.5 82010.9i 0.0275597 0.0759665i
\(260\) 0 0
\(261\) 170205. 294804.i 0.154658 0.267875i
\(262\) 0 0
\(263\) −168247. 291412.i −0.149988 0.259787i 0.781235 0.624237i \(-0.214590\pi\)
−0.931223 + 0.364450i \(0.881257\pi\)
\(264\) 0 0
\(265\) −304929. −0.266737
\(266\) 0 0
\(267\) −380685. −0.326804
\(268\) 0 0
\(269\) −747765. 1.29517e6i −0.630064 1.09130i −0.987538 0.157379i \(-0.949695\pi\)
0.357475 0.933923i \(-0.383638\pi\)
\(270\) 0 0
\(271\) −888484. + 1.53890e6i −0.734897 + 1.27288i 0.219871 + 0.975529i \(0.429436\pi\)
−0.954768 + 0.297350i \(0.903897\pi\)
\(272\) 0 0
\(273\) 10609.3 + 12616.8i 0.00861546 + 0.0102458i
\(274\) 0 0
\(275\) 224381. 388640.i 0.178918 0.309896i
\(276\) 0 0
\(277\) −440632. 763198.i −0.345046 0.597637i 0.640316 0.768112i \(-0.278803\pi\)
−0.985362 + 0.170474i \(0.945470\pi\)
\(278\) 0 0
\(279\) 193375. 0.148727
\(280\) 0 0
\(281\) −1.13932e6 −0.860756 −0.430378 0.902649i \(-0.641620\pi\)
−0.430378 + 0.902649i \(0.641620\pi\)
\(282\) 0 0
\(283\) −448733. 777228.i −0.333059 0.576876i 0.650051 0.759891i \(-0.274748\pi\)
−0.983110 + 0.183015i \(0.941414\pi\)
\(284\) 0 0
\(285\) 118213. 204751.i 0.0862090 0.149318i
\(286\) 0 0
\(287\) −532735. + 94509.4i −0.381774 + 0.0677283i
\(288\) 0 0
\(289\) 416778. 721881.i 0.293535 0.508418i
\(290\) 0 0
\(291\) 200872. + 347920.i 0.139055 + 0.240850i
\(292\) 0 0
\(293\) −1.84614e6 −1.25631 −0.628153 0.778090i \(-0.716189\pi\)
−0.628153 + 0.778090i \(0.716189\pi\)
\(294\) 0 0
\(295\) 73674.9 0.0492907
\(296\) 0 0
\(297\) 58839.7 + 101913.i 0.0387061 + 0.0670409i
\(298\) 0 0
\(299\) 29566.5 51210.8i 0.0191259 0.0331271i
\(300\) 0 0
\(301\) 693252. 122986.i 0.441037 0.0782418i
\(302\) 0 0
\(303\) −503660. + 872365.i −0.315160 + 0.545873i
\(304\) 0 0
\(305\) −467504. 809741.i −0.287764 0.498421i
\(306\) 0 0
\(307\) −1.38565e6 −0.839089 −0.419544 0.907735i \(-0.637810\pi\)
−0.419544 + 0.907735i \(0.637810\pi\)
\(308\) 0 0
\(309\) 1.50254e6 0.895221
\(310\) 0 0
\(311\) 1.15624e6 + 2.00267e6i 0.677871 + 1.17411i 0.975621 + 0.219463i \(0.0704305\pi\)
−0.297750 + 0.954644i \(0.596236\pi\)
\(312\) 0 0
\(313\) 584400. 1.01221e6i 0.337171 0.583996i −0.646729 0.762720i \(-0.723863\pi\)
0.983899 + 0.178724i \(0.0571968\pi\)
\(314\) 0 0
\(315\) 125531. + 149285.i 0.0712811 + 0.0847696i
\(316\) 0 0
\(317\) −717166. + 1.24217e6i −0.400840 + 0.694276i −0.993828 0.110936i \(-0.964615\pi\)
0.592987 + 0.805212i \(0.297948\pi\)
\(318\) 0 0
\(319\) 339204. + 587519.i 0.186631 + 0.323255i
\(320\) 0 0
\(321\) 926871. 0.502061
\(322\) 0 0
\(323\) 1.08293e6 0.577554
\(324\) 0 0
\(325\) 19638.3 + 34014.5i 0.0103132 + 0.0178631i
\(326\) 0 0
\(327\) −620195. + 1.07421e6i −0.320744 + 0.555546i
\(328\) 0 0
\(329\) 278659. 768105.i 0.141933 0.391229i
\(330\) 0 0
\(331\) −1.11709e6 + 1.93486e6i −0.560426 + 0.970686i 0.437033 + 0.899445i \(0.356029\pi\)
−0.997459 + 0.0712406i \(0.977304\pi\)
\(332\) 0 0
\(333\) 27254.0 + 47205.4i 0.0134685 + 0.0233282i
\(334\) 0 0
\(335\) 253452. 0.123391
\(336\) 0 0
\(337\) 3.08787e6 1.48110 0.740549 0.672002i \(-0.234565\pi\)
0.740549 + 0.672002i \(0.234565\pi\)
\(338\) 0 0
\(339\) −584851. 1.01299e6i −0.276405 0.478748i
\(340\) 0 0
\(341\) −192690. + 333749.i −0.0897373 + 0.155429i
\(342\) 0 0
\(343\) 1.88355e6 1.09535e6i 0.864454 0.502711i
\(344\) 0 0
\(345\) 349838. 605936.i 0.158241 0.274081i
\(346\) 0 0
\(347\) −1.55877e6 2.69987e6i −0.694959 1.20370i −0.970195 0.242327i \(-0.922089\pi\)
0.275236 0.961377i \(-0.411244\pi\)
\(348\) 0 0
\(349\) 613026. 0.269411 0.134706 0.990886i \(-0.456991\pi\)
0.134706 + 0.990886i \(0.456991\pi\)
\(350\) 0 0
\(351\) −10299.5 −0.00446221
\(352\) 0 0
\(353\) −1.89185e6 3.27678e6i −0.808071 1.39962i −0.914198 0.405268i \(-0.867178\pi\)
0.106127 0.994353i \(-0.466155\pi\)
\(354\) 0 0
\(355\) 779724. 1.35052e6i 0.328375 0.568762i
\(356\) 0 0
\(357\) −304685. + 839844.i −0.126526 + 0.348761i
\(358\) 0 0
\(359\) 1.86107e6 3.22346e6i 0.762125 1.32004i −0.179629 0.983734i \(-0.557490\pi\)
0.941753 0.336304i \(-0.109177\pi\)
\(360\) 0 0
\(361\) 237940. + 412123.i 0.0960945 + 0.166441i
\(362\) 0 0
\(363\) 1.21493e6 0.483934
\(364\) 0 0
\(365\) 530824. 0.208554
\(366\) 0 0
\(367\) 2.06898e6 + 3.58357e6i 0.801845 + 1.38884i 0.918400 + 0.395652i \(0.129481\pi\)
−0.116555 + 0.993184i \(0.537185\pi\)
\(368\) 0 0
\(369\) 169025. 292759.i 0.0646225 0.111929i
\(370\) 0 0
\(371\) −1.36974e6 1.62893e6i −0.516658 0.614424i
\(372\) 0 0
\(373\) −1.47209e6 + 2.54973e6i −0.547851 + 0.948905i 0.450571 + 0.892741i \(0.351220\pi\)
−0.998422 + 0.0561644i \(0.982113\pi\)
\(374\) 0 0
\(375\) 493566. + 854882.i 0.181245 + 0.313926i
\(376\) 0 0
\(377\) −59375.7 −0.0215157
\(378\) 0 0
\(379\) −2.97504e6 −1.06388 −0.531942 0.846781i \(-0.678538\pi\)
−0.531942 + 0.846781i \(0.678538\pi\)
\(380\) 0 0
\(381\) 1.09469e6 + 1.89606e6i 0.386349 + 0.669177i
\(382\) 0 0
\(383\) 1.03052e6 1.78491e6i 0.358971 0.621756i −0.628818 0.777552i \(-0.716461\pi\)
0.987789 + 0.155796i \(0.0497944\pi\)
\(384\) 0 0
\(385\) −382739. + 67899.5i −0.131598 + 0.0233461i
\(386\) 0 0
\(387\) −219953. + 380970.i −0.0746539 + 0.129304i
\(388\) 0 0
\(389\) −1.04542e6 1.81072e6i −0.350281 0.606705i 0.636018 0.771675i \(-0.280581\pi\)
−0.986299 + 0.164970i \(0.947247\pi\)
\(390\) 0 0
\(391\) 3.20480e6 1.06013
\(392\) 0 0
\(393\) 1.74902e6 0.571233
\(394\) 0 0
\(395\) 556817. + 964435.i 0.179564 + 0.311014i
\(396\) 0 0
\(397\) −585647. + 1.01437e6i −0.186492 + 0.323013i −0.944078 0.329722i \(-0.893045\pi\)
0.757586 + 0.652735i \(0.226378\pi\)
\(398\) 0 0
\(399\) 1.62479e6 288245.i 0.510935 0.0906420i
\(400\) 0 0
\(401\) −1.54574e6 + 2.67731e6i −0.480039 + 0.831452i −0.999738 0.0228979i \(-0.992711\pi\)
0.519699 + 0.854349i \(0.326044\pi\)
\(402\) 0 0
\(403\) −16864.6 29210.4i −0.00517266 0.00895930i
\(404\) 0 0
\(405\) −121866. −0.0369187
\(406\) 0 0
\(407\) −108630. −0.0325059
\(408\) 0 0
\(409\) 2.17426e6 + 3.76593e6i 0.642693 + 1.11318i 0.984829 + 0.173527i \(0.0555163\pi\)
−0.342136 + 0.939650i \(0.611150\pi\)
\(410\) 0 0
\(411\) −13921.7 + 24113.0i −0.00406524 + 0.00704121i
\(412\) 0 0
\(413\) 330947. + 393572.i 0.0954737 + 0.113540i
\(414\) 0 0
\(415\) 571932. 990616.i 0.163014 0.282348i
\(416\) 0 0
\(417\) −101702. 176153.i −0.0286411 0.0496078i
\(418\) 0 0
\(419\) −3.13660e6 −0.872818 −0.436409 0.899748i \(-0.643750\pi\)
−0.436409 + 0.899748i \(0.643750\pi\)
\(420\) 0 0
\(421\) 6.02560e6 1.65690 0.828448 0.560066i \(-0.189224\pi\)
0.828448 + 0.560066i \(0.189224\pi\)
\(422\) 0 0
\(423\) 255258. + 442120.i 0.0693632 + 0.120141i
\(424\) 0 0
\(425\) −1.06432e6 + 1.84346e6i −0.285826 + 0.495065i
\(426\) 0 0
\(427\) 2.22562e6 6.13476e6i 0.590719 1.62828i
\(428\) 0 0
\(429\) 10263.0 17776.1i 0.00269235 0.00466329i
\(430\) 0 0
\(431\) −1.14931e6 1.99067e6i −0.298020 0.516186i 0.677663 0.735373i \(-0.262993\pi\)
−0.975683 + 0.219187i \(0.929660\pi\)
\(432\) 0 0
\(433\) −5.62982e6 −1.44303 −0.721515 0.692399i \(-0.756554\pi\)
−0.721515 + 0.692399i \(0.756554\pi\)
\(434\) 0 0
\(435\) −702545. −0.178013
\(436\) 0 0
\(437\) −2.95971e6 5.12637e6i −0.741388 1.28412i
\(438\) 0 0
\(439\) −2.72482e6 + 4.71952e6i −0.674801 + 1.16879i 0.301725 + 0.953395i \(0.402437\pi\)
−0.976527 + 0.215396i \(0.930896\pi\)
\(440\) 0 0
\(441\) −233597. + 1.34118e6i −0.0571968 + 0.328389i
\(442\) 0 0
\(443\) 2.85467e6 4.94443e6i 0.691108 1.19703i −0.280367 0.959893i \(-0.590456\pi\)
0.971475 0.237142i \(-0.0762105\pi\)
\(444\) 0 0
\(445\) 392832. + 680405.i 0.0940387 + 0.162880i
\(446\) 0 0
\(447\) 3.17515e6 0.751615
\(448\) 0 0
\(449\) 5.38234e6 1.25996 0.629978 0.776613i \(-0.283064\pi\)
0.629978 + 0.776613i \(0.283064\pi\)
\(450\) 0 0
\(451\) 336851. + 583442.i 0.0779823 + 0.135069i
\(452\) 0 0
\(453\) −652934. + 1.13092e6i −0.149494 + 0.258931i
\(454\) 0 0
\(455\) 11602.5 31981.5i 0.00262738 0.00724220i
\(456\) 0 0
\(457\) 3.19525e6 5.53434e6i 0.715673 1.23958i −0.247026 0.969009i \(-0.579453\pi\)
0.962699 0.270573i \(-0.0872133\pi\)
\(458\) 0 0
\(459\) −279099. 483413.i −0.0618338 0.107099i
\(460\) 0 0
\(461\) 7.34511e6 1.60970 0.804851 0.593476i \(-0.202245\pi\)
0.804851 + 0.593476i \(0.202245\pi\)
\(462\) 0 0
\(463\) 4.63416e6 1.00466 0.502329 0.864677i \(-0.332477\pi\)
0.502329 + 0.864677i \(0.332477\pi\)
\(464\) 0 0
\(465\) −199546. 345623.i −0.0427966 0.0741259i
\(466\) 0 0
\(467\) −3.81598e6 + 6.60946e6i −0.809680 + 1.40241i 0.103406 + 0.994639i \(0.467026\pi\)
−0.913086 + 0.407768i \(0.866307\pi\)
\(468\) 0 0
\(469\) 1.13850e6 + 1.35394e6i 0.239002 + 0.284229i
\(470\) 0 0
\(471\) −980529. + 1.69833e6i −0.203661 + 0.352751i
\(472\) 0 0
\(473\) −438346. 759238.i −0.0900875 0.156036i
\(474\) 0 0
\(475\) 3.93172e6 0.799556
\(476\) 0 0
\(477\) 1.32975e6 0.267593
\(478\) 0 0
\(479\) 4.80631e6 + 8.32477e6i 0.957135 + 1.65781i 0.729406 + 0.684081i \(0.239796\pi\)
0.227728 + 0.973725i \(0.426870\pi\)
\(480\) 0 0
\(481\) 4753.74 8233.72i 0.000936856 0.00162268i
\(482\) 0 0
\(483\) 4.80839e6 853028.i 0.937846 0.166378i
\(484\) 0 0
\(485\) 414562. 718042.i 0.0800267 0.138610i
\(486\) 0 0
\(487\) 1.40112e6 + 2.42680e6i 0.267702 + 0.463673i 0.968268 0.249914i \(-0.0804024\pi\)
−0.700566 + 0.713588i \(0.747069\pi\)
\(488\) 0 0
\(489\) −2.89900e6 −0.548246
\(490\) 0 0
\(491\) −4.82008e6 −0.902299 −0.451149 0.892448i \(-0.648986\pi\)
−0.451149 + 0.892448i \(0.648986\pi\)
\(492\) 0 0
\(493\) −1.60897e6 2.78682e6i −0.298148 0.516407i
\(494\) 0 0
\(495\) 121434. 210330.i 0.0222755 0.0385823i
\(496\) 0 0
\(497\) 1.07170e7 1.90125e6i 1.94618 0.345261i
\(498\) 0 0
\(499\) 2.29829e6 3.98076e6i 0.413194 0.715673i −0.582043 0.813158i \(-0.697747\pi\)
0.995237 + 0.0974853i \(0.0310799\pi\)
\(500\) 0 0
\(501\) −3.18326e6 5.51358e6i −0.566602 0.981384i
\(502\) 0 0
\(503\) −1.80055e6 −0.317311 −0.158656 0.987334i \(-0.550716\pi\)
−0.158656 + 0.987334i \(0.550716\pi\)
\(504\) 0 0
\(505\) 2.07892e6 0.362752
\(506\) 0 0
\(507\) −1.66992e6 2.89239e6i −0.288520 0.499731i
\(508\) 0 0
\(509\) 2.41602e6 4.18467e6i 0.413339 0.715924i −0.581913 0.813251i \(-0.697696\pi\)
0.995253 + 0.0973263i \(0.0310291\pi\)
\(510\) 0 0
\(511\) 2.38446e6 + 2.83566e6i 0.403959 + 0.480400i
\(512\) 0 0
\(513\) −515509. + 892888.i −0.0864854 + 0.149797i
\(514\) 0 0
\(515\) −1.55048e6 2.68552e6i −0.257602 0.446180i
\(516\) 0 0
\(517\) −1.01741e6 −0.167406
\(518\) 0 0
\(519\) 1.53457e6 0.250073
\(520\) 0 0
\(521\) −1.40562e6 2.43461e6i −0.226869 0.392948i 0.730010 0.683437i \(-0.239516\pi\)
−0.956878 + 0.290489i \(0.906182\pi\)
\(522\) 0 0
\(523\) −1.22715e6 + 2.12548e6i −0.196174 + 0.339784i −0.947285 0.320392i \(-0.896185\pi\)
0.751110 + 0.660177i \(0.229519\pi\)
\(524\) 0 0
\(525\) −1.10620e6 + 3.04917e6i −0.175161 + 0.482818i
\(526\) 0 0
\(527\) 914000. 1.58309e6i 0.143357 0.248302i
\(528\) 0 0
\(529\) −5.54076e6 9.59687e6i −0.860855 1.49104i
\(530\) 0 0
\(531\) −321286. −0.0494487
\(532\) 0 0
\(533\) −58963.7 −0.00899015
\(534\) 0 0
\(535\) −956445. 1.65661e6i −0.144469 0.250228i
\(536\) 0 0
\(537\) 1.86933e6 3.23777e6i 0.279737 0.484519i
\(538\) 0 0
\(539\) −2.08198e6 1.73959e6i −0.308677 0.257914i
\(540\) 0 0
\(541\) 579232. 1.00326e6i 0.0850862 0.147374i −0.820342 0.571874i \(-0.806217\pi\)
0.905428 + 0.424500i \(0.139550\pi\)
\(542\) 0 0
\(543\) −5230.72 9059.87i −0.000761310 0.00131863i
\(544\) 0 0
\(545\) 2.55994e6 0.369180
\(546\) 0 0
\(547\) −4.63638e6 −0.662538 −0.331269 0.943536i \(-0.607477\pi\)
−0.331269 + 0.943536i \(0.607477\pi\)
\(548\) 0 0
\(549\) 2.03872e6 + 3.53116e6i 0.288686 + 0.500019i
\(550\) 0 0
\(551\) −2.97185e6 + 5.14740e6i −0.417012 + 0.722285i
\(552\) 0 0
\(553\) −2.65080e6 + 7.30676e6i −0.368608 + 1.01604i
\(554\) 0 0
\(555\) 56247.3 97423.1i 0.00775120 0.0134255i
\(556\) 0 0
\(557\) −135916. 235414.i −0.0185624 0.0321510i 0.856595 0.515989i \(-0.172576\pi\)
−0.875157 + 0.483838i \(0.839242\pi\)
\(558\) 0 0
\(559\) 76730.0 0.0103857
\(560\) 0 0
\(561\) 1.11244e6 0.149234
\(562\) 0 0
\(563\) 1.69122e6 + 2.92928e6i 0.224869 + 0.389485i 0.956280 0.292452i \(-0.0944712\pi\)
−0.731411 + 0.681937i \(0.761138\pi\)
\(564\) 0 0
\(565\) −1.20702e6 + 2.09063e6i −0.159072 + 0.275522i
\(566\) 0 0
\(567\) −547423. 651011.i −0.0715097 0.0850414i
\(568\) 0 0
\(569\) −6.56130e6 + 1.13645e7i −0.849590 + 1.47153i 0.0319843 + 0.999488i \(0.489817\pi\)
−0.881574 + 0.472045i \(0.843516\pi\)
\(570\) 0 0
\(571\) −7.35811e6 1.27446e7i −0.944443 1.63582i −0.756862 0.653575i \(-0.773269\pi\)
−0.187581 0.982249i \(-0.560065\pi\)
\(572\) 0 0
\(573\) −6.71053e6 −0.853828
\(574\) 0 0
\(575\) 1.16355e7 1.46762
\(576\) 0 0
\(577\) 1.94148e6 + 3.36273e6i 0.242769 + 0.420487i 0.961502 0.274798i \(-0.0886111\pi\)
−0.718733 + 0.695286i \(0.755278\pi\)
\(578\) 0 0
\(579\) −892678. + 1.54616e6i −0.110662 + 0.191672i
\(580\) 0 0
\(581\) 7.86099e6 1.39457e6i 0.966134 0.171396i
\(582\) 0 0
\(583\) −1.32504e6 + 2.29503e6i −0.161457 + 0.279651i
\(584\) 0 0
\(585\) 10628.2 + 18408.5i 0.00128401 + 0.00222397i
\(586\) 0 0
\(587\) −4.97913e6 −0.596428 −0.298214 0.954499i \(-0.596391\pi\)
−0.298214 + 0.954499i \(0.596391\pi\)
\(588\) 0 0
\(589\) −3.37641e6 −0.401021
\(590\) 0 0
\(591\) −2.11216e6 3.65836e6i −0.248747 0.430842i
\(592\) 0 0
\(593\) −7.66344e6 + 1.32735e7i −0.894926 + 1.55006i −0.0610292 + 0.998136i \(0.519438\pi\)
−0.833896 + 0.551921i \(0.813895\pi\)
\(594\) 0 0
\(595\) 1.81547e6 322073.i 0.210231 0.0372959i
\(596\) 0 0
\(597\) 871171. 1.50891e6i 0.100039 0.173272i
\(598\) 0 0
\(599\) −3.31480e6 5.74141e6i −0.377477 0.653810i 0.613217 0.789914i \(-0.289875\pi\)
−0.990694 + 0.136104i \(0.956542\pi\)
\(600\) 0 0
\(601\) −1.45010e6 −0.163762 −0.0818808 0.996642i \(-0.526093\pi\)
−0.0818808 + 0.996642i \(0.526093\pi\)
\(602\) 0 0
\(603\) −1.10527e6 −0.123787
\(604\) 0 0
\(605\) −1.25370e6 2.17147e6i −0.139253 0.241194i
\(606\) 0 0
\(607\) 1.95555e6 3.38711e6i 0.215425 0.373128i −0.737979 0.674824i \(-0.764220\pi\)
0.953404 + 0.301696i \(0.0975528\pi\)
\(608\) 0 0
\(609\) −3.15583e6 3.75300e6i −0.344802 0.410049i
\(610\) 0 0
\(611\) 44523.1 77116.2i 0.00482483 0.00835685i
\(612\) 0 0
\(613\) −5.88765e6 1.01977e7i −0.632835 1.09610i −0.986969 0.160908i \(-0.948558\pi\)
0.354134 0.935195i \(-0.384776\pi\)
\(614\) 0 0
\(615\) −697671. −0.0743812
\(616\) 0 0
\(617\) −4.61462e6 −0.488004 −0.244002 0.969775i \(-0.578460\pi\)
−0.244002 + 0.969775i \(0.578460\pi\)
\(618\) 0 0
\(619\) −2.83733e6 4.91440e6i −0.297634 0.515518i 0.677960 0.735099i \(-0.262864\pi\)
−0.975594 + 0.219581i \(0.929531\pi\)
\(620\) 0 0
\(621\) −1.52559e6 + 2.64240e6i −0.158748 + 0.274960i
\(622\) 0 0
\(623\) −1.87013e6 + 5.15489e6i −0.193042 + 0.532107i
\(624\) 0 0
\(625\) −3.32511e6 + 5.75926e6i −0.340491 + 0.589748i
\(626\) 0 0
\(627\) −1.02736e6 1.77945e6i −0.104365 0.180766i
\(628\) 0 0
\(629\) 515271. 0.0519289
\(630\) 0 0
\(631\) −5.67894e6 −0.567798 −0.283899 0.958854i \(-0.591628\pi\)
−0.283899 + 0.958854i \(0.591628\pi\)
\(632\) 0 0
\(633\) 1.34130e6 + 2.32320e6i 0.133050 + 0.230450i
\(634\) 0 0
\(635\) 2.25925e6 3.91313e6i 0.222346 0.385114i
\(636\) 0 0
\(637\) 222964. 81680.2i 0.0217714 0.00797569i
\(638\) 0 0
\(639\) −3.40027e6 + 5.88943e6i −0.329428 + 0.570586i
\(640\) 0 0
\(641\) 1.05369e6 + 1.82504e6i 0.101290 + 0.175439i 0.912216 0.409709i \(-0.134370\pi\)
−0.810926 + 0.585148i \(0.801036\pi\)
\(642\) 0 0
\(643\) 2.30987e6 0.220323 0.110162 0.993914i \(-0.464863\pi\)
0.110162 + 0.993914i \(0.464863\pi\)
\(644\) 0 0
\(645\) 907885. 0.0859274
\(646\) 0 0
\(647\) 4.93033e6 + 8.53958e6i 0.463036 + 0.802003i 0.999111 0.0421683i \(-0.0134266\pi\)
−0.536074 + 0.844171i \(0.680093\pi\)
\(648\) 0 0
\(649\) 320147. 554510.i 0.0298358 0.0516771i
\(650\) 0 0
\(651\) 949964. 2.61851e6i 0.0878526 0.242160i
\(652\) 0 0
\(653\) −5.01545e6 + 8.68701e6i −0.460285 + 0.797237i −0.998975 0.0452673i \(-0.985586\pi\)
0.538690 + 0.842504i \(0.318919\pi\)
\(654\) 0 0
\(655\) −1.80483e6 3.12605e6i −0.164374 0.284704i
\(656\) 0 0
\(657\) −2.31484e6 −0.209223
\(658\) 0 0
\(659\) 1.42828e7 1.28115 0.640575 0.767895i \(-0.278696\pi\)
0.640575 + 0.767895i \(0.278696\pi\)
\(660\) 0 0
\(661\) 9.82097e6 + 1.70104e7i 0.874280 + 1.51430i 0.857527 + 0.514438i \(0.172000\pi\)
0.0167532 + 0.999860i \(0.494667\pi\)
\(662\) 0 0
\(663\) −48681.4 + 84318.6i −0.00430109 + 0.00744971i
\(664\) 0 0
\(665\) −2.19182e6 2.60657e6i −0.192199 0.228568i
\(666\) 0 0
\(667\) −8.79486e6 + 1.52331e7i −0.765445 + 1.32579i
\(668\) 0 0
\(669\) 842466. + 1.45919e6i 0.0727758 + 0.126051i
\(670\) 0 0
\(671\) −8.12596e6 −0.696736
\(672\) 0 0
\(673\) −9.00150e6 −0.766086 −0.383043 0.923731i \(-0.625124\pi\)
−0.383043 + 0.923731i \(0.625124\pi\)
\(674\) 0 0
\(675\) −1.01331e6 1.75510e6i −0.0856016 0.148266i
\(676\) 0 0
\(677\) −6.71181e6 + 1.16252e7i −0.562818 + 0.974830i 0.434431 + 0.900705i \(0.356950\pi\)
−0.997249 + 0.0741247i \(0.976384\pi\)
\(678\) 0 0
\(679\) 5.69800e6 1.01085e6i 0.474294 0.0841418i
\(680\) 0 0
\(681\) 6.02534e6 1.04362e7i 0.497868 0.862332i
\(682\) 0 0
\(683\) −4.00840e6 6.94276e6i −0.328791 0.569483i 0.653481 0.756943i \(-0.273308\pi\)
−0.982272 + 0.187460i \(0.939974\pi\)
\(684\) 0 0
\(685\) 57463.5 0.00467913
\(686\) 0 0
\(687\) −8.56491e6 −0.692358
\(688\) 0 0
\(689\) −115970. 200866.i −0.00930673 0.0161197i
\(690\) 0 0
\(691\) −1.20987e7 + 2.09555e7i −0.963923 + 1.66956i −0.251442 + 0.967872i \(0.580905\pi\)
−0.712481 + 0.701691i \(0.752428\pi\)
\(692\) 0 0
\(693\) 1.66907e6 296100.i 0.132020 0.0234210i
\(694\) 0 0
\(695\) −209894. + 363547.i −0.0164831 + 0.0285495i
\(696\) 0 0
\(697\) −1.59781e6 2.76749e6i −0.124578 0.215776i
\(698\) 0 0
\(699\) −6.69077e6 −0.517944
\(700\) 0 0
\(701\) −1.56268e6 −0.120109 −0.0600543 0.998195i \(-0.519127\pi\)
−0.0600543 + 0.998195i \(0.519127\pi\)
\(702\) 0 0
\(703\) −475866. 824224.i −0.0363158 0.0629009i
\(704\) 0 0
\(705\) 526806. 912455.i 0.0399189 0.0691415i
\(706\) 0 0
\(707\) 9.33851e6 + 1.11056e7i 0.702634 + 0.835592i
\(708\) 0 0
\(709\) 9.76950e6 1.69213e7i 0.729889 1.26420i −0.227041 0.973885i \(-0.572905\pi\)
0.956930 0.290320i \(-0.0937616\pi\)
\(710\) 0 0
\(711\) −2.42820e6 4.20576e6i −0.180140 0.312011i
\(712\) 0 0
\(713\) −9.99210e6 −0.736093
\(714\) 0 0
\(715\) −42362.0 −0.00309892
\(716\) 0 0
\(717\) 2.81631e6 + 4.87799e6i 0.204589 + 0.354359i
\(718\) 0 0
\(719\) −4.05095e6 + 7.01645e6i −0.292237 + 0.506169i −0.974338 0.225089i \(-0.927733\pi\)
0.682102 + 0.731257i \(0.261066\pi\)
\(720\) 0 0
\(721\) 7.38129e6 2.03460e7i 0.528804 1.45761i
\(722\) 0 0
\(723\) −5.99770e6 + 1.03883e7i −0.426716 + 0.739094i
\(724\) 0 0
\(725\) −5.84161e6 1.01180e7i −0.412750 0.714904i
\(726\) 0 0
\(727\) −2.52759e7 −1.77366 −0.886829 0.462098i \(-0.847097\pi\)
−0.886829 + 0.462098i \(0.847097\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.07924e6 + 3.60135e6i 0.143917 + 0.249271i
\(732\) 0 0
\(733\) −1.37207e7 + 2.37650e7i −0.943228 + 1.63372i −0.183969 + 0.982932i \(0.558894\pi\)
−0.759260 + 0.650787i \(0.774439\pi\)
\(734\) 0 0
\(735\) 2.63816e6 966457.i 0.180128 0.0659879i
\(736\) 0 0
\(737\) 1.10135e6 1.90759e6i 0.0746888 0.129365i
\(738\) 0 0
\(739\) −3.26785e6 5.66008e6i −0.220115 0.381251i 0.734727 0.678362i \(-0.237310\pi\)
−0.954843 + 0.297111i \(0.903977\pi\)
\(740\) 0 0
\(741\) 179834. 0.0120317
\(742\) 0 0
\(743\) 2.46784e7 1.64000 0.820001 0.572362i \(-0.193973\pi\)
0.820001 + 0.572362i \(0.193973\pi\)
\(744\) 0 0
\(745\) −3.27646e6 5.67499e6i −0.216279 0.374606i
\(746\) 0 0
\(747\) −2.49411e6 + 4.31993e6i −0.163537 + 0.283254i
\(748\) 0 0
\(749\) 4.55329e6 1.25508e7i 0.296565 0.817463i
\(750\) 0 0
\(751\) −1.63911e6 + 2.83902e6i −0.106049 + 0.183683i −0.914166 0.405339i \(-0.867153\pi\)
0.808117 + 0.589022i \(0.200487\pi\)
\(752\) 0 0
\(753\) −8.04641e6 1.39368e7i −0.517148 0.895726i
\(754\) 0 0
\(755\) 2.69507e6 0.172069
\(756\) 0 0
\(757\) 3.68090e6 0.233461 0.116731 0.993164i \(-0.462759\pi\)
0.116731 + 0.993164i \(0.462759\pi\)
\(758\) 0 0
\(759\) −3.04036e6 5.26606e6i −0.191567 0.331804i
\(760\) 0 0
\(761\) −1.05099e7 + 1.82037e7i −0.657866 + 1.13946i 0.323301 + 0.946296i \(0.395208\pi\)
−0.981167 + 0.193162i \(0.938126\pi\)
\(762\) 0 0
\(763\) 1.14992e7 + 1.36752e7i 0.715084 + 0.850399i
\(764\) 0 0
\(765\) −576008. + 997675.i −0.0355857 + 0.0616362i
\(766\) 0 0
\(767\) 28019.9 + 48531.9i 0.00171980 + 0.00297878i
\(768\) 0 0
\(769\) −4.15418e6 −0.253320 −0.126660 0.991946i \(-0.540426\pi\)
−0.126660 + 0.991946i \(0.540426\pi\)
\(770\) 0 0
\(771\) −4.58032e6 −0.277498
\(772\) 0 0
\(773\) −731741. 1.26741e6i −0.0440462 0.0762903i 0.843162 0.537660i \(-0.180692\pi\)
−0.887208 + 0.461370i \(0.847358\pi\)
\(774\) 0 0
\(775\) 3.31841e6 5.74765e6i 0.198461 0.343745i
\(776\) 0 0
\(777\) 773098. 137151.i 0.0459390 0.00814978i
\(778\) 0 0
\(779\) −2.95123e6 + 5.11169e6i −0.174245 + 0.301801i
\(780\) 0 0
\(781\) −6.77642e6 1.17371e7i −0.397533 0.688547i
\(782\) 0 0
\(783\) 3.06370e6 0.178584