Properties

Label 336.6.q
Level $336$
Weight $6$
Character orbit 336.q
Rep. character $\chi_{336}(193,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $14$
Sturm bound $384$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 14 \)
Sturm bound: \(384\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(336, [\chi])\).

Total New Old
Modular forms 664 80 584
Cusp forms 616 80 536
Eisenstein series 48 0 48

Trace form

\( 80 q - 18 q^{3} + 62 q^{7} - 3240 q^{9} + O(q^{10}) \) \( 80 q - 18 q^{3} + 62 q^{7} - 3240 q^{9} - 604 q^{11} - 2714 q^{19} - 2992 q^{23} - 26364 q^{25} + 2916 q^{27} + 8144 q^{29} + 10990 q^{31} + 4716 q^{33} - 35964 q^{35} + 10648 q^{37} + 10818 q^{39} + 19280 q^{41} - 22828 q^{43} + 32628 q^{47} + 9008 q^{49} + 7216 q^{53} - 96824 q^{55} + 12888 q^{57} - 14480 q^{59} + 12568 q^{61} + 5022 q^{63} + 42200 q^{65} + 87882 q^{67} - 272232 q^{71} - 19716 q^{73} - 78750 q^{75} - 57368 q^{77} + 18546 q^{79} - 262440 q^{81} - 208344 q^{83} - 99536 q^{85} + 90828 q^{87} - 95920 q^{89} - 265210 q^{91} - 792 q^{93} - 132516 q^{95} - 213464 q^{97} + 97848 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(336, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
336.6.q.a 336.q 7.c $2$ $53.889$ \(\Q(\sqrt{-3}) \) None 42.6.e.b \(0\) \(-9\) \(-86\) \(-49\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\zeta_{6})q^{3}-86\zeta_{6}q^{5}+(-98+\cdots)q^{7}+\cdots\)
336.6.q.b 336.q 7.c $2$ $53.889$ \(\Q(\sqrt{-3}) \) None 21.6.e.a \(0\) \(-9\) \(-11\) \(-259\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\zeta_{6})q^{3}-11\zeta_{6}q^{5}+(-133+\cdots)q^{7}+\cdots\)
336.6.q.c 336.q 7.c $2$ $53.889$ \(\Q(\sqrt{-3}) \) None 42.6.e.a \(0\) \(9\) \(6\) \(-119\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\zeta_{6})q^{3}+6\zeta_{6}q^{5}+(-126+133\zeta_{6})q^{7}+\cdots\)
336.6.q.d 336.q 7.c $2$ $53.889$ \(\Q(\sqrt{-3}) \) None 84.6.i.a \(0\) \(9\) \(69\) \(-245\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\zeta_{6})q^{3}+69\zeta_{6}q^{5}+(-147+\cdots)q^{7}+\cdots\)
336.6.q.e 336.q 7.c $4$ $53.889$ \(\Q(\sqrt{-3}, \sqrt{-83})\) None 21.6.e.b \(0\) \(-18\) \(33\) \(350\) $\mathrm{SU}(2)[C_{3}]$ \(q+9\beta _{1}q^{3}+(20+20\beta _{1}+7\beta _{3})q^{5}+\cdots\)
336.6.q.f 336.q 7.c $4$ $53.889$ \(\Q(\sqrt{-3}, \sqrt{9601})\) None 42.6.e.c \(0\) \(-18\) \(53\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\beta _{2})q^{3}+(\beta _{1}+26\beta _{2})q^{5}+\cdots\)
336.6.q.g 336.q 7.c $4$ $53.889$ \(\Q(\sqrt{-3}, \sqrt{7081})\) None 84.6.i.b \(0\) \(18\) \(-47\) \(174\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{2})q^{3}+(\beta _{1}-24\beta _{2})q^{5}+(73+\cdots)q^{7}+\cdots\)
336.6.q.h 336.q 7.c $4$ $53.889$ \(\Q(\sqrt{-3}, \sqrt{505})\) None 42.6.e.d \(0\) \(18\) \(-17\) \(408\) $\mathrm{SU}(2)[C_{3}]$ \(q+9\beta _{1}q^{3}+(-8+7\beta _{1}+2\beta _{2}-3\beta _{3})q^{5}+\cdots\)
336.6.q.i 336.q 7.c $8$ $53.889$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 84.6.i.c \(0\) \(-36\) \(0\) \(42\) $\mathrm{SU}(2)[C_{3}]$ \(q+9\beta _{1}q^{3}+(-\beta _{2}-\beta _{3})q^{5}+(-10+\cdots)q^{7}+\cdots\)
336.6.q.j 336.q 7.c $8$ $53.889$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 21.6.e.c \(0\) \(36\) \(0\) \(-258\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{1})q^{3}+(\beta _{4}-\beta _{6})q^{5}+(-9+\cdots)q^{7}+\cdots\)
336.6.q.k 336.q 7.c $8$ $53.889$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 168.6.q.a \(0\) \(36\) \(64\) \(-42\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{1})q^{3}+(2^{4}\beta _{1}+\beta _{2})q^{5}+(-22+\cdots)q^{7}+\cdots\)
336.6.q.l 336.q 7.c $10$ $53.889$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 168.6.q.c \(0\) \(-45\) \(-6\) \(97\) $\mathrm{SU}(2)[C_{3}]$ \(q-9\beta _{1}q^{3}+(-1+\beta _{1}-\beta _{6})q^{5}+(14+\cdots)q^{7}+\cdots\)
336.6.q.m 336.q 7.c $10$ $53.889$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 168.6.q.b \(0\) \(45\) \(-75\) \(113\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9+9\beta _{1})q^{3}+(15\beta _{1}+\beta _{2}-\beta _{4})q^{5}+\cdots\)
336.6.q.n 336.q 7.c $12$ $53.889$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 168.6.q.d \(0\) \(-54\) \(17\) \(-144\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\beta _{1})q^{3}+(3\beta _{1}+\beta _{2}-\beta _{4}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(336, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(336, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)