Defining parameters
| Level: | \( N \) | \(=\) | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 336.q (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 14 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(336, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 664 | 80 | 584 |
| Cusp forms | 616 | 80 | 536 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(336, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(336, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(336, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)