Properties

Label 336.6.a.x.1.1
Level $336$
Weight $6$
Character 336.1
Self dual yes
Analytic conductor $53.889$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8889634572\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5569}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(37.8129\) of defining polynomial
Character \(\chi\) \(=\) 336.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -77.6257 q^{5} +49.0000 q^{7} +81.0000 q^{9} +O(q^{10})\) \(q+9.00000 q^{3} -77.6257 q^{5} +49.0000 q^{7} +81.0000 q^{9} -477.380 q^{11} -63.7544 q^{13} -698.632 q^{15} +1037.63 q^{17} +667.018 q^{19} +441.000 q^{21} -3251.63 q^{23} +2900.75 q^{25} +729.000 q^{27} +2300.97 q^{29} -3717.05 q^{31} -4296.42 q^{33} -3803.66 q^{35} +12245.9 q^{37} -573.790 q^{39} -1829.65 q^{41} +20794.2 q^{43} -6287.68 q^{45} +4283.37 q^{47} +2401.00 q^{49} +9338.63 q^{51} +25718.4 q^{53} +37057.0 q^{55} +6003.16 q^{57} +2838.71 q^{59} +16803.2 q^{61} +3969.00 q^{63} +4948.98 q^{65} +62535.1 q^{67} -29264.6 q^{69} -72301.0 q^{71} -55676.9 q^{73} +26106.8 q^{75} -23391.6 q^{77} +3989.19 q^{79} +6561.00 q^{81} +46092.2 q^{83} -80546.5 q^{85} +20708.7 q^{87} +135385. q^{89} -3123.97 q^{91} -33453.5 q^{93} -51777.7 q^{95} +142878. q^{97} -38667.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} - 6 q^{5} + 98 q^{7} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 18 q^{3} - 6 q^{5} + 98 q^{7} + 162 q^{9} + 90 q^{11} + 768 q^{13} - 54 q^{15} + 1926 q^{17} - 2248 q^{19} + 882 q^{21} - 6354 q^{23} + 4906 q^{25} + 1458 q^{27} + 10572 q^{29} + 3312 q^{31} + 810 q^{33} - 294 q^{35} + 2104 q^{37} + 6912 q^{39} + 1266 q^{41} + 5768 q^{43} - 486 q^{45} - 15612 q^{47} + 4802 q^{49} + 17334 q^{51} + 16512 q^{53} + 77696 q^{55} - 20232 q^{57} + 13140 q^{59} - 5796 q^{61} + 7938 q^{63} + 64524 q^{65} + 56116 q^{67} - 57186 q^{69} - 11022 q^{71} - 85384 q^{73} + 44154 q^{75} + 4410 q^{77} + 19620 q^{79} + 13122 q^{81} + 44424 q^{83} - 16916 q^{85} + 95148 q^{87} + 211218 q^{89} + 37632 q^{91} + 29808 q^{93} - 260568 q^{95} + 44864 q^{97} + 7290 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −77.6257 −1.38861 −0.694306 0.719680i \(-0.744288\pi\)
−0.694306 + 0.719680i \(0.744288\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −477.380 −1.18955 −0.594775 0.803892i \(-0.702759\pi\)
−0.594775 + 0.803892i \(0.702759\pi\)
\(12\) 0 0
\(13\) −63.7544 −0.104629 −0.0523145 0.998631i \(-0.516660\pi\)
−0.0523145 + 0.998631i \(0.516660\pi\)
\(14\) 0 0
\(15\) −698.632 −0.801715
\(16\) 0 0
\(17\) 1037.63 0.870800 0.435400 0.900237i \(-0.356607\pi\)
0.435400 + 0.900237i \(0.356607\pi\)
\(18\) 0 0
\(19\) 667.018 0.423890 0.211945 0.977282i \(-0.432020\pi\)
0.211945 + 0.977282i \(0.432020\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) 0 0
\(23\) −3251.63 −1.28168 −0.640842 0.767673i \(-0.721415\pi\)
−0.640842 + 0.767673i \(0.721415\pi\)
\(24\) 0 0
\(25\) 2900.75 0.928241
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 2300.97 0.508061 0.254031 0.967196i \(-0.418244\pi\)
0.254031 + 0.967196i \(0.418244\pi\)
\(30\) 0 0
\(31\) −3717.05 −0.694696 −0.347348 0.937736i \(-0.612918\pi\)
−0.347348 + 0.937736i \(0.612918\pi\)
\(32\) 0 0
\(33\) −4296.42 −0.686787
\(34\) 0 0
\(35\) −3803.66 −0.524846
\(36\) 0 0
\(37\) 12245.9 1.47057 0.735284 0.677759i \(-0.237049\pi\)
0.735284 + 0.677759i \(0.237049\pi\)
\(38\) 0 0
\(39\) −573.790 −0.0604075
\(40\) 0 0
\(41\) −1829.65 −0.169984 −0.0849920 0.996382i \(-0.527086\pi\)
−0.0849920 + 0.996382i \(0.527086\pi\)
\(42\) 0 0
\(43\) 20794.2 1.71503 0.857513 0.514463i \(-0.172009\pi\)
0.857513 + 0.514463i \(0.172009\pi\)
\(44\) 0 0
\(45\) −6287.68 −0.462870
\(46\) 0 0
\(47\) 4283.37 0.282840 0.141420 0.989950i \(-0.454833\pi\)
0.141420 + 0.989950i \(0.454833\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 9338.63 0.502757
\(52\) 0 0
\(53\) 25718.4 1.25764 0.628818 0.777553i \(-0.283539\pi\)
0.628818 + 0.777553i \(0.283539\pi\)
\(54\) 0 0
\(55\) 37057.0 1.65182
\(56\) 0 0
\(57\) 6003.16 0.244733
\(58\) 0 0
\(59\) 2838.71 0.106167 0.0530837 0.998590i \(-0.483095\pi\)
0.0530837 + 0.998590i \(0.483095\pi\)
\(60\) 0 0
\(61\) 16803.2 0.578186 0.289093 0.957301i \(-0.406646\pi\)
0.289093 + 0.957301i \(0.406646\pi\)
\(62\) 0 0
\(63\) 3969.00 0.125988
\(64\) 0 0
\(65\) 4948.98 0.145289
\(66\) 0 0
\(67\) 62535.1 1.70191 0.850955 0.525238i \(-0.176024\pi\)
0.850955 + 0.525238i \(0.176024\pi\)
\(68\) 0 0
\(69\) −29264.6 −0.739981
\(70\) 0 0
\(71\) −72301.0 −1.70215 −0.851077 0.525042i \(-0.824050\pi\)
−0.851077 + 0.525042i \(0.824050\pi\)
\(72\) 0 0
\(73\) −55676.9 −1.22283 −0.611417 0.791308i \(-0.709400\pi\)
−0.611417 + 0.791308i \(0.709400\pi\)
\(74\) 0 0
\(75\) 26106.8 0.535920
\(76\) 0 0
\(77\) −23391.6 −0.449608
\(78\) 0 0
\(79\) 3989.19 0.0719146 0.0359573 0.999353i \(-0.488552\pi\)
0.0359573 + 0.999353i \(0.488552\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 46092.2 0.734400 0.367200 0.930142i \(-0.380316\pi\)
0.367200 + 0.930142i \(0.380316\pi\)
\(84\) 0 0
\(85\) −80546.5 −1.20920
\(86\) 0 0
\(87\) 20708.7 0.293329
\(88\) 0 0
\(89\) 135385. 1.81173 0.905867 0.423562i \(-0.139220\pi\)
0.905867 + 0.423562i \(0.139220\pi\)
\(90\) 0 0
\(91\) −3123.97 −0.0395460
\(92\) 0 0
\(93\) −33453.5 −0.401083
\(94\) 0 0
\(95\) −51777.7 −0.588619
\(96\) 0 0
\(97\) 142878. 1.54183 0.770914 0.636939i \(-0.219800\pi\)
0.770914 + 0.636939i \(0.219800\pi\)
\(98\) 0 0
\(99\) −38667.8 −0.396517
\(100\) 0 0
\(101\) 44467.1 0.433746 0.216873 0.976200i \(-0.430414\pi\)
0.216873 + 0.976200i \(0.430414\pi\)
\(102\) 0 0
\(103\) −202619. −1.88186 −0.940931 0.338598i \(-0.890047\pi\)
−0.940931 + 0.338598i \(0.890047\pi\)
\(104\) 0 0
\(105\) −34232.9 −0.303020
\(106\) 0 0
\(107\) −99525.9 −0.840382 −0.420191 0.907436i \(-0.638037\pi\)
−0.420191 + 0.907436i \(0.638037\pi\)
\(108\) 0 0
\(109\) 220930. 1.78110 0.890551 0.454883i \(-0.150319\pi\)
0.890551 + 0.454883i \(0.150319\pi\)
\(110\) 0 0
\(111\) 110213. 0.849033
\(112\) 0 0
\(113\) 29623.1 0.218240 0.109120 0.994029i \(-0.465197\pi\)
0.109120 + 0.994029i \(0.465197\pi\)
\(114\) 0 0
\(115\) 252410. 1.77976
\(116\) 0 0
\(117\) −5164.11 −0.0348763
\(118\) 0 0
\(119\) 50843.7 0.329131
\(120\) 0 0
\(121\) 66840.8 0.415029
\(122\) 0 0
\(123\) −16466.8 −0.0981403
\(124\) 0 0
\(125\) 17407.2 0.0996448
\(126\) 0 0
\(127\) 264132. 1.45315 0.726577 0.687086i \(-0.241110\pi\)
0.726577 + 0.687086i \(0.241110\pi\)
\(128\) 0 0
\(129\) 187148. 0.990170
\(130\) 0 0
\(131\) 77850.1 0.396352 0.198176 0.980166i \(-0.436498\pi\)
0.198176 + 0.980166i \(0.436498\pi\)
\(132\) 0 0
\(133\) 32683.9 0.160215
\(134\) 0 0
\(135\) −56589.2 −0.267238
\(136\) 0 0
\(137\) 372403. 1.69516 0.847581 0.530666i \(-0.178058\pi\)
0.847581 + 0.530666i \(0.178058\pi\)
\(138\) 0 0
\(139\) 274550. 1.20527 0.602636 0.798016i \(-0.294117\pi\)
0.602636 + 0.798016i \(0.294117\pi\)
\(140\) 0 0
\(141\) 38550.3 0.163298
\(142\) 0 0
\(143\) 30435.1 0.124461
\(144\) 0 0
\(145\) −178615. −0.705500
\(146\) 0 0
\(147\) 21609.0 0.0824786
\(148\) 0 0
\(149\) −312982. −1.15492 −0.577462 0.816417i \(-0.695957\pi\)
−0.577462 + 0.816417i \(0.695957\pi\)
\(150\) 0 0
\(151\) −432095. −1.54219 −0.771093 0.636723i \(-0.780290\pi\)
−0.771093 + 0.636723i \(0.780290\pi\)
\(152\) 0 0
\(153\) 84047.7 0.290267
\(154\) 0 0
\(155\) 288539. 0.964662
\(156\) 0 0
\(157\) −84603.7 −0.273930 −0.136965 0.990576i \(-0.543735\pi\)
−0.136965 + 0.990576i \(0.543735\pi\)
\(158\) 0 0
\(159\) 231466. 0.726096
\(160\) 0 0
\(161\) −159330. −0.484431
\(162\) 0 0
\(163\) −306303. −0.902989 −0.451494 0.892274i \(-0.649109\pi\)
−0.451494 + 0.892274i \(0.649109\pi\)
\(164\) 0 0
\(165\) 333513. 0.953680
\(166\) 0 0
\(167\) 606514. 1.68287 0.841433 0.540362i \(-0.181713\pi\)
0.841433 + 0.540362i \(0.181713\pi\)
\(168\) 0 0
\(169\) −367228. −0.989053
\(170\) 0 0
\(171\) 54028.4 0.141297
\(172\) 0 0
\(173\) −288481. −0.732828 −0.366414 0.930452i \(-0.619415\pi\)
−0.366414 + 0.930452i \(0.619415\pi\)
\(174\) 0 0
\(175\) 142137. 0.350842
\(176\) 0 0
\(177\) 25548.4 0.0612958
\(178\) 0 0
\(179\) −148858. −0.347248 −0.173624 0.984812i \(-0.555548\pi\)
−0.173624 + 0.984812i \(0.555548\pi\)
\(180\) 0 0
\(181\) 93377.8 0.211859 0.105930 0.994374i \(-0.466218\pi\)
0.105930 + 0.994374i \(0.466218\pi\)
\(182\) 0 0
\(183\) 151229. 0.333816
\(184\) 0 0
\(185\) −950594. −2.04205
\(186\) 0 0
\(187\) −495342. −1.03586
\(188\) 0 0
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) −246915. −0.489738 −0.244869 0.969556i \(-0.578745\pi\)
−0.244869 + 0.969556i \(0.578745\pi\)
\(192\) 0 0
\(193\) 481437. 0.930349 0.465175 0.885219i \(-0.345992\pi\)
0.465175 + 0.885219i \(0.345992\pi\)
\(194\) 0 0
\(195\) 44540.8 0.0838826
\(196\) 0 0
\(197\) −548236. −1.00647 −0.503237 0.864149i \(-0.667858\pi\)
−0.503237 + 0.864149i \(0.667858\pi\)
\(198\) 0 0
\(199\) −158179. −0.283150 −0.141575 0.989928i \(-0.545217\pi\)
−0.141575 + 0.989928i \(0.545217\pi\)
\(200\) 0 0
\(201\) 562816. 0.982599
\(202\) 0 0
\(203\) 112748. 0.192029
\(204\) 0 0
\(205\) 142028. 0.236042
\(206\) 0 0
\(207\) −263382. −0.427228
\(208\) 0 0
\(209\) −318421. −0.504238
\(210\) 0 0
\(211\) −283510. −0.438392 −0.219196 0.975681i \(-0.570343\pi\)
−0.219196 + 0.975681i \(0.570343\pi\)
\(212\) 0 0
\(213\) −650709. −0.982739
\(214\) 0 0
\(215\) −1.61416e6 −2.38150
\(216\) 0 0
\(217\) −182136. −0.262570
\(218\) 0 0
\(219\) −501092. −0.706004
\(220\) 0 0
\(221\) −66153.2 −0.0911109
\(222\) 0 0
\(223\) 651135. 0.876817 0.438409 0.898776i \(-0.355542\pi\)
0.438409 + 0.898776i \(0.355542\pi\)
\(224\) 0 0
\(225\) 234961. 0.309414
\(226\) 0 0
\(227\) 378294. 0.487264 0.243632 0.969868i \(-0.421661\pi\)
0.243632 + 0.969868i \(0.421661\pi\)
\(228\) 0 0
\(229\) −22332.8 −0.0281420 −0.0140710 0.999901i \(-0.504479\pi\)
−0.0140710 + 0.999901i \(0.504479\pi\)
\(230\) 0 0
\(231\) −210525. −0.259581
\(232\) 0 0
\(233\) −908940. −1.09685 −0.548423 0.836201i \(-0.684771\pi\)
−0.548423 + 0.836201i \(0.684771\pi\)
\(234\) 0 0
\(235\) −332500. −0.392755
\(236\) 0 0
\(237\) 35902.7 0.0415199
\(238\) 0 0
\(239\) −1.05363e6 −1.19315 −0.596573 0.802559i \(-0.703471\pi\)
−0.596573 + 0.802559i \(0.703471\pi\)
\(240\) 0 0
\(241\) 1.05233e6 1.16710 0.583550 0.812077i \(-0.301663\pi\)
0.583550 + 0.812077i \(0.301663\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) −186379. −0.198373
\(246\) 0 0
\(247\) −42525.3 −0.0443512
\(248\) 0 0
\(249\) 414830. 0.424006
\(250\) 0 0
\(251\) −972876. −0.974705 −0.487352 0.873205i \(-0.662037\pi\)
−0.487352 + 0.873205i \(0.662037\pi\)
\(252\) 0 0
\(253\) 1.55226e6 1.52463
\(254\) 0 0
\(255\) −724918. −0.698134
\(256\) 0 0
\(257\) 1.77948e6 1.68058 0.840290 0.542137i \(-0.182385\pi\)
0.840290 + 0.542137i \(0.182385\pi\)
\(258\) 0 0
\(259\) 600047. 0.555822
\(260\) 0 0
\(261\) 186379. 0.169354
\(262\) 0 0
\(263\) −21959.6 −0.0195765 −0.00978827 0.999952i \(-0.503116\pi\)
−0.00978827 + 0.999952i \(0.503116\pi\)
\(264\) 0 0
\(265\) −1.99641e6 −1.74637
\(266\) 0 0
\(267\) 1.21846e6 1.04601
\(268\) 0 0
\(269\) −1.69111e6 −1.42492 −0.712461 0.701712i \(-0.752419\pi\)
−0.712461 + 0.701712i \(0.752419\pi\)
\(270\) 0 0
\(271\) 467863. 0.386986 0.193493 0.981102i \(-0.438018\pi\)
0.193493 + 0.981102i \(0.438018\pi\)
\(272\) 0 0
\(273\) −28115.7 −0.0228319
\(274\) 0 0
\(275\) −1.38476e6 −1.10419
\(276\) 0 0
\(277\) 906169. 0.709594 0.354797 0.934943i \(-0.384550\pi\)
0.354797 + 0.934943i \(0.384550\pi\)
\(278\) 0 0
\(279\) −301081. −0.231565
\(280\) 0 0
\(281\) −781388. −0.590338 −0.295169 0.955445i \(-0.595376\pi\)
−0.295169 + 0.955445i \(0.595376\pi\)
\(282\) 0 0
\(283\) 1.49843e6 1.11217 0.556085 0.831125i \(-0.312303\pi\)
0.556085 + 0.831125i \(0.312303\pi\)
\(284\) 0 0
\(285\) −466000. −0.339839
\(286\) 0 0
\(287\) −89652.8 −0.0642479
\(288\) 0 0
\(289\) −343190. −0.241707
\(290\) 0 0
\(291\) 1.28590e6 0.890175
\(292\) 0 0
\(293\) −1.56070e6 −1.06206 −0.531031 0.847352i \(-0.678195\pi\)
−0.531031 + 0.847352i \(0.678195\pi\)
\(294\) 0 0
\(295\) −220357. −0.147425
\(296\) 0 0
\(297\) −348010. −0.228929
\(298\) 0 0
\(299\) 207305. 0.134101
\(300\) 0 0
\(301\) 1.01891e6 0.648219
\(302\) 0 0
\(303\) 400204. 0.250423
\(304\) 0 0
\(305\) −1.30436e6 −0.802875
\(306\) 0 0
\(307\) 889308. 0.538525 0.269263 0.963067i \(-0.413220\pi\)
0.269263 + 0.963067i \(0.413220\pi\)
\(308\) 0 0
\(309\) −1.82357e6 −1.08649
\(310\) 0 0
\(311\) −2.44826e6 −1.43535 −0.717674 0.696380i \(-0.754793\pi\)
−0.717674 + 0.696380i \(0.754793\pi\)
\(312\) 0 0
\(313\) −2.73102e6 −1.57567 −0.787834 0.615887i \(-0.788798\pi\)
−0.787834 + 0.615887i \(0.788798\pi\)
\(314\) 0 0
\(315\) −308097. −0.174949
\(316\) 0 0
\(317\) −249603. −0.139509 −0.0697545 0.997564i \(-0.522222\pi\)
−0.0697545 + 0.997564i \(0.522222\pi\)
\(318\) 0 0
\(319\) −1.09844e6 −0.604364
\(320\) 0 0
\(321\) −895733. −0.485195
\(322\) 0 0
\(323\) 692115. 0.369124
\(324\) 0 0
\(325\) −184936. −0.0971209
\(326\) 0 0
\(327\) 1.98837e6 1.02832
\(328\) 0 0
\(329\) 209885. 0.106903
\(330\) 0 0
\(331\) −646617. −0.324397 −0.162199 0.986758i \(-0.551858\pi\)
−0.162199 + 0.986758i \(0.551858\pi\)
\(332\) 0 0
\(333\) 991915. 0.490189
\(334\) 0 0
\(335\) −4.85433e6 −2.36329
\(336\) 0 0
\(337\) −1.02782e6 −0.492994 −0.246497 0.969144i \(-0.579280\pi\)
−0.246497 + 0.969144i \(0.579280\pi\)
\(338\) 0 0
\(339\) 266608. 0.126001
\(340\) 0 0
\(341\) 1.77445e6 0.826375
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 2.27169e6 1.02755
\(346\) 0 0
\(347\) 1.64916e6 0.735256 0.367628 0.929973i \(-0.380170\pi\)
0.367628 + 0.929973i \(0.380170\pi\)
\(348\) 0 0
\(349\) 2.21201e6 0.972128 0.486064 0.873923i \(-0.338432\pi\)
0.486064 + 0.873923i \(0.338432\pi\)
\(350\) 0 0
\(351\) −46477.0 −0.0201358
\(352\) 0 0
\(353\) 1.10158e6 0.470520 0.235260 0.971932i \(-0.424406\pi\)
0.235260 + 0.971932i \(0.424406\pi\)
\(354\) 0 0
\(355\) 5.61242e6 2.36363
\(356\) 0 0
\(357\) 457593. 0.190024
\(358\) 0 0
\(359\) 1.29940e6 0.532116 0.266058 0.963957i \(-0.414279\pi\)
0.266058 + 0.963957i \(0.414279\pi\)
\(360\) 0 0
\(361\) −2.03119e6 −0.820317
\(362\) 0 0
\(363\) 601567. 0.239617
\(364\) 0 0
\(365\) 4.32196e6 1.69804
\(366\) 0 0
\(367\) −1.55669e6 −0.603305 −0.301652 0.953418i \(-0.597538\pi\)
−0.301652 + 0.953418i \(0.597538\pi\)
\(368\) 0 0
\(369\) −148202. −0.0566614
\(370\) 0 0
\(371\) 1.26020e6 0.475341
\(372\) 0 0
\(373\) −3.12660e6 −1.16359 −0.581796 0.813335i \(-0.697650\pi\)
−0.581796 + 0.813335i \(0.697650\pi\)
\(374\) 0 0
\(375\) 156665. 0.0575299
\(376\) 0 0
\(377\) −146697. −0.0531579
\(378\) 0 0
\(379\) 2.96497e6 1.06029 0.530143 0.847908i \(-0.322138\pi\)
0.530143 + 0.847908i \(0.322138\pi\)
\(380\) 0 0
\(381\) 2.37719e6 0.838978
\(382\) 0 0
\(383\) −2.74774e6 −0.957149 −0.478574 0.878047i \(-0.658846\pi\)
−0.478574 + 0.878047i \(0.658846\pi\)
\(384\) 0 0
\(385\) 1.81579e6 0.624330
\(386\) 0 0
\(387\) 1.68433e6 0.571675
\(388\) 0 0
\(389\) −611343. −0.204838 −0.102419 0.994741i \(-0.532658\pi\)
−0.102419 + 0.994741i \(0.532658\pi\)
\(390\) 0 0
\(391\) −3.37397e6 −1.11609
\(392\) 0 0
\(393\) 700651. 0.228834
\(394\) 0 0
\(395\) −309664. −0.0998615
\(396\) 0 0
\(397\) 2.16794e6 0.690352 0.345176 0.938538i \(-0.387819\pi\)
0.345176 + 0.938538i \(0.387819\pi\)
\(398\) 0 0
\(399\) 294155. 0.0925004
\(400\) 0 0
\(401\) −3.14644e6 −0.977143 −0.488572 0.872524i \(-0.662482\pi\)
−0.488572 + 0.872524i \(0.662482\pi\)
\(402\) 0 0
\(403\) 236978. 0.0726852
\(404\) 0 0
\(405\) −509302. −0.154290
\(406\) 0 0
\(407\) −5.84593e6 −1.74931
\(408\) 0 0
\(409\) 5.58165e6 1.64989 0.824943 0.565215i \(-0.191207\pi\)
0.824943 + 0.565215i \(0.191207\pi\)
\(410\) 0 0
\(411\) 3.35162e6 0.978703
\(412\) 0 0
\(413\) 139097. 0.0401275
\(414\) 0 0
\(415\) −3.57794e6 −1.01980
\(416\) 0 0
\(417\) 2.47095e6 0.695864
\(418\) 0 0
\(419\) −2.25054e6 −0.626257 −0.313128 0.949711i \(-0.601377\pi\)
−0.313128 + 0.949711i \(0.601377\pi\)
\(420\) 0 0
\(421\) 3.45914e6 0.951180 0.475590 0.879667i \(-0.342235\pi\)
0.475590 + 0.879667i \(0.342235\pi\)
\(422\) 0 0
\(423\) 346953. 0.0942800
\(424\) 0 0
\(425\) 3.00990e6 0.808313
\(426\) 0 0
\(427\) 823356. 0.218534
\(428\) 0 0
\(429\) 273916. 0.0718578
\(430\) 0 0
\(431\) 6.55926e6 1.70083 0.850417 0.526109i \(-0.176350\pi\)
0.850417 + 0.526109i \(0.176350\pi\)
\(432\) 0 0
\(433\) 5.05669e6 1.29612 0.648062 0.761587i \(-0.275580\pi\)
0.648062 + 0.761587i \(0.275580\pi\)
\(434\) 0 0
\(435\) −1.60753e6 −0.407320
\(436\) 0 0
\(437\) −2.16889e6 −0.543293
\(438\) 0 0
\(439\) −4.23225e6 −1.04812 −0.524059 0.851682i \(-0.675583\pi\)
−0.524059 + 0.851682i \(0.675583\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 0 0
\(443\) 6.05525e6 1.46596 0.732981 0.680249i \(-0.238128\pi\)
0.732981 + 0.680249i \(0.238128\pi\)
\(444\) 0 0
\(445\) −1.05093e7 −2.51579
\(446\) 0 0
\(447\) −2.81684e6 −0.666796
\(448\) 0 0
\(449\) −299186. −0.0700368 −0.0350184 0.999387i \(-0.511149\pi\)
−0.0350184 + 0.999387i \(0.511149\pi\)
\(450\) 0 0
\(451\) 873438. 0.202204
\(452\) 0 0
\(453\) −3.88885e6 −0.890381
\(454\) 0 0
\(455\) 242500. 0.0549140
\(456\) 0 0
\(457\) 3.75177e6 0.840322 0.420161 0.907450i \(-0.361974\pi\)
0.420161 + 0.907450i \(0.361974\pi\)
\(458\) 0 0
\(459\) 756429. 0.167586
\(460\) 0 0
\(461\) 6.94525e6 1.52207 0.761036 0.648709i \(-0.224691\pi\)
0.761036 + 0.648709i \(0.224691\pi\)
\(462\) 0 0
\(463\) 9.13226e6 1.97982 0.989910 0.141697i \(-0.0452558\pi\)
0.989910 + 0.141697i \(0.0452558\pi\)
\(464\) 0 0
\(465\) 2.59685e6 0.556948
\(466\) 0 0
\(467\) 424136. 0.0899940 0.0449970 0.998987i \(-0.485672\pi\)
0.0449970 + 0.998987i \(0.485672\pi\)
\(468\) 0 0
\(469\) 3.06422e6 0.643262
\(470\) 0 0
\(471\) −761433. −0.158154
\(472\) 0 0
\(473\) −9.92673e6 −2.04011
\(474\) 0 0
\(475\) 1.93485e6 0.393472
\(476\) 0 0
\(477\) 2.08319e6 0.419212
\(478\) 0 0
\(479\) 7.78605e6 1.55052 0.775262 0.631640i \(-0.217618\pi\)
0.775262 + 0.631640i \(0.217618\pi\)
\(480\) 0 0
\(481\) −780727. −0.153864
\(482\) 0 0
\(483\) −1.43397e6 −0.279686
\(484\) 0 0
\(485\) −1.10910e7 −2.14100
\(486\) 0 0
\(487\) −2.32259e6 −0.443763 −0.221881 0.975074i \(-0.571220\pi\)
−0.221881 + 0.975074i \(0.571220\pi\)
\(488\) 0 0
\(489\) −2.75673e6 −0.521341
\(490\) 0 0
\(491\) −6.01036e6 −1.12512 −0.562558 0.826758i \(-0.690183\pi\)
−0.562558 + 0.826758i \(0.690183\pi\)
\(492\) 0 0
\(493\) 2.38755e6 0.442420
\(494\) 0 0
\(495\) 3.00162e6 0.550607
\(496\) 0 0
\(497\) −3.54275e6 −0.643353
\(498\) 0 0
\(499\) −3.37385e6 −0.606562 −0.303281 0.952901i \(-0.598082\pi\)
−0.303281 + 0.952901i \(0.598082\pi\)
\(500\) 0 0
\(501\) 5.45862e6 0.971603
\(502\) 0 0
\(503\) 1.22068e6 0.215120 0.107560 0.994199i \(-0.465696\pi\)
0.107560 + 0.994199i \(0.465696\pi\)
\(504\) 0 0
\(505\) −3.45179e6 −0.602304
\(506\) 0 0
\(507\) −3.30506e6 −0.571030
\(508\) 0 0
\(509\) 1.56897e6 0.268423 0.134212 0.990953i \(-0.457150\pi\)
0.134212 + 0.990953i \(0.457150\pi\)
\(510\) 0 0
\(511\) −2.72817e6 −0.462188
\(512\) 0 0
\(513\) 486256. 0.0815777
\(514\) 0 0
\(515\) 1.57285e7 2.61318
\(516\) 0 0
\(517\) −2.04480e6 −0.336452
\(518\) 0 0
\(519\) −2.59633e6 −0.423098
\(520\) 0 0
\(521\) 1.06779e7 1.72342 0.861708 0.507404i \(-0.169395\pi\)
0.861708 + 0.507404i \(0.169395\pi\)
\(522\) 0 0
\(523\) 1.21007e7 1.93444 0.967219 0.253943i \(-0.0817275\pi\)
0.967219 + 0.253943i \(0.0817275\pi\)
\(524\) 0 0
\(525\) 1.27923e6 0.202559
\(526\) 0 0
\(527\) −3.85691e6 −0.604941
\(528\) 0 0
\(529\) 4.13673e6 0.642714
\(530\) 0 0
\(531\) 229936. 0.0353892
\(532\) 0 0
\(533\) 116648. 0.0177852
\(534\) 0 0
\(535\) 7.72577e6 1.16696
\(536\) 0 0
\(537\) −1.33972e6 −0.200484
\(538\) 0 0
\(539\) −1.14619e6 −0.169936
\(540\) 0 0
\(541\) −3.19805e6 −0.469778 −0.234889 0.972022i \(-0.575473\pi\)
−0.234889 + 0.972022i \(0.575473\pi\)
\(542\) 0 0
\(543\) 840400. 0.122317
\(544\) 0 0
\(545\) −1.71499e7 −2.47326
\(546\) 0 0
\(547\) −3.97811e6 −0.568471 −0.284235 0.958755i \(-0.591740\pi\)
−0.284235 + 0.958755i \(0.591740\pi\)
\(548\) 0 0
\(549\) 1.36106e6 0.192729
\(550\) 0 0
\(551\) 1.53479e6 0.215362
\(552\) 0 0
\(553\) 195470. 0.0271812
\(554\) 0 0
\(555\) −8.55534e6 −1.17898
\(556\) 0 0
\(557\) 1.14113e7 1.55847 0.779236 0.626731i \(-0.215608\pi\)
0.779236 + 0.626731i \(0.215608\pi\)
\(558\) 0 0
\(559\) −1.32572e6 −0.179441
\(560\) 0 0
\(561\) −4.45808e6 −0.598054
\(562\) 0 0
\(563\) 6.46973e6 0.860231 0.430115 0.902774i \(-0.358473\pi\)
0.430115 + 0.902774i \(0.358473\pi\)
\(564\) 0 0
\(565\) −2.29952e6 −0.303051
\(566\) 0 0
\(567\) 321489. 0.0419961
\(568\) 0 0
\(569\) 717028. 0.0928444 0.0464222 0.998922i \(-0.485218\pi\)
0.0464222 + 0.998922i \(0.485218\pi\)
\(570\) 0 0
\(571\) −6.00286e6 −0.770491 −0.385246 0.922814i \(-0.625883\pi\)
−0.385246 + 0.922814i \(0.625883\pi\)
\(572\) 0 0
\(573\) −2.22223e6 −0.282750
\(574\) 0 0
\(575\) −9.43217e6 −1.18971
\(576\) 0 0
\(577\) 1.55712e7 1.94707 0.973537 0.228531i \(-0.0733922\pi\)
0.973537 + 0.228531i \(0.0733922\pi\)
\(578\) 0 0
\(579\) 4.33293e6 0.537137
\(580\) 0 0
\(581\) 2.25852e6 0.277577
\(582\) 0 0
\(583\) −1.22775e7 −1.49602
\(584\) 0 0
\(585\) 400868. 0.0484296
\(586\) 0 0
\(587\) −7.84621e6 −0.939863 −0.469931 0.882703i \(-0.655721\pi\)
−0.469931 + 0.882703i \(0.655721\pi\)
\(588\) 0 0
\(589\) −2.47934e6 −0.294475
\(590\) 0 0
\(591\) −4.93413e6 −0.581088
\(592\) 0 0
\(593\) 1.33248e7 1.55605 0.778026 0.628232i \(-0.216221\pi\)
0.778026 + 0.628232i \(0.216221\pi\)
\(594\) 0 0
\(595\) −3.94678e6 −0.457036
\(596\) 0 0
\(597\) −1.42361e6 −0.163477
\(598\) 0 0
\(599\) 7.77916e6 0.885861 0.442930 0.896556i \(-0.353939\pi\)
0.442930 + 0.896556i \(0.353939\pi\)
\(600\) 0 0
\(601\) 8.62898e6 0.974480 0.487240 0.873268i \(-0.338004\pi\)
0.487240 + 0.873268i \(0.338004\pi\)
\(602\) 0 0
\(603\) 5.06534e6 0.567304
\(604\) 0 0
\(605\) −5.18857e6 −0.576314
\(606\) 0 0
\(607\) 7.09353e6 0.781431 0.390715 0.920512i \(-0.372228\pi\)
0.390715 + 0.920512i \(0.372228\pi\)
\(608\) 0 0
\(609\) 1.01473e6 0.110868
\(610\) 0 0
\(611\) −273084. −0.0295932
\(612\) 0 0
\(613\) 4.52640e6 0.486521 0.243261 0.969961i \(-0.421783\pi\)
0.243261 + 0.969961i \(0.421783\pi\)
\(614\) 0 0
\(615\) 1.27825e6 0.136279
\(616\) 0 0
\(617\) −8.38009e6 −0.886208 −0.443104 0.896470i \(-0.646123\pi\)
−0.443104 + 0.896470i \(0.646123\pi\)
\(618\) 0 0
\(619\) 168342. 0.0176590 0.00882949 0.999961i \(-0.497189\pi\)
0.00882949 + 0.999961i \(0.497189\pi\)
\(620\) 0 0
\(621\) −2.37044e6 −0.246660
\(622\) 0 0
\(623\) 6.63385e6 0.684771
\(624\) 0 0
\(625\) −1.04161e7 −1.06661
\(626\) 0 0
\(627\) −2.86579e6 −0.291122
\(628\) 0 0
\(629\) 1.27066e7 1.28057
\(630\) 0 0
\(631\) −1.66208e7 −1.66180 −0.830899 0.556423i \(-0.812174\pi\)
−0.830899 + 0.556423i \(0.812174\pi\)
\(632\) 0 0
\(633\) −2.55159e6 −0.253106
\(634\) 0 0
\(635\) −2.05034e7 −2.01786
\(636\) 0 0
\(637\) −153074. −0.0149470
\(638\) 0 0
\(639\) −5.85638e6 −0.567384
\(640\) 0 0
\(641\) 1.02473e6 0.0985068 0.0492534 0.998786i \(-0.484316\pi\)
0.0492534 + 0.998786i \(0.484316\pi\)
\(642\) 0 0
\(643\) 1.22962e7 1.17286 0.586428 0.810001i \(-0.300534\pi\)
0.586428 + 0.810001i \(0.300534\pi\)
\(644\) 0 0
\(645\) −1.45275e7 −1.37496
\(646\) 0 0
\(647\) 2.16537e6 0.203363 0.101682 0.994817i \(-0.467578\pi\)
0.101682 + 0.994817i \(0.467578\pi\)
\(648\) 0 0
\(649\) −1.35515e6 −0.126292
\(650\) 0 0
\(651\) −1.63922e6 −0.151595
\(652\) 0 0
\(653\) −1.22501e7 −1.12424 −0.562119 0.827056i \(-0.690014\pi\)
−0.562119 + 0.827056i \(0.690014\pi\)
\(654\) 0 0
\(655\) −6.04317e6 −0.550379
\(656\) 0 0
\(657\) −4.50983e6 −0.407612
\(658\) 0 0
\(659\) −1.18607e6 −0.106389 −0.0531944 0.998584i \(-0.516940\pi\)
−0.0531944 + 0.998584i \(0.516940\pi\)
\(660\) 0 0
\(661\) −1.45382e7 −1.29421 −0.647107 0.762399i \(-0.724021\pi\)
−0.647107 + 0.762399i \(0.724021\pi\)
\(662\) 0 0
\(663\) −595379. −0.0526029
\(664\) 0 0
\(665\) −2.53711e6 −0.222477
\(666\) 0 0
\(667\) −7.48190e6 −0.651174
\(668\) 0 0
\(669\) 5.86022e6 0.506231
\(670\) 0 0
\(671\) −8.02151e6 −0.687781
\(672\) 0 0
\(673\) −5.99405e6 −0.510132 −0.255066 0.966924i \(-0.582097\pi\)
−0.255066 + 0.966924i \(0.582097\pi\)
\(674\) 0 0
\(675\) 2.11465e6 0.178640
\(676\) 0 0
\(677\) 2.08389e7 1.74744 0.873721 0.486428i \(-0.161700\pi\)
0.873721 + 0.486428i \(0.161700\pi\)
\(678\) 0 0
\(679\) 7.00102e6 0.582756
\(680\) 0 0
\(681\) 3.40464e6 0.281322
\(682\) 0 0
\(683\) −4.55565e6 −0.373679 −0.186840 0.982390i \(-0.559824\pi\)
−0.186840 + 0.982390i \(0.559824\pi\)
\(684\) 0 0
\(685\) −2.89080e7 −2.35392
\(686\) 0 0
\(687\) −200995. −0.0162478
\(688\) 0 0
\(689\) −1.63966e6 −0.131585
\(690\) 0 0
\(691\) −1.68542e6 −0.134281 −0.0671404 0.997744i \(-0.521388\pi\)
−0.0671404 + 0.997744i \(0.521388\pi\)
\(692\) 0 0
\(693\) −1.89472e6 −0.149869
\(694\) 0 0
\(695\) −2.13122e7 −1.67365
\(696\) 0 0
\(697\) −1.89849e6 −0.148022
\(698\) 0 0
\(699\) −8.18046e6 −0.633264
\(700\) 0 0
\(701\) 2.45349e6 0.188577 0.0942887 0.995545i \(-0.469942\pi\)
0.0942887 + 0.995545i \(0.469942\pi\)
\(702\) 0 0
\(703\) 8.16820e6 0.623359
\(704\) 0 0
\(705\) −2.99250e6 −0.226757
\(706\) 0 0
\(707\) 2.17889e6 0.163940
\(708\) 0 0
\(709\) −1.32314e7 −0.988530 −0.494265 0.869311i \(-0.664563\pi\)
−0.494265 + 0.869311i \(0.664563\pi\)
\(710\) 0 0
\(711\) 323125. 0.0239715
\(712\) 0 0
\(713\) 1.20865e7 0.890380
\(714\) 0 0
\(715\) −2.36255e6 −0.172828
\(716\) 0 0
\(717\) −9.48267e6 −0.688863
\(718\) 0 0
\(719\) −1.35337e7 −0.976324 −0.488162 0.872753i \(-0.662333\pi\)
−0.488162 + 0.872753i \(0.662333\pi\)
\(720\) 0 0
\(721\) −9.92835e6 −0.711277
\(722\) 0 0
\(723\) 9.47094e6 0.673826
\(724\) 0 0
\(725\) 6.67455e6 0.471604
\(726\) 0 0
\(727\) −5.29416e6 −0.371502 −0.185751 0.982597i \(-0.559472\pi\)
−0.185751 + 0.982597i \(0.559472\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.15766e7 1.49344
\(732\) 0 0
\(733\) −2.25014e7 −1.54685 −0.773426 0.633886i \(-0.781459\pi\)
−0.773426 + 0.633886i \(0.781459\pi\)
\(734\) 0 0
\(735\) −1.67741e6 −0.114531
\(736\) 0 0
\(737\) −2.98530e7 −2.02451
\(738\) 0 0
\(739\) −1.60739e7 −1.08271 −0.541353 0.840795i \(-0.682088\pi\)
−0.541353 + 0.840795i \(0.682088\pi\)
\(740\) 0 0
\(741\) −382728. −0.0256062
\(742\) 0 0
\(743\) 2.31604e6 0.153913 0.0769563 0.997034i \(-0.475480\pi\)
0.0769563 + 0.997034i \(0.475480\pi\)
\(744\) 0 0
\(745\) 2.42955e7 1.60374
\(746\) 0 0
\(747\) 3.73347e6 0.244800
\(748\) 0 0
\(749\) −4.87677e6 −0.317634
\(750\) 0 0
\(751\) 7.77263e6 0.502885 0.251442 0.967872i \(-0.419095\pi\)
0.251442 + 0.967872i \(0.419095\pi\)
\(752\) 0 0
\(753\) −8.75588e6 −0.562746
\(754\) 0 0
\(755\) 3.35417e7 2.14150
\(756\) 0 0
\(757\) −1.59716e7 −1.01300 −0.506498 0.862241i \(-0.669060\pi\)
−0.506498 + 0.862241i \(0.669060\pi\)
\(758\) 0 0
\(759\) 1.39704e7 0.880244
\(760\) 0 0
\(761\) 1.84940e7 1.15763 0.578815 0.815459i \(-0.303515\pi\)
0.578815 + 0.815459i \(0.303515\pi\)
\(762\) 0 0
\(763\) 1.08256e7 0.673193
\(764\) 0 0
\(765\) −6.52426e6 −0.403068
\(766\) 0 0
\(767\) −180980. −0.0111082
\(768\) 0 0
\(769\) −2.33524e7 −1.42402 −0.712009 0.702170i \(-0.752214\pi\)
−0.712009 + 0.702170i \(0.752214\pi\)
\(770\) 0 0
\(771\) 1.60153e7 0.970283
\(772\) 0 0
\(773\) 7.25262e6 0.436562 0.218281 0.975886i \(-0.429955\pi\)
0.218281 + 0.975886i \(0.429955\pi\)
\(774\) 0 0
\(775\) −1.07823e7 −0.644845
\(776\) 0 0
\(777\) 5.40042e6 0.320904
\(778\) 0 0
\(779\) −1.22041e6 −0.0720546
\(780\) 0 0
\(781\) 3.45151e7 2.02480
\(782\) 0 0
\(783\) 1.67741e6 0.0977764
\(784\) 0 0
\(785\) 6.56742e6 0.380383
\(786\) 0 0
\(787\) −1.18935e6 −0.0684497 −0.0342248 0.999414i \(-0.510896\pi\)
−0.0342248 + 0.999414i \(0.510896\pi\)
\(788\) 0 0
\(789\) −197637. −0.0113025
\(790\) 0 0
\(791\) 1.45153e6 0.0824871
\(792\) 0 0
\(793\) −1.07128e6 −0.0604949
\(794\) 0 0
\(795\) −1.79677e7 −1.00827
\(796\) 0 0
\(797\) 2.14041e7 1.19358 0.596790 0.802397i \(-0.296442\pi\)
0.596790 + 0.802397i \(0.296442\pi\)
\(798\) 0 0
\(799\) 4.44453e6 0.246297
\(800\) 0 0
\(801\) 1.09662e7 0.603911
\(802\) 0 0
\(803\) 2.65790e7 1.45462
\(804\) 0 0
\(805\) 1.23681e7 0.672686
\(806\) 0 0
\(807\) −1.52200e7 −0.822679
\(808\) 0 0
\(809\) 9.60341e6 0.515886 0.257943 0.966160i \(-0.416955\pi\)
0.257943 + 0.966160i \(0.416955\pi\)
\(810\) 0 0
\(811\) −2.62263e7 −1.40018 −0.700091 0.714054i \(-0.746857\pi\)
−0.700091 + 0.714054i \(0.746857\pi\)
\(812\) 0 0
\(813\) 4.21077e6 0.223427
\(814\) 0 0
\(815\) 2.37770e7 1.25390
\(816\) 0 0
\(817\) 1.38701e7 0.726982
\(818\) 0 0
\(819\) −253041. −0.0131820
\(820\) 0 0
\(821\) 3.65685e7 1.89343 0.946715 0.322073i \(-0.104380\pi\)
0.946715 + 0.322073i \(0.104380\pi\)
\(822\) 0 0
\(823\) 7.73488e6 0.398065 0.199032 0.979993i \(-0.436220\pi\)
0.199032 + 0.979993i \(0.436220\pi\)
\(824\) 0 0
\(825\) −1.24629e7 −0.637504
\(826\) 0 0
\(827\) 1.47172e7 0.748277 0.374138 0.927373i \(-0.377939\pi\)
0.374138 + 0.927373i \(0.377939\pi\)
\(828\) 0 0
\(829\) −7.41886e6 −0.374931 −0.187465 0.982271i \(-0.560027\pi\)
−0.187465 + 0.982271i \(0.560027\pi\)
\(830\) 0 0
\(831\) 8.15552e6 0.409684
\(832\) 0 0
\(833\) 2.49134e6 0.124400
\(834\) 0 0
\(835\) −4.70811e7 −2.33685
\(836\) 0 0
\(837\) −2.70973e6 −0.133694
\(838\) 0 0
\(839\) −116538. −0.00571559 −0.00285780 0.999996i \(-0.500910\pi\)
−0.00285780 + 0.999996i \(0.500910\pi\)
\(840\) 0 0
\(841\) −1.52167e7 −0.741874
\(842\) 0 0
\(843\) −7.03249e6 −0.340832
\(844\) 0 0
\(845\) 2.85064e7 1.37341
\(846\) 0 0
\(847\) 3.27520e6 0.156866
\(848\) 0 0
\(849\) 1.34859e7 0.642112
\(850\) 0 0
\(851\) −3.98190e7 −1.88480
\(852\) 0 0
\(853\) −1.91763e7 −0.902387 −0.451193 0.892426i \(-0.649002\pi\)
−0.451193 + 0.892426i \(0.649002\pi\)
\(854\) 0 0
\(855\) −4.19400e6 −0.196206
\(856\) 0 0
\(857\) −1.62548e6 −0.0756012 −0.0378006 0.999285i \(-0.512035\pi\)
−0.0378006 + 0.999285i \(0.512035\pi\)
\(858\) 0 0
\(859\) 1.65931e7 0.767265 0.383632 0.923486i \(-0.374673\pi\)
0.383632 + 0.923486i \(0.374673\pi\)
\(860\) 0 0
\(861\) −806875. −0.0370936
\(862\) 0 0
\(863\) 2.30415e7 1.05314 0.526568 0.850133i \(-0.323479\pi\)
0.526568 + 0.850133i \(0.323479\pi\)
\(864\) 0 0
\(865\) 2.23935e7 1.01761
\(866\) 0 0
\(867\) −3.08871e6 −0.139550
\(868\) 0 0
\(869\) −1.90436e6 −0.0855460
\(870\) 0 0
\(871\) −3.98689e6 −0.178069
\(872\) 0 0
\(873\) 1.15731e7 0.513943
\(874\) 0 0
\(875\) 852954. 0.0376622
\(876\) 0 0
\(877\) 1.84493e7 0.809993 0.404996 0.914318i \(-0.367273\pi\)
0.404996 + 0.914318i \(0.367273\pi\)
\(878\) 0 0
\(879\) −1.40463e7 −0.613182
\(880\) 0 0
\(881\) −3.70548e7 −1.60844 −0.804219 0.594333i \(-0.797416\pi\)
−0.804219 + 0.594333i \(0.797416\pi\)
\(882\) 0 0
\(883\) 5.28466e6 0.228095 0.114047 0.993475i \(-0.463618\pi\)
0.114047 + 0.993475i \(0.463618\pi\)
\(884\) 0 0
\(885\) −1.98321e6 −0.0851161
\(886\) 0 0
\(887\) 1.98545e7 0.847326 0.423663 0.905820i \(-0.360744\pi\)
0.423663 + 0.905820i \(0.360744\pi\)
\(888\) 0 0
\(889\) 1.29425e7 0.549240
\(890\) 0 0
\(891\) −3.13209e6 −0.132172
\(892\) 0 0
\(893\) 2.85708e6 0.119893
\(894\) 0 0
\(895\) 1.15552e7 0.482193
\(896\) 0 0
\(897\) 1.86575e6 0.0774234
\(898\) 0 0
\(899\) −8.55283e6 −0.352948
\(900\) 0 0
\(901\) 2.66861e7 1.09515
\(902\) 0 0
\(903\) 9.17023e6 0.374249
\(904\) 0 0
\(905\) −7.24852e6 −0.294190
\(906\) 0 0
\(907\) 2.00483e7 0.809207 0.404603 0.914492i \(-0.367410\pi\)
0.404603 + 0.914492i \(0.367410\pi\)
\(908\) 0 0
\(909\) 3.60183e6 0.144582
\(910\) 0 0
\(911\) 765753. 0.0305698 0.0152849 0.999883i \(-0.495134\pi\)
0.0152849 + 0.999883i \(0.495134\pi\)
\(912\) 0 0
\(913\) −2.20035e7 −0.873605
\(914\) 0 0
\(915\) −1.17392e7 −0.463540
\(916\) 0 0
\(917\) 3.81465e6 0.149807
\(918\) 0 0
\(919\) 1.87846e7 0.733692 0.366846 0.930282i \(-0.380438\pi\)
0.366846 + 0.930282i \(0.380438\pi\)
\(920\) 0 0
\(921\) 8.00377e6 0.310918
\(922\) 0 0
\(923\) 4.60951e6 0.178094
\(924\) 0 0
\(925\) 3.55222e7 1.36504
\(926\) 0 0
\(927\) −1.64122e7 −0.627288
\(928\) 0 0
\(929\) −4.56290e7 −1.73461 −0.867304 0.497778i \(-0.834149\pi\)
−0.867304 + 0.497778i \(0.834149\pi\)
\(930\) 0 0
\(931\) 1.60151e6 0.0605557
\(932\) 0 0
\(933\) −2.20344e7 −0.828698
\(934\) 0 0
\(935\) 3.84513e7 1.43841
\(936\) 0 0
\(937\) 6.67800e6 0.248484 0.124242 0.992252i \(-0.460350\pi\)
0.124242 + 0.992252i \(0.460350\pi\)
\(938\) 0 0
\(939\) −2.45792e7 −0.909713
\(940\) 0 0
\(941\) 3.42716e7 1.26171 0.630857 0.775899i \(-0.282703\pi\)
0.630857 + 0.775899i \(0.282703\pi\)
\(942\) 0 0
\(943\) 5.94933e6 0.217866
\(944\) 0 0
\(945\) −2.77287e6 −0.101007
\(946\) 0 0
\(947\) −5.28766e7 −1.91597 −0.957984 0.286821i \(-0.907402\pi\)
−0.957984 + 0.286821i \(0.907402\pi\)
\(948\) 0 0
\(949\) 3.54965e6 0.127944
\(950\) 0 0
\(951\) −2.24643e6 −0.0805455
\(952\) 0 0
\(953\) 5.33439e6 0.190262 0.0951311 0.995465i \(-0.469673\pi\)
0.0951311 + 0.995465i \(0.469673\pi\)
\(954\) 0 0
\(955\) 1.91669e7 0.680056
\(956\) 0 0
\(957\) −9.88594e6 −0.348930
\(958\) 0 0
\(959\) 1.82477e7 0.640711
\(960\) 0 0
\(961\) −1.48127e7 −0.517398
\(962\) 0 0
\(963\) −8.06160e6 −0.280127
\(964\) 0 0
\(965\) −3.73719e7 −1.29189
\(966\) 0 0
\(967\) 1.93877e7 0.666744 0.333372 0.942795i \(-0.391813\pi\)
0.333372 + 0.942795i \(0.391813\pi\)
\(968\) 0 0
\(969\) 6.22903e6 0.213114
\(970\) 0 0
\(971\) −1.07463e7 −0.365772 −0.182886 0.983134i \(-0.558544\pi\)
−0.182886 + 0.983134i \(0.558544\pi\)
\(972\) 0 0
\(973\) 1.34530e7 0.455550
\(974\) 0 0
\(975\) −1.66442e6 −0.0560728
\(976\) 0 0
\(977\) −2.41051e7 −0.807926 −0.403963 0.914775i \(-0.632368\pi\)
−0.403963 + 0.914775i \(0.632368\pi\)
\(978\) 0 0
\(979\) −6.46300e7 −2.15515
\(980\) 0 0
\(981\) 1.78953e7 0.593701
\(982\) 0 0
\(983\) 4.05038e7 1.33694 0.668470 0.743739i \(-0.266950\pi\)
0.668470 + 0.743739i \(0.266950\pi\)
\(984\) 0 0
\(985\) 4.25573e7 1.39760
\(986\) 0 0
\(987\) 1.88897e6 0.0617207
\(988\) 0 0
\(989\) −6.76149e7 −2.19812
\(990\) 0 0
\(991\) 4.01588e7 1.29896 0.649482 0.760377i \(-0.274986\pi\)
0.649482 + 0.760377i \(0.274986\pi\)
\(992\) 0 0
\(993\) −5.81955e6 −0.187291
\(994\) 0 0
\(995\) 1.22788e7 0.393185
\(996\) 0 0
\(997\) −2.72276e7 −0.867505 −0.433753 0.901032i \(-0.642811\pi\)
−0.433753 + 0.901032i \(0.642811\pi\)
\(998\) 0 0
\(999\) 8.92723e6 0.283011
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.6.a.x.1.1 2
3.2 odd 2 1008.6.a.bo.1.2 2
4.3 odd 2 84.6.a.c.1.1 2
12.11 even 2 252.6.a.h.1.2 2
28.3 even 6 588.6.i.i.373.1 4
28.11 odd 6 588.6.i.l.373.2 4
28.19 even 6 588.6.i.i.361.1 4
28.23 odd 6 588.6.i.l.361.2 4
28.27 even 2 588.6.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.a.c.1.1 2 4.3 odd 2
252.6.a.h.1.2 2 12.11 even 2
336.6.a.x.1.1 2 1.1 even 1 trivial
588.6.a.k.1.2 2 28.27 even 2
588.6.i.i.361.1 4 28.19 even 6
588.6.i.i.373.1 4 28.3 even 6
588.6.i.l.361.2 4 28.23 odd 6
588.6.i.l.373.2 4 28.11 odd 6
1008.6.a.bo.1.2 2 3.2 odd 2