Properties

Label 336.6.a.h
Level $336$
Weight $6$
Character orbit 336.a
Self dual yes
Analytic conductor $53.889$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8889634572\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 9 q^{3} + 26 q^{5} + 49 q^{7} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 9 q^{3} + 26 q^{5} + 49 q^{7} + 81 q^{9} - 664 q^{11} + 318 q^{13} - 234 q^{15} + 1582 q^{17} - 236 q^{19} - 441 q^{21} - 2212 q^{23} - 2449 q^{25} - 729 q^{27} - 4954 q^{29} + 7128 q^{31} + 5976 q^{33} + 1274 q^{35} + 4358 q^{37} - 2862 q^{39} + 10542 q^{41} + 8452 q^{43} + 2106 q^{45} - 5352 q^{47} + 2401 q^{49} - 14238 q^{51} - 33354 q^{53} - 17264 q^{55} + 2124 q^{57} + 15436 q^{59} - 36762 q^{61} + 3969 q^{63} + 8268 q^{65} - 40972 q^{67} + 19908 q^{69} + 9092 q^{71} - 73454 q^{73} + 22041 q^{75} - 32536 q^{77} - 89400 q^{79} + 6561 q^{81} + 6428 q^{83} + 41132 q^{85} + 44586 q^{87} - 122658 q^{89} + 15582 q^{91} - 64152 q^{93} - 6136 q^{95} + 21370 q^{97} - 53784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −9.00000 0 26.0000 0 49.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.6.a.h 1
3.b odd 2 1 1008.6.a.j 1
4.b odd 2 1 42.6.a.d 1
12.b even 2 1 126.6.a.i 1
20.d odd 2 1 1050.6.a.k 1
20.e even 4 2 1050.6.g.i 2
28.d even 2 1 294.6.a.b 1
28.f even 6 2 294.6.e.p 2
28.g odd 6 2 294.6.e.i 2
84.h odd 2 1 882.6.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.d 1 4.b odd 2 1
126.6.a.i 1 12.b even 2 1
294.6.a.b 1 28.d even 2 1
294.6.e.i 2 28.g odd 6 2
294.6.e.p 2 28.f even 6 2
336.6.a.h 1 1.a even 1 1 trivial
882.6.a.s 1 84.h odd 2 1
1008.6.a.j 1 3.b odd 2 1
1050.6.a.k 1 20.d odd 2 1
1050.6.g.i 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(336))\):

\( T_{5} - 26 \) Copy content Toggle raw display
\( T_{11} + 664 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T - 26 \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T + 664 \) Copy content Toggle raw display
$13$ \( T - 318 \) Copy content Toggle raw display
$17$ \( T - 1582 \) Copy content Toggle raw display
$19$ \( T + 236 \) Copy content Toggle raw display
$23$ \( T + 2212 \) Copy content Toggle raw display
$29$ \( T + 4954 \) Copy content Toggle raw display
$31$ \( T - 7128 \) Copy content Toggle raw display
$37$ \( T - 4358 \) Copy content Toggle raw display
$41$ \( T - 10542 \) Copy content Toggle raw display
$43$ \( T - 8452 \) Copy content Toggle raw display
$47$ \( T + 5352 \) Copy content Toggle raw display
$53$ \( T + 33354 \) Copy content Toggle raw display
$59$ \( T - 15436 \) Copy content Toggle raw display
$61$ \( T + 36762 \) Copy content Toggle raw display
$67$ \( T + 40972 \) Copy content Toggle raw display
$71$ \( T - 9092 \) Copy content Toggle raw display
$73$ \( T + 73454 \) Copy content Toggle raw display
$79$ \( T + 89400 \) Copy content Toggle raw display
$83$ \( T - 6428 \) Copy content Toggle raw display
$89$ \( T + 122658 \) Copy content Toggle raw display
$97$ \( T - 21370 \) Copy content Toggle raw display
show more
show less