Properties

Label 336.6.a.g
Level $336$
Weight $6$
Character orbit 336.a
Self dual yes
Analytic conductor $53.889$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,6,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8889634572\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 9 q^{3} + 24 q^{5} - 49 q^{7} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 9 q^{3} + 24 q^{5} - 49 q^{7} + 81 q^{9} - 66 q^{11} + 98 q^{13} - 216 q^{15} - 216 q^{17} + 340 q^{19} + 441 q^{21} + 1038 q^{23} - 2549 q^{25} - 729 q^{27} - 2490 q^{29} + 7048 q^{31} + 594 q^{33} - 1176 q^{35} - 12238 q^{37} - 882 q^{39} + 6468 q^{41} + 15412 q^{43} + 1944 q^{45} - 20604 q^{47} + 2401 q^{49} + 1944 q^{51} + 32490 q^{53} - 1584 q^{55} - 3060 q^{57} - 34224 q^{59} + 35654 q^{61} - 3969 q^{63} + 2352 q^{65} - 12680 q^{67} - 9342 q^{69} + 42642 q^{71} + 33734 q^{73} + 22941 q^{75} + 3234 q^{77} + 85108 q^{79} + 6561 q^{81} + 106764 q^{83} - 5184 q^{85} + 22410 q^{87} + 34884 q^{89} - 4802 q^{91} - 63432 q^{93} + 8160 q^{95} + 18662 q^{97} - 5346 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −9.00000 0 24.0000 0 −49.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.6.a.g 1
3.b odd 2 1 1008.6.a.k 1
4.b odd 2 1 42.6.a.f 1
12.b even 2 1 126.6.a.b 1
20.d odd 2 1 1050.6.a.a 1
20.e even 4 2 1050.6.g.m 2
28.d even 2 1 294.6.a.i 1
28.f even 6 2 294.6.e.f 2
28.g odd 6 2 294.6.e.b 2
84.h odd 2 1 882.6.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.f 1 4.b odd 2 1
126.6.a.b 1 12.b even 2 1
294.6.a.i 1 28.d even 2 1
294.6.e.b 2 28.g odd 6 2
294.6.e.f 2 28.f even 6 2
336.6.a.g 1 1.a even 1 1 trivial
882.6.a.i 1 84.h odd 2 1
1008.6.a.k 1 3.b odd 2 1
1050.6.a.a 1 20.d odd 2 1
1050.6.g.m 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(336))\):

\( T_{5} - 24 \) Copy content Toggle raw display
\( T_{11} + 66 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T - 24 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T + 66 \) Copy content Toggle raw display
$13$ \( T - 98 \) Copy content Toggle raw display
$17$ \( T + 216 \) Copy content Toggle raw display
$19$ \( T - 340 \) Copy content Toggle raw display
$23$ \( T - 1038 \) Copy content Toggle raw display
$29$ \( T + 2490 \) Copy content Toggle raw display
$31$ \( T - 7048 \) Copy content Toggle raw display
$37$ \( T + 12238 \) Copy content Toggle raw display
$41$ \( T - 6468 \) Copy content Toggle raw display
$43$ \( T - 15412 \) Copy content Toggle raw display
$47$ \( T + 20604 \) Copy content Toggle raw display
$53$ \( T - 32490 \) Copy content Toggle raw display
$59$ \( T + 34224 \) Copy content Toggle raw display
$61$ \( T - 35654 \) Copy content Toggle raw display
$67$ \( T + 12680 \) Copy content Toggle raw display
$71$ \( T - 42642 \) Copy content Toggle raw display
$73$ \( T - 33734 \) Copy content Toggle raw display
$79$ \( T - 85108 \) Copy content Toggle raw display
$83$ \( T - 106764 \) Copy content Toggle raw display
$89$ \( T - 34884 \) Copy content Toggle raw display
$97$ \( T - 18662 \) Copy content Toggle raw display
show more
show less